
BMF7N70

N-Channel MOSFET

Features

- $V_{DSS}=700V$
- $I_D=7A$
- $R_{DS(ON)} @ V_{GS}=10V, TYP=1.4\Omega$
- Fast Switching
- Low Gate Charge

Package

Applications

- Power switch circuit of adaptor and charger
- LED power supplies
- Cell Phone Charger
- Standby Power

Mechanical Data

- Molded Plastic: UL Flammability Classification Rating 94V-0
- Lead free in compliance with EU RoHS 2011/65/EU directive
- Solder bath temperature 275°C maximum, 10s per JESD 22-B106
- Case: Molded plastic
- Mounting Position: Any

Ordering information

Order code	Package	Base qty	Delivery mode
BMF7N70/G	TO-220F	50pcs/tube	1kpcs/box 5kpcs/carton

Note: The order code with "G" means using a thick frame.

BMF7N70

N-Channel MOSFET

Maximum Ratings (@ $T_A=25^\circ\text{C}$ unless otherwise noted)

Symbol	Parameters		Value	Unit
V_{DS}	Drain-Source Voltage		700	V
V_{GS}	Gate-Source Voltage		± 30	V
I_D	Continue Drain Current		7	A
I_{DM}	Pulsed Drain Current (Note1)		14	A
P_D	Power Dissipation	$T_c=25^\circ\text{C}$	63	W
		$T_A=25^\circ\text{C}$	2.5	W
E_{AS}	Single Pulse Avalanche Energy (Note1)		245	mJ
T_{STG}	Operating Junction and Storage Temperature Range		-55 to +150	$^\circ\text{C}$
$R_{\theta JC}$	Typical Thermal Resistance, Junction to Case		1.97	$^\circ\text{C}/\text{W}$
$R_{\theta JA}$	Typical Rhermal Resistance, Junction to Ambient		50	$^\circ\text{C}/\text{W}$

Electrical Characteristics ($T_A=25^\circ\text{C}$ unless otherwise noted)

Symbol	Parameters	Conditions	Min.	Typ.	Max.	Units
BV_{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0\text{V}$, $I_D=250\mu\text{A}$	700	—	—	V
I_{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 700\text{V}$, $V_{GS}=0\text{V}$	—	—	1	μA
I_{GSS}	Gate- Source Leakage Current	$V_{GS} = \pm 30\text{V}$, $V_{DS}=0\text{V}$	—	—	± 100	nA
$V_{GS(\text{TH})}$	Gate Threshold Voltage	$V_{GS} = V_{DS}$, $I_D=250\mu\text{A}$	2	3.3	4	V
$R_{DS(\text{on})}$	Static Drain-source On Resistance	$V_{GS}=10\text{V}$, $I_D=3\text{A}$	—	1.4	1.8	Ω
g_{fs}	Forward Transconductance	$V_{DS}=20\text{V}$, $I_D=3\text{A}$	—	2	—	S
C_{iss}	Input capacitance	$V_{DS} = 25\text{V}$, $V_{GS} = 0\text{V}$, $f = 1\text{MHz}$	—	1200	—	pF
C_{oss}	Output capacitance		—	93	—	
C_{rss}	Reverse transfer capacitance		—	6	—	
$T_{d(\text{on})}$	Turn-on delay time (Note1)	$V_{DD}=350\text{V}$, $I_D = 6\text{A}$, $R_G = 10\Omega$ $V_{GS} = 10\text{V}$	—	11	—	ns
T_r	Turn-on Rise time (Note1)		—	13	—	
$T_{d(\text{off})}$	Turn -Off Delay Time (Note1)		—	20	—	
T_f	Turn -Off Fall time (Note1)		—	33	—	
Q_{gs}	Gate to Source Charge (Note1)	$V_{DD}=560\text{V}$, $V_{GS}=10\text{V}$, $I_D=6\text{A}$	—	7	—	nC
Q_{gd}	Gate to Drain Charge (Note1)		—	4	—	
Q_g	Total Gate Charge (Note1)		—	22	—	
V_{SD}	Diode Forward Voltage	$I_{SD}=3\text{A}$	—	—	1.2	V
I_S	Diode Forward Current	—	—	—	7	A
I_{SM}	Diode Pulsed Current	—	—	—	14	A
T_{rr}	Reverse Recovery Time (Note1)	$V_{DS}=30\text{V}$, $V_{GS}=0\text{V}$, $I_S=1\text{A}$, $di/dt=100\text{A}/\mu\text{s}$	—	368	—	ns
Q_{rr}	Reverse Recovery Charge (Note1)		—	670	—	nC

