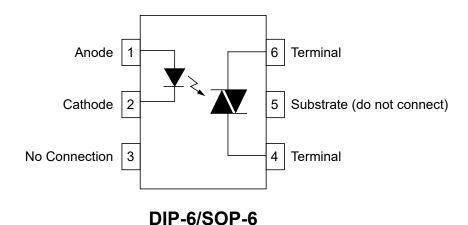
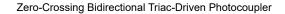


Zero-Crossing Bidirectional Triac-Driven Photocoupler

1.Description

The UMW MOC306x series devices are optocouplers composed of a GaAs infrared light emitting diode and a singlecrystal silicon chip random phase photoelectric bidirectional thyristor.


3.Features


- Peak breakdown voltage 600V
- High isolation voltage between input and output(V_{ISO}=5000 Vrms)
- Zero-voltage crossing

2.Application

- Solenoid valve / Valve control
- Lighting control
- Static power switches
- AC motor drives
- Electromagnetic contactors (or Relay switches)
- Solid-state relays (SSR)
- Compact DIP (Dual In-line Package) housing
- Compliant with RoHS standards
- UL approved: UL1577, file No.E547318

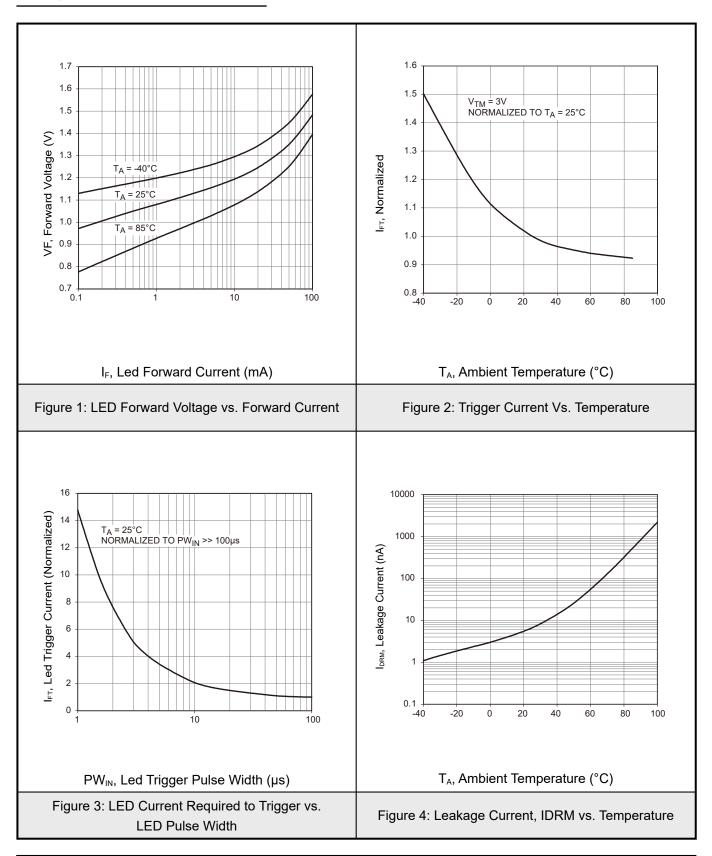
4. Pinning information

5.Absolute Maximum Ratings

Parameter	Symbol	Value	Unit	
Input				
Forward Current	I _F	60	mA	
Backward Voltage		V _R	6	V
Power Dissipation			100	mW
Power dissipation Derating factor (above Ta	- P _□	3.0	mW/°C	
Output				
Off-state output terminal voltage	Off-state output terminal voltage UMW MOC306x			
Peak repetitive surge current (pw=100µs,12	I _{TSM}	1	Α	
On-state current (root mean square value)	I _{T(RMS)}	100	mA	
Power Dissipation	Б	150	mW	
Power dissipation Derating factor (above Ta	- P _c	2.0	mW/°C	
Total Power Dissipation	Ртот	250	mW	
Isolation Voltage	V _{ISO}	5000	V	
Operating Temperature	T _{OPR}	-55 to 110	°C	
Storage Temperature	T _{STG}	-55 to 125	°C	
Soldering Temperature (10s)	T _{SOL}	260	°C	

