

ESD

TVS

TSS

MOV

GDT

PLED

74LVC1G27GW-MS/74LVC1G27GV-MS

Product specification

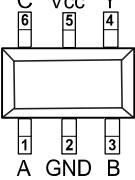
General Description

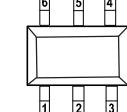
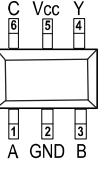
This single 3-input positive-NOR gate is designed for 1.65-V to 5.5-V_{Vcc} operation.

The 74LVC1G27GW-MS/74LVC1G27GV-MS device performs the Boolean function

$Y = A + B + C$ or $Y = \overline{A} \cdot \overline{B} \cdot \overline{C}$ in positive logic. The CMOS device has high output drive while maintaining low static power dissipation over a broad V_{CC} operating range.

This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry prevents damaging current backflow through the device when the gate is powered down and its output is floating.


Features



- Operate from 1.65 V to 5.5V
- Supports 5V V_{VCC} operation
- Specified from -40°C to 85°C
- Provides down translation to V_{VCC}
- Max t_{pd} of 5.4 ns at 3.3 V
- ±24-mA output drive at 3.3 V

Applications

- Personal digital assistant devices
- AV receiver
- MP3 player/recorder
- Solid state drive(SSD):client and enterprise
- Power:telecom/server AC/DC supply
- TV:LCD/digital and high-definition (HDTV)

Pinning and Marking

SOT-23-6	Pin Configurations	Marking
	<p>Pin Configuration Diagram for SOT-23-6: Top row: C (6), V_{VCC} (5), Y (4) Bottom row: A (1), GND (2), B (3)</p>	• Y27 ^{MS}

SOT-363	Pin Configurations	Marking
	<p>Pin Configuration Diagram for SOT-363: Top row: C (6), V_{VCC} (5), Y (4) Bottom row: A (1), GND (2), B (3)</p>	• Y7 ^{MS}


Pin Functions

Name	Pin		I/O	Description
	SOT-23-6	SOT-363		
A	1		I	Data Input
GND	2		-	Ground
B	3		I	Data Input
Y	4		O	Data Output
V _{VCC}	5		-	Supply Voltage
C	6		I	Data Input

Order information

Orderable Device	Package	Packing Option
74LVC1G27GV-MS	SOT23-6	3000PCS
74LVC1G27GW-MS	SOT-363	3000PCS

CircuitDiagram

Absolute Maximum Ratings

Parameters		Min	Max.	Unit
V_{CC}	Supply voltage range	-0.5	6.5	V
V_I	Input voltage range	-0.5	6.5	V
V_O	Voltage range applied to any output in the high-impedance or power-off state ⁽²⁾	-0.5	6.5	V
V_O	Voltage range applied to any output in the high or low state ⁽²⁾⁽³⁾	-0.5	$V_{CC}+0.5$	V
I_{IK}	Input clamp current	$V < 0$		-50 mA
I_{OK}	Output clamp current	$V_O < 0$		-50 mA
I_O	Continuous output current			± 50 mA
Continuous current through V_{CC} or GND			± 100 mA	
T_J	Junction temperature under bias			150 °C
T_{STG}	Storage temperature range	-65	150	°C

(1) Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

(3) The output positive-voltage rating may be exceeded up to 6.5 V maximum if the output current rating is observed.

Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted)

Symbol	Parameter		Min	Max	Units
V_{CC}	Supply Voltage	Operating	1.65	5.5	V
V_{IH}	High-Level Input Voltage	$V_{CC}=1.65V$ to $1.95V$	$0.65 \times V_{CC}$		V
		$V_{CC}=2.3V$ to $2.7V$	1.7		
		$V_{CC}=3V$ to $3.6V$	2		
		$V_{CC}=4.5V$ to $5.5V$	$0.7 \times V_{CC}$		
V_{IL}	Low-Level Input Voltage	$V_{CC}=1.65V$ to $1.95V$		$0.35 \times V_{CC}$	V
		$V_{CC}=2.3V$ to $2.7V$		0.7	
		$V_{CC}=3V$ to $3.6V$		0.8	
		$V_{CC}=4.5V$ to $5.5V$		$0.3 \times V_{CC}$	
V_I	Input Voltage		0	5.5	V
V_O	Output Voltage		0	V_{CC}	V
I_{OH}	High-Level Output Current	$V_{CC}=1.65V$		-4	mA
		$V_{CC}=2.3V$		-8	
		$V_{CC}=3V$		-16	
				-24	
		$V_{CC}=4.5V$		-32	
I_{OL}	Low-Level Output Current	$V_{CC}=1.65V$		4	mA
		$V_{CC}=2.3V$		8	
		$V_{CC}=3V$		16	
				24	
		$V_{CC}=4.5V$		32	
$\Delta t/\Delta v$	Input Transition Rise or Fall Rate	$V_{CC}=1.8V \pm 0.15V, 2.5V \pm 0.2V$		20	ns/V
		$V_{CC}=3.3V \pm 0.3V$		10	
		$V_{CC}=5V \pm 0.5V$		5	
TA	Operating Free-air Temperature	All Other Packages	-40	125	°C