Note1: Pulse test: 300 μs pulse width, 2% duty cycle.

BORN SEMICONDUCTOR , INC. ALL

RIGHT RESERVED

Specifications are subject to change without notice.

Please refer to <http://www.born-tw.com> for current information. **Revision: 2022-Jan-1-A**

Typical Performance Characteristics($T_J = 25^\circ\text{C}$, unless otherwise noted)

Figure 1: Output characteristic

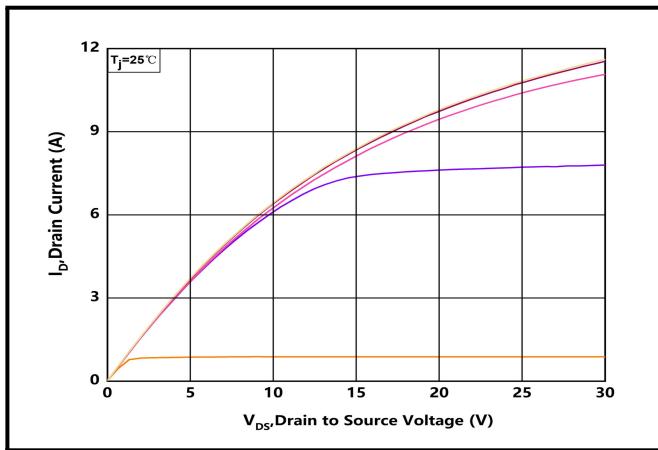


Figure 2: Transfer Characteristic

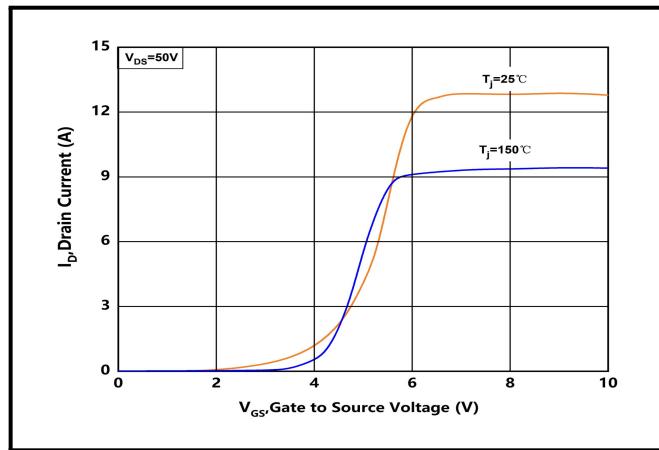


