

Due di cat Cue a alfination

Product Specification

TUDI-SN65LBC180/SN75LBC180

Low power RS-485 line driver and receiver pair

网址 www.sztdbdt.com Q

用芯智造・卓越品质

semiconductor device manufacturer

- Design
- research and development
- production
- and sales

Features

- Designed for high-speed multi-point data transmission through long cables
- Operates with pulse durations as low as 30ns
- supply current: 5 mA (max)
- Three-state output for shared bus
- Common mode voltage range of -7V to 12V
- Overheat shutdown protection to driver damage due to bus contention
- Positive and negative output current limiting

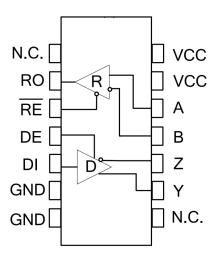
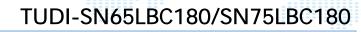



Figure 1 Pin diagram

Description

The SN65LBC180/SN75LBC180 differential drivers and are monolithic integrated circuits designed for bidirectional data communication across long cables with transmission line characteristics. They are balanced or differential voltage-mode devices which meet or exceed the requirements of industry ANSIRS-485. These devices are which combines the low power consumption of CMOS with the precision and robustness of bipolar transistors in the same circuit.

The SN65LBC180/SN75LBC180 combine line drivers and receivers with three-state outputs and operate from a single 5V supply. The drivers and receivers feature separate high- and low -active enable inputs and can be together externally to function as direction control. The driver differential outputs and receiver differential inputs are connected to separate terminals to achieve full-duplex operation and are designed to present a minimum load the bus when disabled or when power is removed (VCC = 0). These devices feature a wide common-mode voltage range, making them suitable for point-to- or multipoint data bus applications. These devices also provide positive and negative output current limiting and thermal shutdown to prevent line fault conditions. The SN75LBC180 is guaranteed to operate over the commercial temperature range of 0°C to 70°C The SN65LBC180 is guaranteed to operate over the industrial temperature range of -40°C to 85°C.

Pin description

Pin number	Pin name	Pin function
1	NC	No internal connections required
2	RO	Receiver output.When RE is low,the RO output is high if A-B is -10mV,and low if A-B is -200mV.
3	/RE	Receiver output enable control.When/RE is low,the receiver output is enabled and RO is active;when/REis high,the receiver output is disabled and RO is in high-impedance state.When RE is at a high level and DE is at a low level,the device enters low-power shutdown mode
4	DE	The driver output enables the control. When DE is at high level, the driver outputs effectively; when DE is low, it outputs high-impedance state. When RE is high and DE is low, the device enters low-power shutdown mode.
5	DI	DI driver input.When DE is high, the low level on DI makes the in-phase output A of the driver low and the in-phase output B high; the high levelon DI makes the in-phase output high and the in-phase output Blow.
6	GND	Landing
7	GND	Landing
8	NC	No internal connections required
9	Υ	Driver in-phase output terminal
10	Z	Driver inverting output
11	В	Receiver inverting input
12	А	Receiver in phase input
13	VCC	This pin can be connected to power or left unconnec-ted
14	VCC	Power connection

Extreme parameter

Parameter	Symbol	Unit	size
Continuous nower consumption	SOP14	mW	600
Continuous power consumption	DIP14	mW	700
Power supply voltage	VCC	V	+7
working temperature range			-40~125
Storage temperature range		- \ Z	-60~150
Welding temperature range			300
Control port voltage	DI	- v	-0.3~VCC+0.3
Bus side input voltage	A, B	V	-8~13
Receiver output voltage	RO	V	-0.3~VCC+0.3

The maximum limit parameters are values beyond which the device can be damaged in an irreversible manner. Operation of the device under these conditions is not intended to be normal and may affect the reliability of the device if operated continuously at the maximum rated limit. All voltages are referenced to ground.