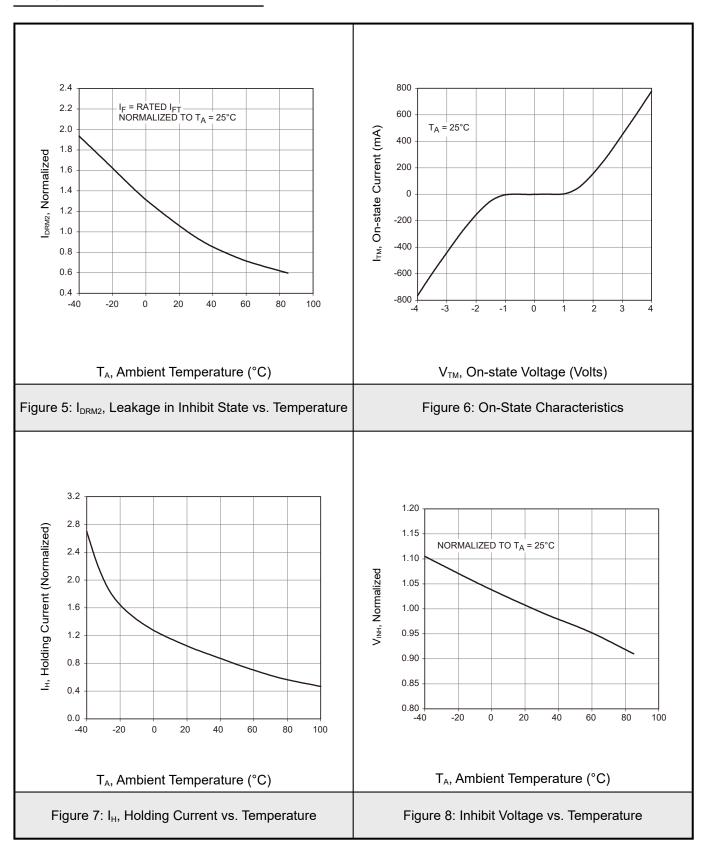
Notes:

Conduct AC test at 40% ~60% relative humidity. At this time, pins 1, 2 and 3 are short-circuited, and pins 4, 5 and 6 are short-circuited.

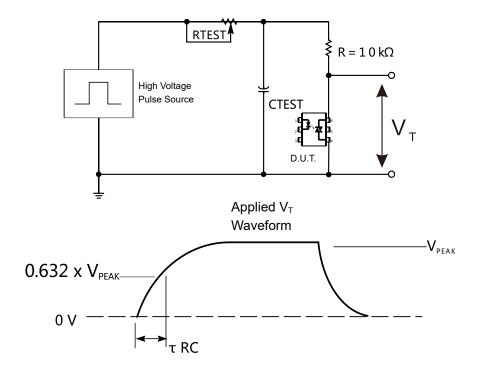

Zero-Crossing Bidirectional Triac-Driven Photocoupler

6.Electro-optical Characteristics(T_A =25°C)

Parameter		Symbol	Conditions	Min	Тур	Max	Units	
Input								
Forward Voltage		V _F	I _F =30mA			1.5	V	
Back current		I_R	V _R =6V			10	μA	
Output	Output							
Off-state peak current	UMW MOC306x	I _{DRM1}	V _{DRM} =Rated V _{DRM} , I _F =0mA			500	nA	
Peak on-state voltage		V_{TM}	I _{TM} =100mA peak, I _F =Rated I _{FT}			3	V	
Critical rate of rise of off-state voltage		dv/dt	V _{PEAK} =Rated	600			V/µs	
Blocking voltage		V_{lnh}	I _F =Rated I _{FT}			20	V	
			I _F =Rated I _{FT}					
Leakage current in blocking state		I _{DRM2}	V _{DRM} =Rated Value			1	mA	
			V _{DRM} , Off-State					
Transfer Characteristics								
	UMW MOC3061					15	mA	
LED trigger current	UMW MOC3062	I _{FT}	Main terminal Voltage =3V			10	mA	
	UMW MOC3063					5	mA	
Maintain current		I _H			280		μA	