Figure 3: $R_{DS(on)}$ vs. I_D

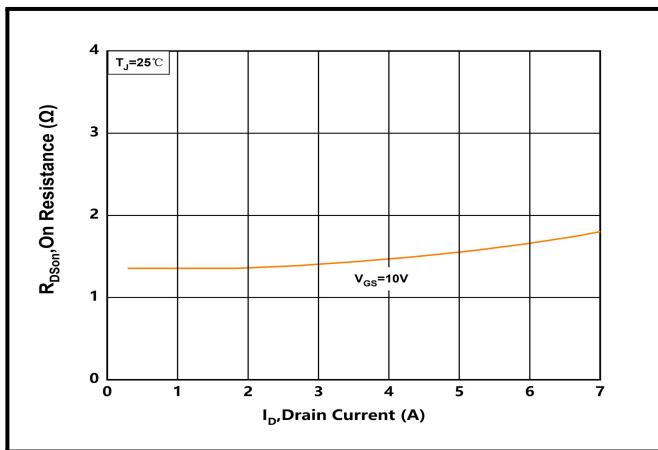


Figure 4: $R_{DS(on)}$ vs. Junction Temperature

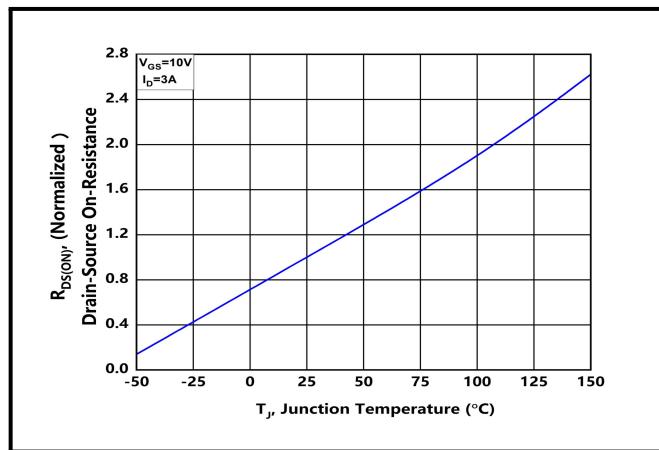


Figure 5: $V_{gs(th)}$ vs. Junction Temperature

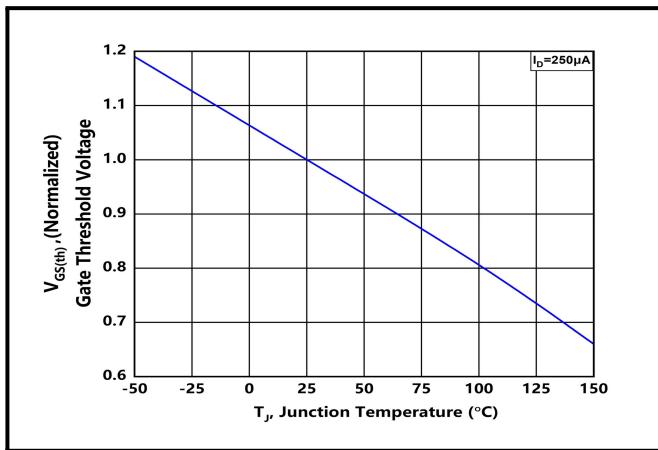
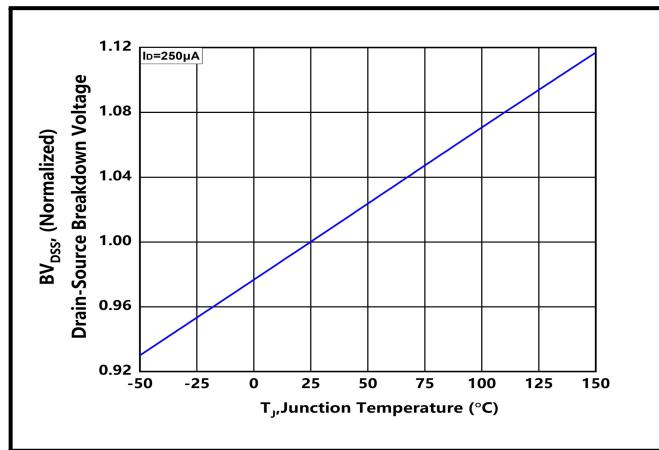



Figure 6: BV_{DSS} vs. Junction Temperature

**BORN SEMICONDUCTOR , INC. ALL
RIGHT RESERVED**

Specifications are subject to change without notice.