ESD Protect							
Parameter	symbol	Test condition	Minimum	Typical case	Maximum	Unit	
A、B、Y、Z		Human bodymodel		±15		KV	
Other ports		Human bodymodel		±6		KV	

Receiver Switching Characteris-tics						
Parameter	symbol	Test condition	Minimum	Typical case	Maximum	Unit
Acceptor	tRPLH	See Figure 7 and Figure 8	20	60	90	ns
Input to output propag- ation delay from low to high						
The propagation delay from receiverinput to output is from high to low	tRPHL	V 2.0V;risingand falling edgetime ViD 15ns	20	60	90	ns
tRPLH-tRPHLI	tsKEW2			7	10	ns
Enable low time out	tRPZL	CL=15pF SeeFigures 7 and 8		20	50	ns
Enable to output high time	tRPZH	CL=15pF SeeFigures 7 and 8	icon	20	50	ns
Time from output low to disable	tpRLZ	CL=15pF SeeFigures 7 and 8		20	45	ns
Time from output high to disable	tpRHZ	CL=15pF SeeFigures 7 and 8		20	45	ns
Off stateEnable to output high time	tRPSH	CL=15pF SeeFigures 7 and 8		200	1400	ns
Off stateEnable low time out	tRPSL	CL=15pF SeeFigures 7 and 8		200	1400	ns
Time to turn off	tsHDN	NOTE2	80		300	ns

(If not otherwise, VCC= $3V\sim5.5V$, Temp = TMIN \sim TMAX, typical value at Temp = 25) NOTE 1:? VO D and? VOC is the change in VOD and VOC amplitude caused when the DI state of the input signal changes, respectively.

DC electrical characteristics of thedriver							
Parameter	symbol	Test condition	Minimum	Typical case	Maximum	Unit	
Driver differential output (non-loaded)	VoD ₁			4.5	VCC	V	
Drive differential output	VoD ₂	graph 2,RL=27	1.5	2.3	VCC	V	
Drive differential output	V O D 2	graph 2,RL=50	2	2.8	VCC	V	
Variation in the amplitude of the output voltage (NOTE1)	VoD	graph 2,RL=27			0.2	V	
Output common mode voltage	Voc	graph 2,RL=27	1	/ =	3	V	
Amplitude Variation of Common Mode Output Voltage(NOTE1)	Voc	graph 2,RL=27			0.2	V	
High-level input	VH	DI DI	2.0	Tauc	tol	V	
Low level input	V	DI			0.8	V	
Logic input current	IN1	DI	-2		2	uA	
Output the current during ashort circuit, with high short-circuit	IosD ₁	Short circuit to OV~12V	35		250	mA	
Output the current during ashort circuit,down to low	losD ₂	Short circuit to- 7V~0V	-250		-35	mA	

(If not otherwise, VCC= $3V\sim5.5V$, Temp = TMIN \sim TMAX, typical value at Temp = 25) NOTE 1:? VO D and? VOC is the change in VOD and VOC amplitude caused when the DI state of the input signal changes, respectively.

drive switch characteristics							
Parameter	symbol	Test condition	Minimum	Typical case	Maximum	Unit	
Input to output propagation delay (low to high)	tDPLH			12	35	ns	
Input to output propagation delay (high to low)	tDPHL	RDIFF=54 ,CL= CL?=100pF(see		12	35	ns	
tDPLH-tDPHLI	tsKEW1	Fi-gure 3 and Figure 4)		6	10	ns	
Rise time /fall time	tDR,tDF			9	25	ns	
Enable to high output	tpZH	R=110 (seeFigure 5 and 6)		20	90	ns	
Enable to output low	tpZL	-		20	90	ns	
Input low to disable	tpLZ	R=110 (seeFigure 5 and 6)		20	80	ns	
Enable high input	tpHZ	ıdi Sen	nicor	20	80	ns	
Enable high outputunder off condition	tDSH	R=110 (seeFigure 5 and 6)		500	900	ns	
Enable low outputunder shutdown conditions	tDSL	RL=110 (seeFigure 5 and 6)		500	900	ns	

Supply Current							
Parameter	symbol	Test condition	Minimum	Typicel case	Maximum	Unit	
	Iccl	/RE=0V,DE=0V		220	400	uA	
Supply current	Icc2	/RE=VCC, DE=VCC		240	400	uA	
Turn-off current	IsHDN	/RE=VCC,DE=0V		0.5	10	uA	

