

1.Description

The TMP36 is a low voltage, precision centigrade temperature sensors, which provides an analog voltage output that is linearly proportional to the Celsius (Centigrade) temperature. Every GX36 chip is factory calibrated, so no external calibration is required, and the typical accuracy is ±1°C at +25°C and ±2°C over the -40°C to +125°C temperature range.

The low output impedance of the TMP36 and its linear output and precise calibration simplify interfacing to temperature control circuitry and ADC. The sensing devices can be powered from a single-supply of 2.7 V to 5.5 V. The supply current is less than $50\mu\text{A}$, providing very low self-heating effect, less than 0.1°C in still air. In addition, a shutdown function is provided to reduce supply current to less than $0.5\,\mu\text{A}$.

3.Applications

- Power system monitors
- Temperature control

2.Features

■ Scale factor: 10 mV/°C

■ Operation range: -40°C ~ +125°C up to +150°C

■ Temperature accuracy: ±2°C (typical)

■ Temperature linearity: ±0.5°C (typical)

Package: 5-Pin SOT-23 (1.60mm×3.00mm)8-Pin VSSOP (3.90 mm × 4.90 mm)

■ Supply range: 2.7V ~ 5.5V

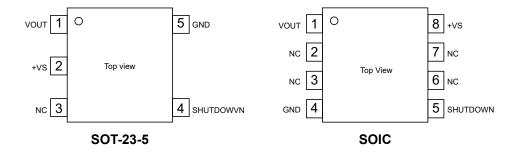
■ Low quiescent current:

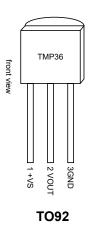
- Normal operation: less than 50µA

- Shutdown mode: less than 0.5µA

■ Stable with large capacitive loads

■ Digital output: analog


Nov.2024



4.Pinning information

5.Pin Configuration and Functions

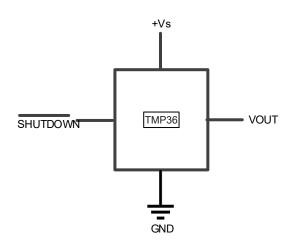


Figure 4. Pin Functions

Table 1. Device Pin Configuration and Functions

Name		PIN		Description
Name	SOT-23	TO92	SOIC	- Description
Vout	1	2	1	Analog voltage output
+Vs	2	1	8	Device supply pin
/SHUTDOWN	4	/	5	Device enable pin
GND	5	3	4	Ground

6.Absolute Maximum Ratings

Parameter	Min	Max	Unit
Power supply, +Vs		6	V
/SHUTDOWN pin	GND	+Vs	V
ALERT pin voltage	-0.5	(+Vs +0.3) and ≤5.5	V
Operating range	-40	150	°C
Junction temperature		160	°C
Storage temperature	-60	160	°C

Unless otherwise stated, over operating free-air temperature range. Stress above these ratings may cause permanent damage to the device.

7.ESD Ratings

Parameter	Symbol	Value	Unit
Human Body Mode (HBM), per ANSI/ESDA/JEDEC JS-001	Electrostatic	±2000	V
Machine Mode (MM), per JEDEC-STD Classification	discharge, V _{ESD}	200	V

8. Recommended Operating Conditions

Parameter	Symbol	Min	Nom	Max	Unit
Supply voltage	V+	2.7	3.3	5.5	V
Operating temperature range	T _A	-40		125	°C

Unless otherwise stated, over operating free-air temperature range.

9. Electrical Characteristics

Parameter		Symbol	Conditions	Min	Тур	Max	Units
Supply voltage range		Vs		2.7		5.5	V
Supply current		I _{SY(ON)}	Normal operation			40	μA
Зирріу сипепі		I _{SY(OFF)}	Shutdown mode			0.5	μΑ
Temperature range				-40		125	°C
	F		T _A =25°C		±1	±2	ů
Accuracy (Temperature error)	G		T _A =25°C		±1	±3	°C
Accuracy (Temperature error)	F		Above the rated temperature		±2	±3	°C
	G		Above the rated temperature		±2	±4	°C
Supply voltage sensitivity			T _A =25°C, 3.0V<+V _S <5.5V		20	100	mV/°C
Scale factor			-40°C≤T _A ≤+125°C		10		mV/°C
Load Regulation			-40°C≤T _A ≤+105°C		8	30	m°C/µA
Load Regulation			105°C≤T _A ≤+125°C		30	70	m°C/μA
Linearity					0.5		°C
Long-term stability					0.4		°C
Output voltage			T _A =25°C		750		mV
Output load current		IL		0		50	μA
Short-circuit current		I _{sc}				300	μA
Capacitive load driving		C _L		1000	10000		pF
Device turn-on time			Output within±1°C 100 kΩ 100 pF load ²		0.5	1	ms