Please refer to <http://www.born-tw.com> for current information. Revision: 2022-Jan-1-A

BMF7N70

N-Channel MOSFET

Typical Performance Characteristics($T_J = 25^\circ\text{C}$, unless otherwise noted)

Figure 7: Capacitance Characteristic

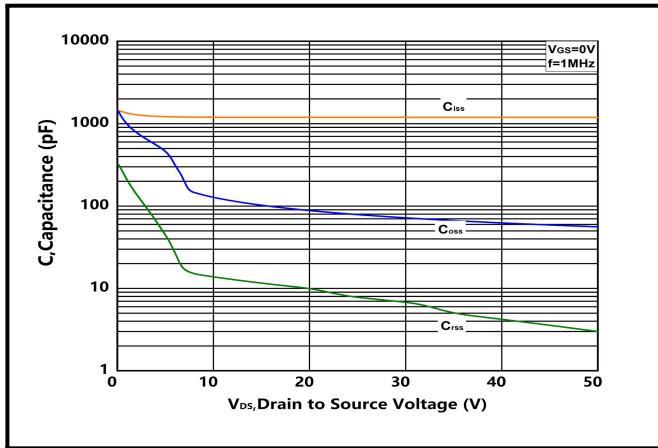


Figure 8: Typical Gate Charge vs. V_{GS}

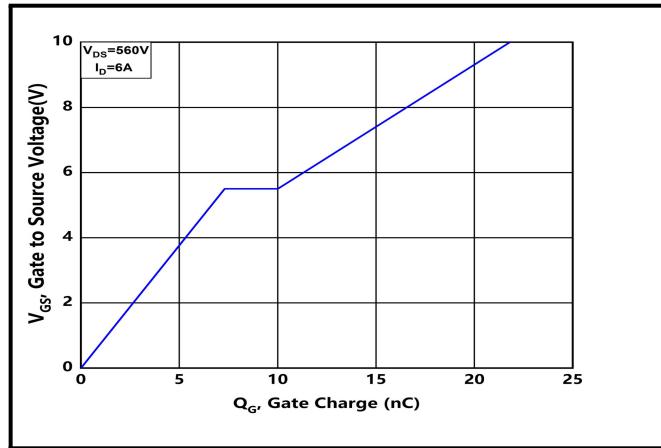


Figure 9: Body Diode Characteristic

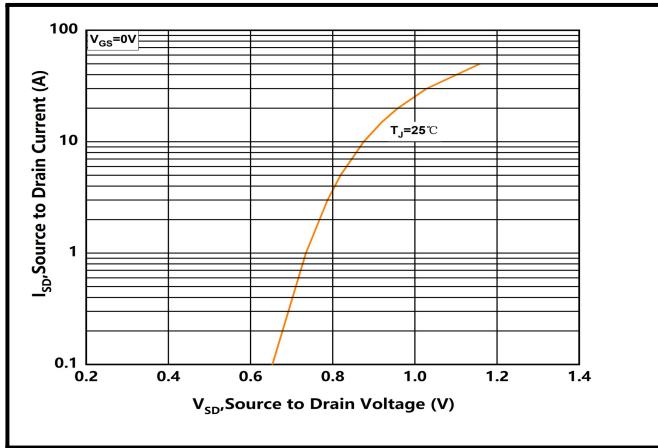


Figure 10: P_{D} Derating vs. Case Temperature

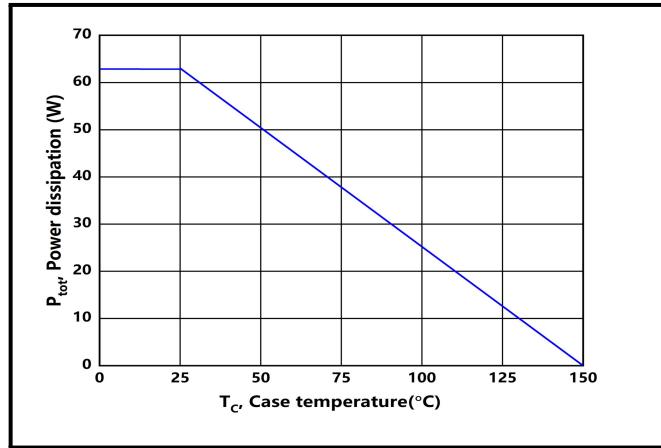


Figure 11: Safe Operating Area

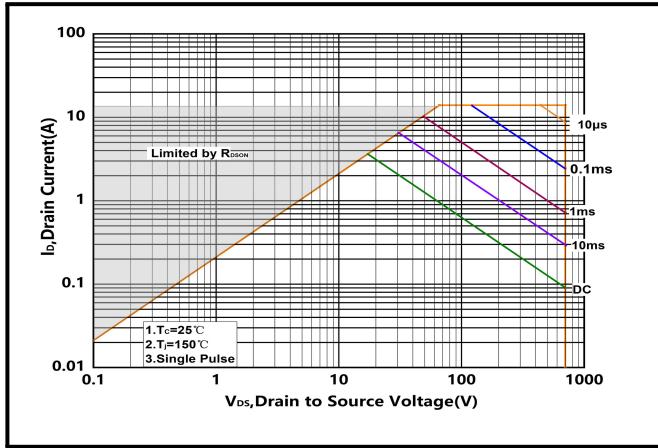