DC Electrical Characteristics of the Receiver

			•			
Parameter	symbol	Test condition	Minimum	Typical case	Maximum	Unit
Input ourront(A.D.)	IN2	VCC=0 or 3.3V VIn=12V			125	uA
Input current(A,B)	IIN2	VCC=0 or 3.3V VIn=-7V	-100			uA
Forward input threshold voltage	VIT+	-7V Vcm 12V			-10	mV
Reverse input threshold voltage	VIT-	-7V Vcm 12V	-200			mV
Input hysteresis voltage	Vhys	-7V Vcm 12V	10	30	=-	mV
High level output voltage	VoH	IoUT=-4mA, VID=+200 mV	VCC-1.5	ndu	ctor	V
Low level output voltage	VoL	IoUT=+4mA, VID=-200 mV			0.4	V
Three state input leakage cur-rent	lozR	0.4V <vo<2.4v< td=""><td></td><td></td><td>±1</td><td>uA</td></vo<2.4v<>			±1	uA
Input resistance of receiver	RIN	-7V VcM 12V	96			k
Receiver short circuit curr-ent	IosR	0V Vo VCC	±7		±95	mA

Function table

Receiving function table						
con	trol	input	output			
/RE	DE	A-B	RO			
0	Х	≥-10mV	Н			
0	х	≤-200mV	L			
0	Х	Open/short circuit	Н			
1	Х	х	Z			

X: any level; Z: high impedance.

Send function table						
cont	rol	input	output			
/RE	DE	DI	Y	Z		
х	1	1	н	L		
х	1	0	L	Н		
0	0	х	Z	Z		
1	0	Х	Z(shut	down)		

X: any level; Z: high impedance.

Additional description Udi Semiconductor

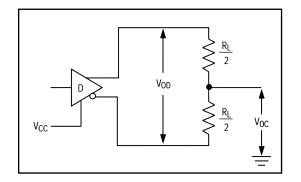
Introduction

The LBC180 is a full-duplex high-speed transceiver for RS-485/RS-42 communication, containing a driver and a receiver. It has fail-safe, overvoltage protection, and overcurrent protection. The LBC180 achieves error-free transmission up to 12Mbps.

fail-safe

The LBC180 guarantees a logic high receiver output if the receiver input is short-circuited or open-circuited,or drivers connected to the terminated transmission line are disabled (idle). This is achieved by setting the receiver input thresholds to -10mV and -20mV, respectively. RO is logic high if the differential receiver input voltage(A-B)≥-10mV, and RO is logic low the voltage(A-B)≤-200mV. Logic high with a minimum noise margin of 50mV can be realized depending the receiver thresholds. The-10mV to -200mV threshold voltage is in accordance with the EIA/TIA-485 of±200mV.

256 transceivers on the bus


The input impedance of the standard RS485 receiver is 12k (1 unit load), and the standard driver can drive to 32 unit loads. The receiver of the LBC180 transceiver has an input impedance of 1/8 unit load (96k allowing up to 256 transceivers to be connected in parallel on the same communication bus. These devices can be combined arbitrarily, or combined with other 485 transceivers, as long as the total load does not exceed 256 unit loads, they can be connected to the same bus.

Drive output protection

Protection against excessive output current and dissipation by fault or bus contention is provided by overcurrent and overvoltage protection mechanisms, with fast short-circuit throughout the common-mode voltage range (see Typical Operating Characteristics).