(1) All unused digital inputs of the device must be held at V_{CC} or GND to ensure proper device operation.

Thermal Information

Package Type	θ_{JA}	θ_{JC}	Unit
SOT23-6	196	81	°C/W
SOT-363	178	98	°C/W

Electrical Characteristics

V_{CC} =1.65V to 5.5V, T_A =−40°C to +125°C. Typical values are at T_A =+25°C (unless otherwise noted)⁽¹⁾

Parameter	Symbol	Test Conditions		V_{CC}	T_A	Min	Typ	Max	Units	
Output										
Output High Voltage	V_{OH}	I_{OH} =−100μA			1.65V to 5.5V	FULL	V_{CC} −0.1		V	
		I_{OH} =4mA			1.65V	FULL	1.2		V	
		I_{OH} =8mA			2.3V	FULL	1.9		V	
		I_{OH} =16mA			3V	FULL	2.4		V	
		I_{OH} =24mA				FULL	2.3		V	
		I_{OH} =32mA			4.5V	FULL	3.8		V	
Output Low Voltage	V_{OL}	I_{OL} =100μA			1.65V to 5.5V	FULL		0.1	V	
		I_{OL} =4mA			1.65V	FULL		0.45	V	
		I_{OL} =8mA			2.3V	FULL		0.3	V	
		I_{OL} =16mA			3V	FULL		0.4	V	
		I_{OL} =24mA				FULL		0.55	V	
		I_{OL} =32mA			4.5V	FULL		0.55	V	
Off-State Current	I_{off}	V_I or V_O =5.5V			0V	FULL		±10	μA	
Input										
Input Leakage Current	I_I	V_I =5.5V or GND			0V to 5.5V	FULL		±5	μA	
Input Capacitance	C_I	V_I = V_{CC} or GND			3.3V	FULL		3.5	pF	
Power Supply										
Power Supply Range	V_{CC}				1.65V to 5.5V	FULL	1.65		5.5	V
Power Supply Current	I_{CC}	V_I = V_{CC} or GND, I_O =0			5.5V	FULL		10	μA	
Delta Power Current	ΔI_{CC}	One Input at V_{CC} −0.6V, Other Inputs at V_{CC} or GND			3V to 5.5V	FULL		500	μA	

(1) All unused digital inputs of the device must be held at V_{CC} or GND to ensure proper device operation.

Switching Characteristics

Over recommended operating free-air temperature range, C_L =30pF or 50 pF (unless otherwise noted)

Parameter	From(Input)	To(Output)	−40°C to +125°C								Units	
			V_{CC} =1.8V±0.15V		V_{CC} =2.5V±0.2V		V_{CC} =3.3V±0.3V		V_{CC} =5V±0.5V			
			Min	Max	Min	Max	Min	Max	Min	Max		
t_{pd}	A or B or C	Y	2.2	11	1.4	8.8	1.3	5.4	1	4.7	ns	

Operating Characteristics

T_A =−40°C to +125°C

Parameter	Test Conditions	V_{CC} =1.8V	V_{CC} =2.5V	V_{CC} =3.3V	V_{CC} =5V	Units	
		Typ	Typ	Typ	Typ		
C_{pd}	Power Dissipation Capacitance	f=10Mhz	23	23	23	31	pF

Typical Characteristics

V_{CC} =1.65V or 5.5V, FULL=−40°C to +125°C. Typical values are at $TA=+25^{\circ}C$ (unless otherwise noted)

