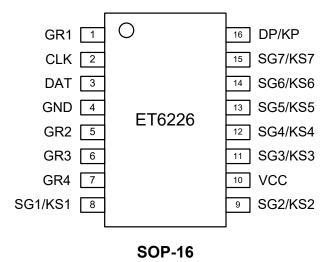


Matrix LED Drive Control with Keyboard Scan


1.Description

UMW ET6226 is a specific LED drive control circuit with a keyboard scanning interface circuit. Internal integrated MCU digital interface input and output, data latches, LED drives, keyboard scanning, brightness adjustment and so on. The chip performance is stable, reliable quality, anti-interference ability, can be adapted to work in 24 hours of continuous long-term applications.

2.Features

- Display matrix mode: 8×4 or 7×4
- Segment drive current is not less than 25mA
 bit drive current is not less than 150mA
- Provide eight brightness control
- Keyboard scanning: 7×4bit
- High-speed two-wire serial interface
- Built-in clock oscillator circuit
- Built-in power-on reset circuit
- Supports 3.0V~5.5V supply voltage

3. Pinning Information

Matrix LED Drive Control with Keyboard Scan

4.Pin Description

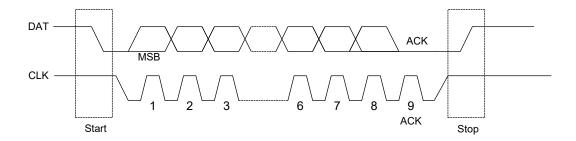
Symbol	Pin Name	Description
SG1/KS1~SG7/KS7	Segment drive output	LED segment high side drive output,
3G1/K31~3G7/K37	/keyboard scanning input	Also used as key scan input, active high, internal pull-down
GR1~GR4	Bit/keyboard scanning output	LED low side drive output,Also used as key scan output
DP/KP	Segment/Bit output	LED segment output, also output for keyboard symbol
CLK	Clock input	Clock input, internal pull-up resistor
DAT	Data output/input	Data input and output, built-in drain mode pull-on
VCC	Supply voltage	3V~5.5V Power Supply pin
GND	Ground	Ground pin

Matrix LED Drive Control with Keyboard Scan

5. Functional Description

Two-wire Bus Interface

The ET6226 and MCU can transmit signal by DAT and CLK serial signal. DAT and CLK constitute two-wire interface.


Data signal

When CLK signal is high, DAT signal must be stable. The high or low state of the DAT signal can only change when the CLK signal is low.

Start and stop condition

When the CLK signal is high, DAT signal from high to low transition, This situation indicates serial signal transmission start.

When the CLK signal is high, DAT signal from low to high transition, This situation indicates serial signal transmission stop. As show blow:

Command signal format

DAT format of the command signal has 8 bit, after each command signal the need for a confirmation signal, and the maximum signal bit "MSB" headed sent.

Format of acknowledge signal

DAT bus is set to high impedance state by the MCU during the ninth clock cycle, if ET6226 confirm this signal, then the DAT will be pulled low by the ET6226, the DAT bus to maintain a stable low state.

The ET6226 will produce a confirmation signal after received each command signal, or in the ninth clock will remain high level.

Matrix LED Drive Control with Keyboard Scan

No acknowledge signal transmission

If you want to omit the ET6226 to acknowledge signal detection, you can use a simple transmission. The way for ET6226 in receiving a command signal, wait for a clock pulse, not to acknowledge. If you use this method will likely result in transmission errors, and will reduce the anti-jamming capability.

Control Program Format

ET6226 control program format as show below, under the command of SYSON show:

	В7	В6	B5	B4	В3	B2	B1	В0		B7	В6	B5	B4	В3	B2	B1	В0		
Start	0	1	0	0	1	0	0	0	Ack	0	0	0	0	0	0	0	1	Ack	Stop

Status Control Command Format

High 8 bits data:48H

B7	B6	B5	B4	В3	B2	B1	В0
0	1	0	0	1	0	0	0

Matrix LED Drive Control with Keyboard Scan

Low 8 bits data is follow:

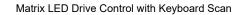
В7	В6	B5	B4	В3	B2	B1	В0	Description	Description
0								Don't care	Please set to 0
	0	0	0						8 step (highest brightness)
	0	0	0					8 steps	1 step (lowest brightness)
	-	-	-					brightness adjust	-
	1	1	1						7step
				1				Made calestian	7 segment
				0				Mode selection	8 segment (DP/KP) as SG output
					1			Class same and	Sleep mode
					0			Sleep command	Operation mode
						0		Don't care	Please set to 0
							1	Diaplay awitch	Display ON
							0	Display switch	Display OFF

For example: "48H,X1H" is 8 segment mode, "X" is brightness step; "48H,X9H" is 7 segment mode; "48H,04H" is sleep mode.