10. Typical characteristic

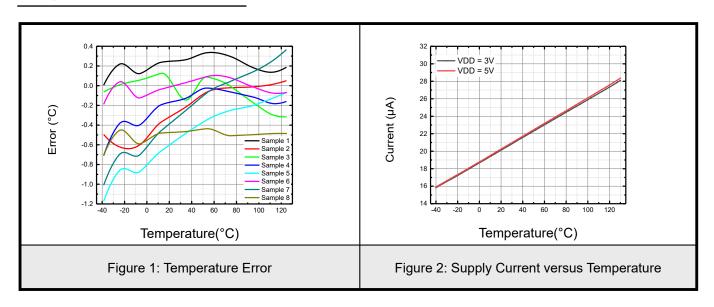
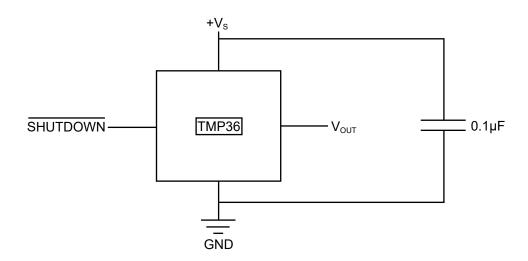


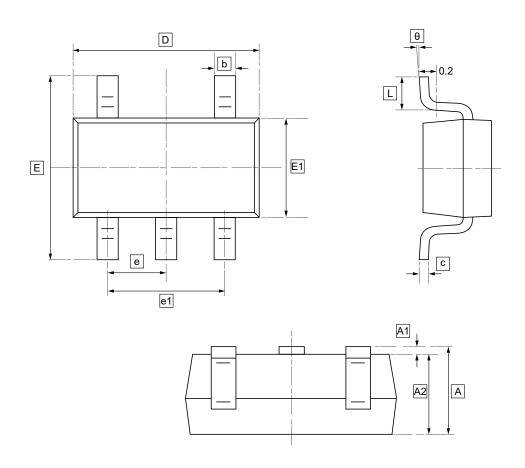
Table 2. Output Voltage versus Temperature

Conditions	V _{out} (mV)	Temperature (°C)	V _{out} (mV)
-40	100	50	1000
-30	200	60	1100
-20	300	70	1200
-10	400	80	1300
0	500	90	1400
10	600	100	1500
20	700	110	1600
30	800	120	1700
40	900	125	1750

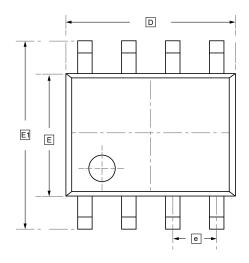
11. Typical Applications

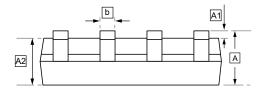
Figure 6 shows the basic temperature sensor connections for the TMP36 temperature sensor. Table 1 shows the corresponding pin descriptions for the three package types of temperature sensors. For the SOT-23, Pin 3 islabeled as "NC" as are Pins 2, 3, 6, and 7 on the SOIC package. It is recommended that no electrical connections be made to these pins. If the shutdown feature is not needed on the SOT-23 or the SOIC package, the /SHUTDOWN pin should be connected to +VS. Note the $0.1\mu\text{F}$ bypass capacitor on the input side of the power supply. This capacitor should be a ceramic type, and be located as close a physical proximity to the temperature sensor supply pin as practical to reach better filter effect. Minimizing the radio frequency interference (RFI) is especially important for these devices because the temperature sensor operates at very low current and can be exposed to extremely hostile electrical environments. When the sensor operates in an environment with high frequency radiation or high conducted noise, connecting a $0.1~\mu\text{F}$ ceramic capacitor in parallel with a large value tantalum capacitor ($2.2~\mu\text{F}$) can provide better noise reduction capability