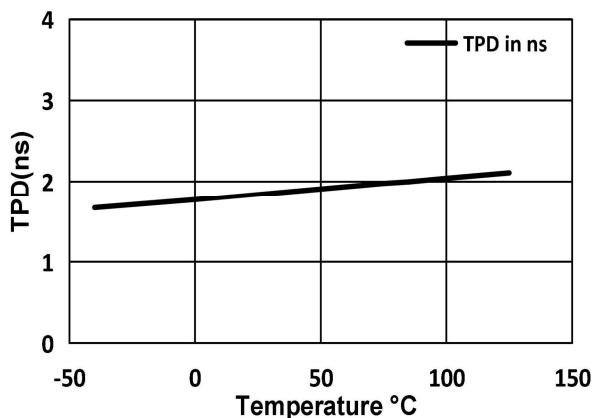


Fig.8-1. TPD Across Temperature at 3.3V V_{CC}

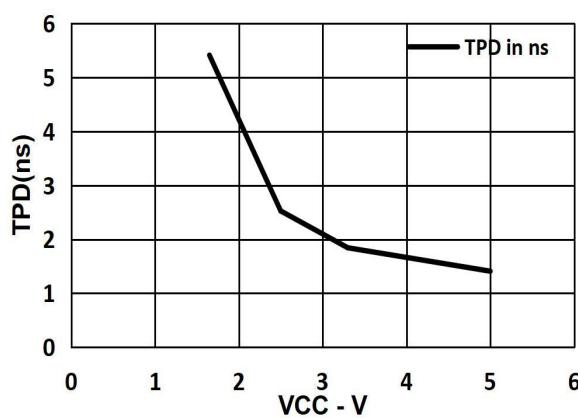
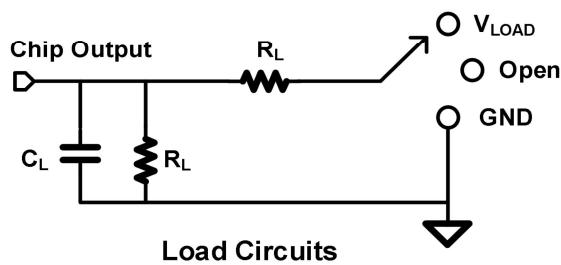
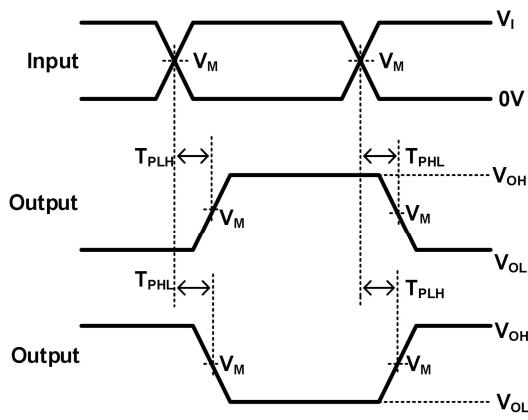
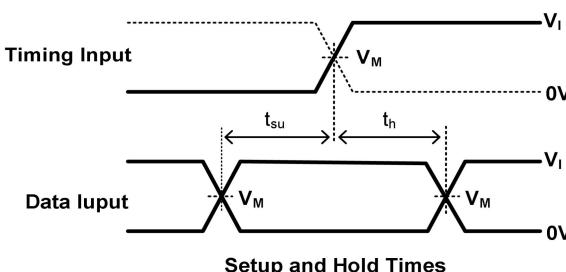
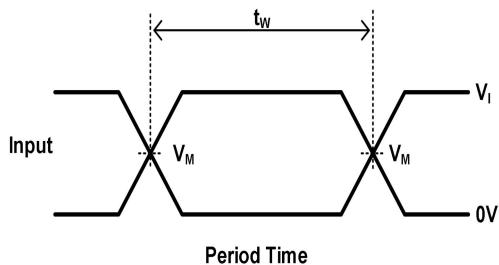
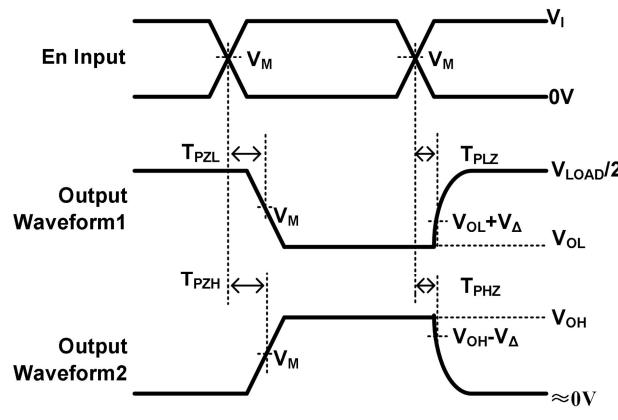