Note: D0 and D2 cannot be "1" at the same time.

Note: when the circuit operate at 7 segment mode or 8 segment mode, DP/KP ports working condition is different, and need the peripheral circuit is also different.

Matrix LED Drive Control with Keyboard Scan


Display Data Command

High				Display	/ Data (Lo	w 8-bit)			
8-bit	DP/KP	SG7/KS7	SG6/KS6	SG5/KS5	SG4/KS4	SG3/KS3	SG2/KS2	SG1/KS1	
68H	В7	B6	B5	B4	В3	B2	B1	В0	GR1
6AH	B7	В6	B5	B4	В3	B2	B1	В0	GR2
6CH	В7	В6	B5	B4	В3	B2	B1	В0	GR3
6EH	B7	В6	B5	B4	В3	B2	B1	В0	GR4

Key Code Command

High 8-bit			Return Key Codes (Low 8-bit)										
4FH	В7	В6	B5	B4	В3	B2	B1	В0					

	GR1	GR2	GR3	GR4
SG1/KS1	44H	45H	46H	47H
SG2/KS2	4CH	4DH	4EH	4FH
SG3/KS3	54H	55H	56H	57H
SG4/KS4	5CH	5DH	5EH	5FH
SG5/KS5	64H	65H	66H	67H
SG6KS6	6CH	6DH	6EH	6FH
SG7/KS7	74H	75H	76H	77H

6. Absolute Maximum Ratings (T_A =25°C)

Parameter	Value	Value	Units
Power supply	V _{cc}	-0.5 to 6.5	V
I/O port input voltage	Vı	-0.5 to V _{cc} + 0.5	V
Max power input current	I _{cc}	150	mA
Operating ambient temperature	Т _{ОРТ}	-40 to 85	°C
Storage temperature	T _{STG}	-55 to 125	°C
Operating junction temperature	TJ	-40 to 150	°C

Matrix LED Drive Control with Keyboard Scan

7. Electrical Characteristics

Test Condition: $T_A=25$ °C, $V_{CC}=5V$

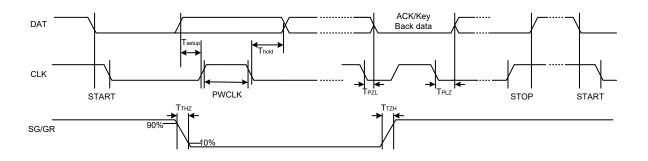
Parameter	Symbol	Min	Тур	Max	Units
Supply voltage	V _{cc}	3	5	5.5	V
Quiescent current (CLK, DAT, KP is high)	IQ		0.3	0.6	mA
Sleep current (CLK, DAT, KP is high)	I _{Q_OFF}		0.05	0.1	mA
CLK and DAT pin low level input voltage	V _{IL}	-0.5		0.2V _{cc}	V
CLK and DAT pin high level input voltage	V _{IH}	0.7V _{CC}		V _{cc} +0.5	V
KS pin low level input voltage	V _{ı∟} ki	-0.5		0.5	V
KS pin high level input voltage	V _{IH} ki	1.8		V _{cc} +0.5	V
GR pin low level input voltage (-200mA)	V _{OL} dig			1.2	V
GR pin low level input voltage (-100mA)	V _{oL} dig			0.8	V
GR pin high level input voltage (5mA)	V _{OH} dig	4.5			V
KS pin low level input voltage (-20mA)	V _{OL} ki			0.5	V
KS pin high level input voltage (20mA)	V _{OH} ki	4.5			V
KS pin pull-down current	I _{DN1}	-30	-50	-90	μA
CLK pin input pull-up current	I _{IUP1}	100	200	300	μΑ
DAT pin input pull-up current	I _{UP2}	150	300	400	μΑ
KP pin output pull-up current	I _{IUP3}	500	2000	5000	μΑ
The default power-on reset threshold voltage	V _{RESET}	2.3	2.6	2.9	V

Matrix LED Drive Control with Keyboard Scan

8.Internal Timing Parameters

Test Condition: T_A=25°C, V_{CC}=5V

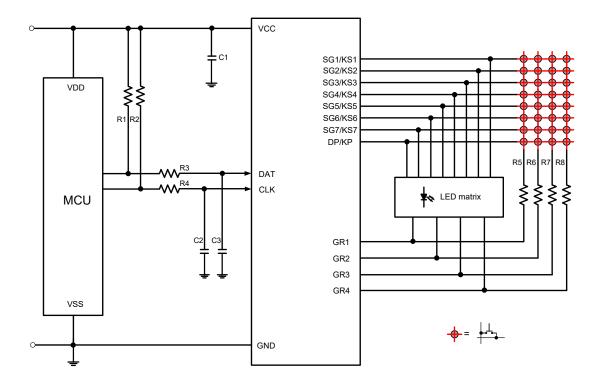
Parameter	Symbol	Min	Тур	Max	Units
Power-on detection reset time	T _{PR}	10	25	60	ms
Display scan cycle	T _P	4	8	20	ms
Keyboard scan interval, the key response time	T _{KS}	20	40	80	ms


Note: this table is built-in clock cycle timing parameters of multiple, built-in clock frequency with the power supply voltage decreases.