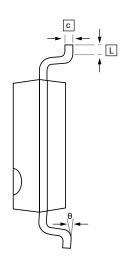



Figure 6. Basic Temperature Sensor Connections

12.1 SOT23-5 Package Outline Dimensions

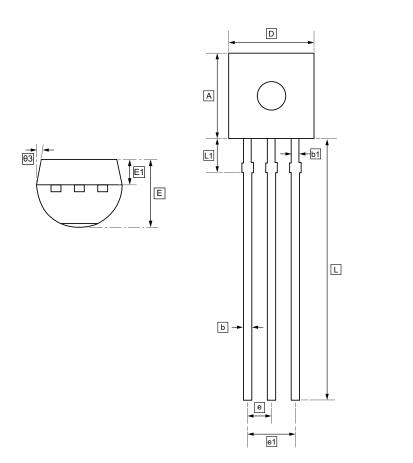

DIMENSIONS (mm are the original dimensions)

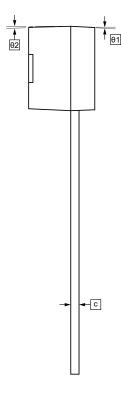

Symbol	Α	A1	A2	b	С	D	E1	E	е	e1	L	θ
Min	1.050	0.000	1.050	0.300	0.100	2.820	1.500	2.650	0.950	1.800	0.300	0°
Max	1.250	0.100	1.150	0.500	0.200	3.020	1.700	2.950	BSC	2.000	0.600	8°



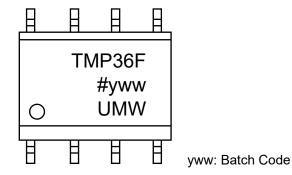
12.2 SOP-8 Package Outline Dimensions

DIMENSIONS (mm are the original dimensions)


Symbol	Α	A 1	A2	b	С	D	Е	E1	е	٦	θ
Min	1.350	0.000	1.350	0.330	0.170	4.700	3.800	5.800	1.270	0.400	0°
Max	1.750	0.100	1.550	0.510	0.250	5.100	4.000	6.200	BSC	1.270	8°



12.3 TO-92 Package Outline Dimensions


DIMENSIONS (mm are the original dimensions)

Symbol	Α	b	b1	С	D	E	E1	е	e1	L	L1	θ1
Min	4.5	0.38	0.46	0.36	4.5	3.45	1.2	1 07	2.54	13.5	1 06	°
Max	4.7	0.56	0.46	0.51	4.7	3.75	1.4	1.27	2.54	15.3	1.96	2

Symbol	θ2	θ3
Min	2°	5°
Max	2	o

13.Ordering Information

Order Code	Marking	Package	Base QTY	Delivery Mode
UMW TMP36GT9Z	TMP36	TO-92	1000	Bulk Bag
UMW TMP36GRTZ	T6G	SOT23-5	3000	Tape and reel
UMW TMP36FSZ	TMP36F#	SOP-8	3000	Tape and reel

UMW TMP36

14.Disclaimer

UMW reserves the right to make changes to all products, specifications. Customers should obtain the latest version of product documentation and verify the completeness and currency of the information before placing an order.

When applying our products, please do not exceed the maximum rated values, as this may affect the reliability of the entire system. Under certain conditions, any semiconductor product may experience faults or failures. Buyers are responsible for adhering to safety standards and implementing safety measures during system design, prototyping, and manufacturing when using our products to prevent potential failure risks that could lead to personal injury or property damage.

Unless explicitly stated in writing, UMW products are not intended for use in medical, life-saving, or life-sustaining applications, nor for any other applications where product failure could result in personal injury or death. If customers use or sell the product for such applications without explicit authorization, they assume all associated risks.

When reselling, applying, or exporting, please comply with export control laws and regulations of China, the United States, the United Kingdom, the European Union, and other relevant countries, regions, and international organizations.

This document and any actions by UMW do not grant any intellectual property rights, whether express or implied, by estoppel or otherwise. The product names and marks mentioned herein may be trademarks of their respective owners.