Test circuit

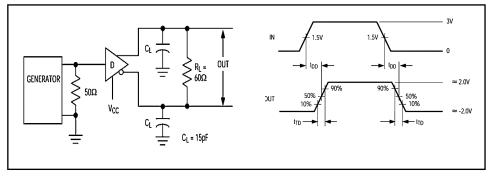


Figure 2: DC test load for the drive

Figure 3 Drive-line Differential Delay and Transit Time

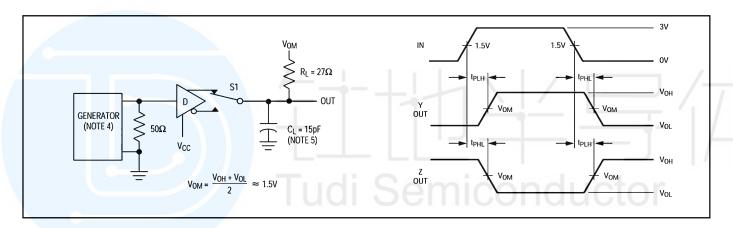


Figure 4 Drive propagation delay

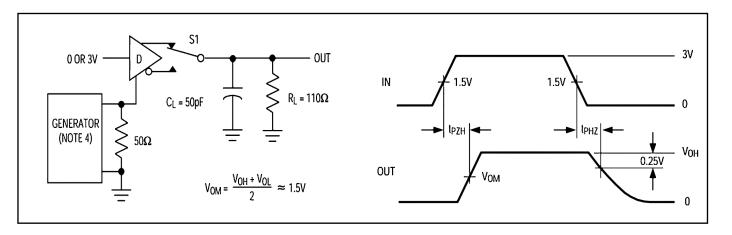


Figure 5 Drive enable and disable time

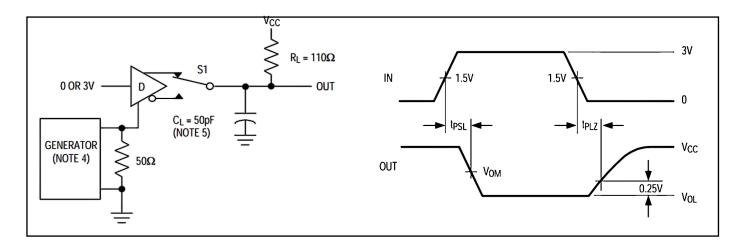


Figure 6 Drive enable and disable time

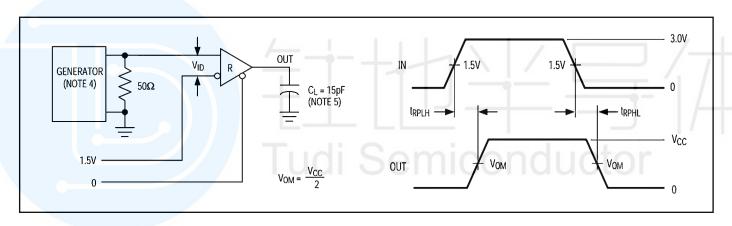
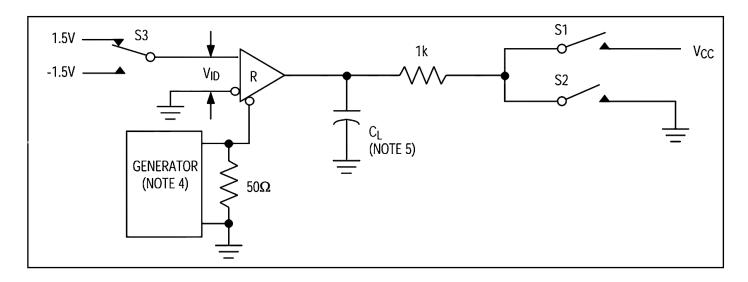
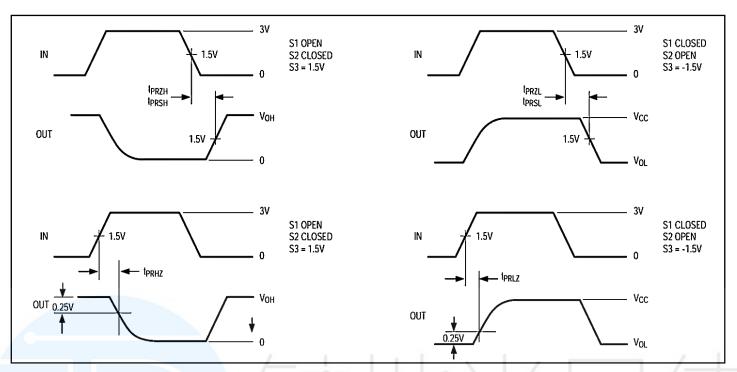
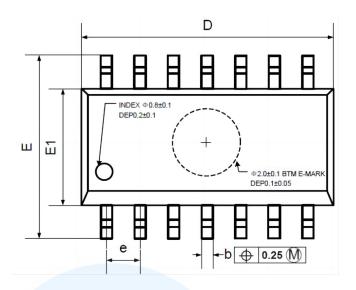
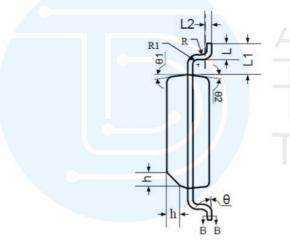
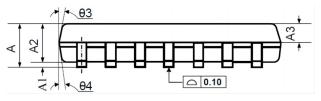



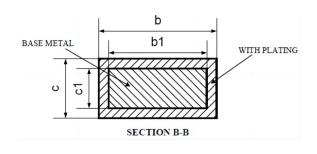
Figure 7: Receiver Propagation Delay Test Circuit