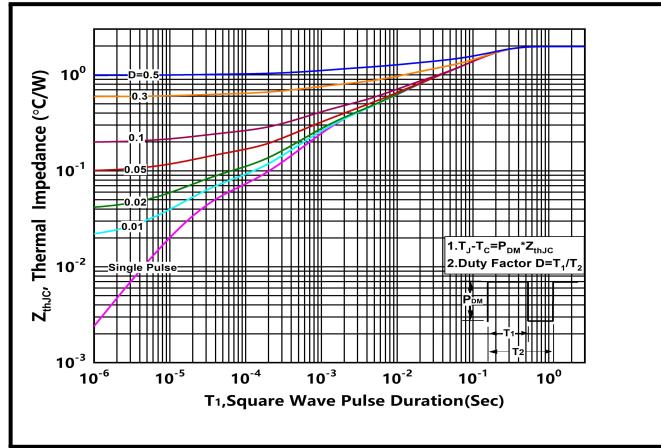
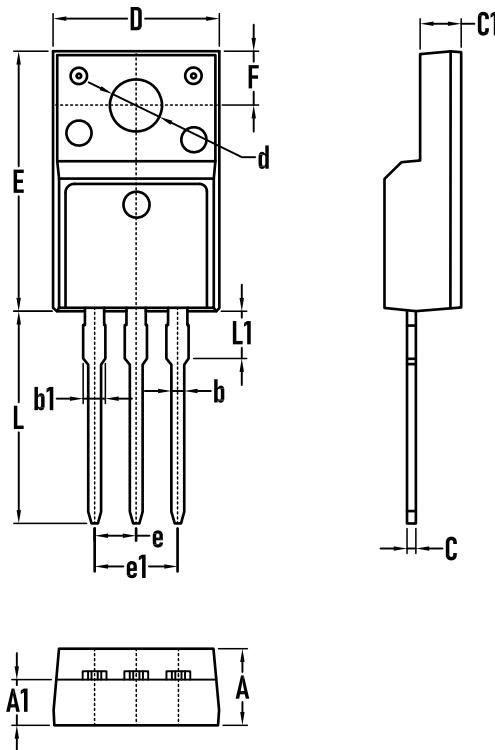



Figure 12: Thermal Impedance (Junction-Case)


**BORN SEMICONDUCTOR , INC. ALL
RIGHT RESERVED**

Specifications are subject to change without notice.

Please refer to <http://www.born-tw.com> for current information. Revision: 2022-Jan-1-A

Packaging Tape - TO-220F

Symbol	Millimeters		
	MIN.	TYP.	MAX.
A	4.30	4.60	4.80
A1	2.70	2.80	2.90
b	0.70	0.80	0.90
b1	1.20	1.30	1.40
C	0.40	0.50	0.60
C1	2.40	2.60	2.80
D	9.90	10.00	10.20
E	15.20	15.60	16.00
e	2.44	2.54	2.64
e1	4.88	5.08	5.26
F	3.00	3.30	3.60
L	12.70	13.20	13.70
L1	2.70	2.90	3.10
d	3.10	3.20	3.30