7.1 Typical Characterisitics

Zero-Crossing Bidirectional Triac-Driven Photocoupler

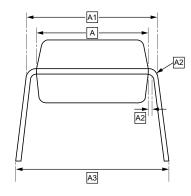

7.2 Typical Characterisitics

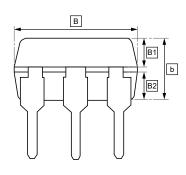
Zero-Crossing Bidirectional Triac-Driven Photocoupler

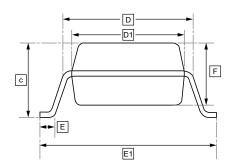
8. Static dv/dt test circuit and waveform

The high voltage pulse applied to the output end of the device under test through the RC circuit is set to the desired V_{PEAK} value. LED current does not need to be added. Waveform VT is monitored with X100 probe. By adjusting the RTEST value, dv/dt (slope) increases until the device under testis observed to be triggered (waveform collapse). Dv/dt then drops until the device under test stops being triggered. At this time, dv/dt can be calculated by recording the value of TRC.

$$dv/dt = \frac{0.632x600}{tRC} = \frac{252}{tRC}$$


For example, the voltage peak of UMW MOC306x series V_{PEAK}=600V. Then the dv/dt value can be calculated as follows:

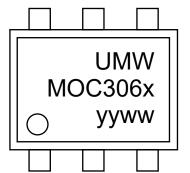

$$dv/dt = \frac{0.632x600}{tRC} = \frac{252}{tRC}$$



Zero-Crossing Bidirectional Triac-Driven Photocoupler

9.DIP-6/SOP-6 Package Outline Dimensions

DIMENSIONS (mm are the original dimensions)


Symbol	Α	A1	A2	А3	В	B1	B2	b	С	D	D1	E
Min	6.45	7.45	0.2	8.7	7.07	1.625	1.595	3.45	4.2	7.45	6.45	0.76
Max	6.55	7.75	(typ.)	9.1	7.14	(typ.)	1.655	3.55	4.4	7.75	6.55	(typ.)

Symbol	E1	F	
Min	10.0	3.45	
Max	10.4	3.55	

Zero-Crossing Bidirectional Triac-Driven Photocoupler

10.Ordering information

yy: Year Code ww: Week Code

Order Code	Package	Base QTY	Delivery Mode
UMW MOC3061M	DIP-6	3250	Tube and box
UMW MOC3062M	DIP-6	3250	Tube and box
UMW MOC3062SM	SOP-6	1000	Tape and reel
UMW MOC3063M	DIP-6	3250	Tube and box
UMW MOC3063SM	SOP-6	1000	Tape and reel

Zero-Crossing Bidirectional Triac-Driven Photocoupler

11.Disclaimer

UMW reserves the right to make changes to all products, specifications. Customers should obtain the latest version of product documentation and verify the completeness and currency of the information before placing an order.

When applying our products, please do not exceed the maximum rated values, as this may affect the reliability of the entire system. Under certain conditions, any semiconductor product may experience faults or failures. Buyers are responsible for adhering to safety standards and implementing safety measures during system design, prototyping, and manufacturing when using our products to prevent potential failure risks that could lead to personal injury or property damage.

Unless explicitly stated in writing, UMW products are not intended for use in medical, life-saving, or life-sustaining applications, nor for any other applications where product failure could result in personal injury or death. If customers use or sell the product for such applications without explicit authorization, they assume all associated risks.

When reselling, applying, or exporting, please comply with export control laws and regulations of China, the United States, the United Kingdom, the European Union, and other relevant countries, regions, and international organizations.

This document and any actions by UMW do not grant any intellectual property rights, whether express or implied, by estoppel or otherwise. The product names and marks mentioned herein may be trademarks of their respective owners.