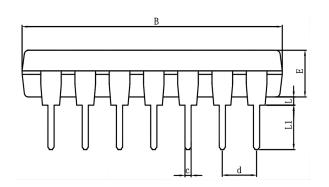

Figure 8 Receive enable and disable time

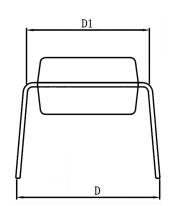

Order information

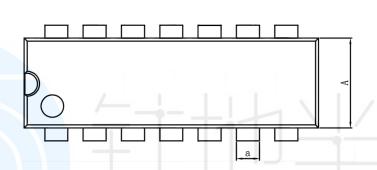

Order Number	Package	Package Quantity	Marking On The park	Temperature
SN75LBC180N-TUDI	DIP14	Tube,25,A box of 1000	SN75LBC180N	
SN75LBC180AN-TUDI	DIP14	Tube,25,A box of 1000	75LBC180A	0℃ to 70℃
SN75LBC180DR-TUDI	SOP14	Tape,Reel,2500	75LBC180	0 0 10 70 0
SN75LBC180ADR-TUDI	SOP14	Tape,Reel,2500	75LBC180A	
SN65LBC180DR-TUDI	SOP14	Tape,Reel,2500	6LB180	
SN65LBC180ADR-TUDI	SOP14	Tape,Reel,2500	BL180A	- 40°C to 85°C
SN65LBC180N-TUDI	DIP14	Tube,25,A box of 1000	SN65LBC180N	- 40 C to 65 C
SN65LBC180AN-TUDI	DIP14	Tube,25,A box of 1000	65LBC180A	



Package SOP14






Symbol	Dimensions In Millimeters				
Symbol	MIN	NOM	MAX		
А	1.35	1.60	1.75		
A1	0.10	0.15	0.25		
A2	1.25	1.45	1.65		
A3	0.55	0.65	0.75		
b	0.36		0.49		
b1	0.35	0.40	0.45		
С	0.16		0.25		
c1	0.15	0.20	0.25		
D	8.53	8.63	8.73		
E	5.80	6.00	6.20		
E1	3.80	3.90	4.00		
е	du	1.27 BS			
L	0.45	0.60	0.80		
L1		1.04 RE	F		
L2		0.25 BS	С		
R	0.07				
R1	0.07				
h	0.30	0.40	0.50		
θ	0°		8°		
θ1	6°	8°	10°		
θ2	6°	8°	10°		
θ3	5°	7°	9°		
θ4	5°	7°	9°		

Package DIP14

DIM.	MIN	ТҮР	MAX	DIM.	MIN	ТҮР	MAX
А	6.100	6.300	6.680	а	1.504	1.524	1.544
В	18.940	19.200	19.560	C	0.437	0.457	0.477
D	8.200	8.700	9.200	d	2.530	2.540	2.550
D1	7.42	7.62	7.82	L	0.500	_	0.800
E	3.100	3.300	3.550	L1	3.000	3.200	3.600

Important statement:

- ●TUDI Semiconductor reserves the right to modify the product manual without prior notice! Before placing an order, customers need to confirm whether the obtained information is the latest version and verify the completeness of the relevant information.
- Any semi-guide product is subject to failure or malfunction under specified conditions. It is the buyer's responsibility to comply with safety standards when using TUDI Semiconductor products for system design and whole machine manufacturing. And take the appropriate safety measures to avoid the potential in the risk of loss of personal injury or loss of property situation!
- ●TUDI Semiconductor products have not been licensed for life support, military, and aerospace applications, and therefore TUDI Semiconductor is not responsible for any consequences arising from the use of this product in these areas.
- If any or all TUDI Semiconductor products (including technical data, services) described or contained in this document are subject to any applicable local export control laws and regulations, they may not be exported without an export license from the relevant authorities in accordance with such laws.
- ●The specifications of any and all TUDI Semiconductor products described or contained in this document specify the performance, characteristics, and functionality of said products in their standalone state, but do not guarantee the performance, characteristics, and functionality of said products installed in Customer's products or equipment. In order to verify symptoms and conditions that cannot be evaluated in a standalone device, the Customer should ultimately evaluate and test the device installed in the Customer's product device.
- ●TUDI Semiconductor documentation is only allowed to be copied without any alteration of the content and with the relevant authorization. TUDI Semiconductor assumes no responsibility or liability for altered documents.
- ●TUDI Semiconductor is committed to becoming the preferred semiconductor brand for customers, and TUDI Semiconductor will strive to provide customers with better performance and better quallity products.