Fig.8-2. TPD Across V_{CC} at 25°C




Parameter Measurement Information


TEST	S1
T_{PHL}/T_{PLH}	OPEN
T_{PLZ}/T_{PZL}	V_{LOAD}
T_{PHZ}/T_{PZH}	GND

V_{CC}	Inputs		V_M	V_{LOAD}	C_L	R_L	V_{Δ}
	V_I	T_r/T_f					
1.8V±0.15V	V_{CC}	≤ 2 ns	$V_{CC}/2$	$2 \times V_{CC}$	30pF	1k Ω	0.15V
2.5V±0.15V	V_{CC}	≤ 2 ns	$V_{CC}/2$	$2 \times V_{CC}$	30pF	500 Ω	0.15V
3.3V±0.15V	3V	≤ 2.5 ns	1.5V	6V	50pF	500 Ω	0.3V
5V±0.15V	V_{CC}	≤ 2.5 ns	$V_{CC}/2$	$2 \times V_{CC}$	50pF	500 Ω	0.3V

Parameter Measurement Information(Continued)

**Propagation Delay
for Output and Inverted Output**

**Enable and Disable Times
Low-And High-Level Enabling**

Notes: A. C_L includes probe and jig capacitance.

D. The outputs are measured one at a time, with one transition per measurement.

B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.

E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .

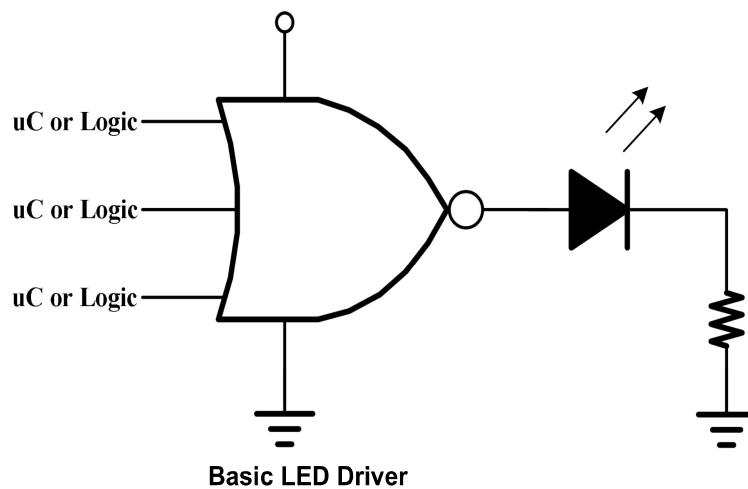
C. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, $Z = 50 \Omega$.

F. t_{PZL} and t_{PZH} are the same as t_{en} .

G. t_{PLH} and t_{PHL} are the same as t_{pd} .

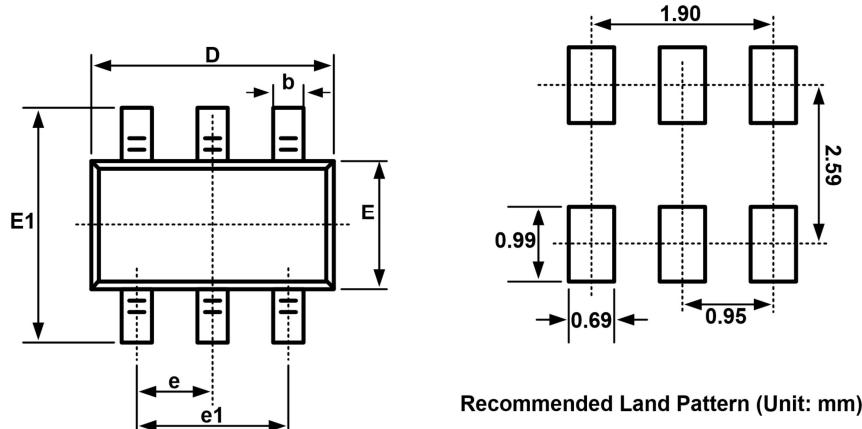
H. All parameters and waveforms are not applicable to all devices.