9.Interface Timing Parameter

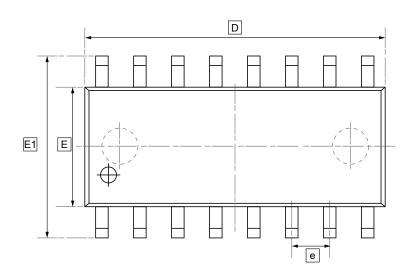
Test Condition: T_A=25°C, V_{CC}=5V

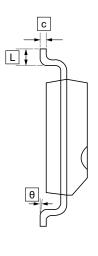
Parameter	Symbol	Min	Тур	Max	Units
Clock Pulse Width	PW _{SCLK}	400			ns
Data setup Time	T _{SETUP}	100			ns
Data Hold Time	T _{HOLD}	100			ns
Waiting Time , CLK↑→CLK↓	T _{WAIT}	1			μs
Average Data Transfer Rate	Rate	0		400	Kbps

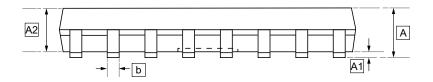

10.Interface Timing Waveform

Matrix LED Drive Control with Keyboard Scan

11. Typical Application

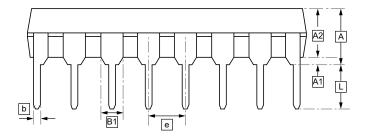

*Note:


- 1. This application circuit is only for reference.
- 2. C1=1uF and should be placed as close as possible to the VCC.
- 3. R1,R2 = 4.7k Ω ; R3,R4 = 100 Ω ; C2,C3 = 100pF; R5~R8 = 2k Ω .
- 4. The series resistance of the communication port and the capacitor for GND should be placed as close as possible to ET6226, and the resistance value and capacitance value should be adjusted according to the actual anti-interference requirements and verification results.

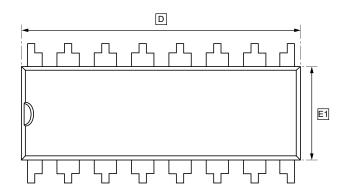


Matrix LED Drive Control with Keyboard Scan

12.1 SOP-16 Package Outline Dimensions


DIMENSIONS (mm are the original dimensions)

Symbol	Α	A 1	A2	b	С	D	E	E1	е	L	θ
Min	1.350	0	1.350	0.330	0.170	9.800	3.800	5.800	1.270	0.400	0°
Max	1.750	0.100	1.550	0.510	0.250	10.200	4.000	6.200	BSC	1.270	8°


Matrix LED Drive Control with Keyboard Scan

12.2 DIP-16 Package Outline Dimensions

DIMENSIONS (mm are the original dimensions)

Symbol	Α	A 1	A2	b	B1	C	D	E1	e	eA	еВ	еC
Min	-	0.50	3.20	0.38	1.52	0.20	18.90	6.15	2.54	7.62	7.62	0
Max	4.45	-	3.70	0.54	BSC	0.35	19.45	6.60	BSC	BSC	9.30	1.52

Symbol	L		
Min	3.00		
Max	-		

13.Ordering Information

xxxxxxx: Batch Code

Order Code	Package	Base QTY	Delivery Mode
UMW ET6226M	SOP-16	4000	Tape and reel

Matrix LED Drive Control with Keyboard Scan

14.Disclaimer

UMW reserves the right to make changes to all products, specifications. Customers should obtain the latest version of product documentation and verify the completeness and currency of the information before placing an order.

When applying our products, please do not exceed the maximum rated values, as this may affect the reliability of the entire system. Under certain conditions, any semiconductor product may experience faults or failures. Buyers are responsible for adhering to safety standards and implementing safety measures during system design, prototyping, and manufacturing when using our products to prevent potential failure risks that could lead to personal injury or property damage.

Unless explicitly stated in writing, UMW products are not intended for use in medical, life-saving, or life-sustaining applications, nor for any other applications where product failure could result in personal injury or death. If customers use or sell the product for such applications without explicit authorization, they assume all associated risks.

When reselling, applying, or exporting, please comply with export control laws and regulations of China, the United States, the United Kingdom, the European Union, and other relevant countries, regions, and international organizations.

This document and any actions by UMW do not grant any intellectual property rights, whether express or implied, by estoppel or otherwise. The product names and marks mentioned herein may be trademarks of their respective owners.