Feature Description

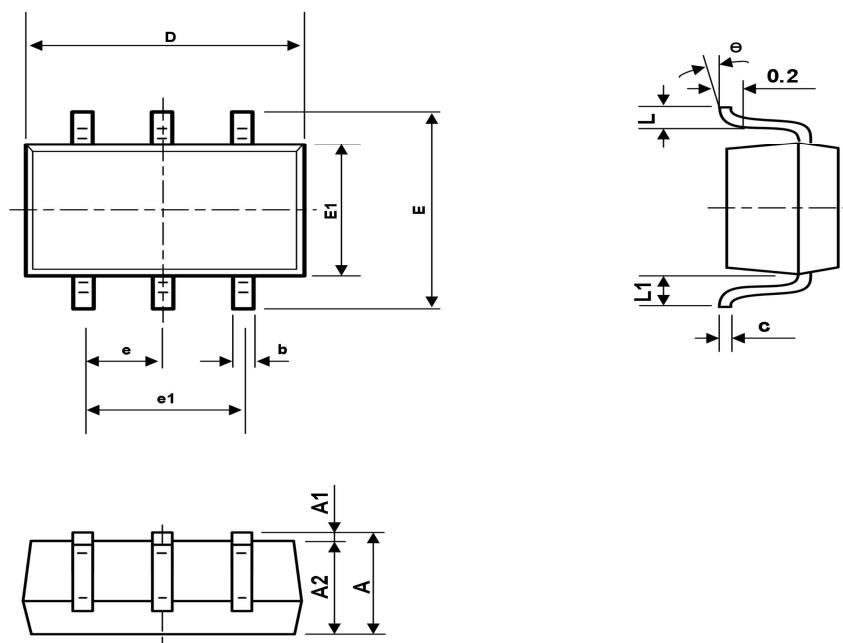

- Wide operating voltage range.
- Operates from 1.65 V to 5.5 V.
- Allows down voltage translation.
- Inputs accept voltages to 5.5 V.
- I_{off} feature allows voltages on the inputs and outputs, when V_{CC} is 0 V.

Device Functional Modes

Inputs			Output
A	B	C	Y
H	X	X	L
X	H	X	L
X	X	H	L
L	L	L	H


Application Information

The 74LVC1G27GW-MS/74LVC1G27GV-MS is a high drive CMOS device that can be used for implement NOR logic with a high output drive, such as an LED application. It can produce 24-mA of drive current at 3.3V making it Ideal for driving multiple outputs and good for high speed applications up to 100Mhz. The inputs are 5.5-V tolerant allowing translation down to V_{CC} .



This device uses CMOS technology and has balanced output drive. Care should be taken to avoid bus contention because it can drive currents that would exceed maximum limits. The high drive will also create fast edges into light loads, so routing and load conditions should be considered to prevent ringing.

Each VCC pin should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, a 0.1- μ F capacitor is recommended. If there are multiple VCC pins, then a 0.01- μ F or 0.022- μ F capacitor is recommended for each power pin. It is ok to parallel multiple bypass capacitors to reject different frequencies of noise. A 0.1- μ F and 1- μ F capacitors are commonly used in parallel. The bypass capacitor should be installed as close to the power pin as possible for best results.

Package Outline
SOT23-6

Recommended Land Pattern (Unit: mm)

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
A	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
c	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
e	0.950BSC		0.037BSC	
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
L1	0.600REF		0.024REF	
θ	0°	8°	0°	8°

Package Outline
SC70-6

Symbol	Dimension In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
A	0.900	1.100	0.035	0.043
A1	0.000	0.100	0.000	0.004
A2	0.900	1.000	0.035	0.039
b	0.150	0.350	0.006	0.014
c	0.110	0.175	0.004	0.007
D	2.000	2.200	0.079	0.087
E	2.150	2.450	0.085	0.096
E1	1.150	1.350	0.045	0.053
e	0.650TYP		0.026TYP	
e1	1.200	1.400	0.047	0.055
L	0.260	0.460	0.010	0.018
L1	0.525REF		0.021REF	
θ	0°	8°	0°	8°

Attention

- Any and all MSKSEMI Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your MSKSEMI Semiconductor representative nearest you before using any MSKSEMI Semiconductor products described or contained herein in such applications.
- MSKSEMI Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all MSKSEMI Semiconductor products described or contained herein.
- Specifications of any and all MSKSEMI Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- MSKSEMI Semiconductor strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all MSKSEMI Semiconductor products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of MSKSEMI Semiconductor.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. MSKSEMI Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the MSKSEMI Semiconductor product that you intend to use.