

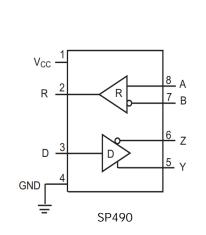
Product Specification

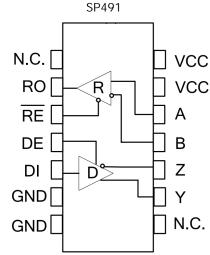
TUDI-SP490/SP491

Enhanced Full-Duplex RS-485 Transceivers

网址 www.sztdbdt.com Q

用芯智造・卓越品质


semiconductor device manufacturer


- Design
- research and development
- production
- and sales

Features

- 5V only
- Low power BiCMOS
- Driver/receiver enable (SP491E)
- RS-485 and RS-422 drivers/receivers
- Improved ESD specifications:
- ±15kV Human Body Model
- ±15kV IEC61000-4-2 Air Discharge

Description

Figure 1 Pin diagram

The SP490 is a low power differential line driver/receiver meeting RS-485 and RS-422 standards up to 10Mbps. The SP491 is identical to the SP490 with the addition of driver and receiver tristate enable lines. Both products feature ±200mV receiver input sensitivity, over wide common mode range. The SP490 is available in 8-pin NSOIC packages for operation over the commercial and industrial temperature ranges. The SP491E is available in 14-pin NSOIC packages for operation over the commercial and industrial temperature ranges.

SP490 Pin description

Pin number	Pin name	Pin function
1	VCC	Power supply:4.5V VCC 5.5V
2	R	Receiver output.
3	D	Driver Input
4	GND	Landing
5	Υ	Driver in-phase output terminal
6	Z	Driver inverting output
7	В	Receiver inverting input
8	А	Receiver in-phase input

SP491 Pin description

Pin number	Pin name	Pin function
1	NC	No internal connections required
2	RO	Receiver output.When RE is low,the RO output is high if A-B is -10mV,and low if A-B is -200mV.
3	/RE	Receiver output enable control.When/RE is low,the receiver output is enabled and RO is active;when/REis high,the receiver output is disabled and RO is in high-impedance state.When RE is at a high level and DE is at a low level,the device enters low-power shutdown mode
4	DE	The driver output enables the control. When DE is at high level, the driver outputs effectively; when DE is low, it outputs high-impedance state. When RE is high and DE is low, the device enters low-power shutdown mode.
5	DI	DI driver input.When DE is high, the low level on DI makes the in-phase output A of the driver low and the in-phase output B high; the high levelon DI makes the in-phase output high and the in-phase output Blow.
6	GND	Landing
7	GND	Landing
8	NC	No internal connections required
9	Υ	Driver in-phase output terminal
10	Z	Driver inverting output
11	В	Receiver inverting input
12	А	Receiver in phase input
13	VCC	This pin can be connected to power or left unconnec-ted
14	VCC	Power connection

Extreme parameter

Parameter	Symbol	Unit	size
Continuous nower consumption	SOP	mW	600
Continuous power consumption	DIP	mW	700
Power supply voltage	VCC	V	+7
working temperature range			-40~125
Storage temperature range		- \ Z	-60~150
Welding temperature range			300
Control port voltage	DI	- v	-0.3~VCC+0.3
Bus side input voltage	A、B	V	-8~13
Receiver output voltage	RO	V	-0.3~VCC+0.3

The maximum limit parameters are values beyond which the device can be damaged in an irreversible manner. Operation of the device under these conditions is not intended to be normal and may affect the reliability of the device if operated continuously at the maximum rated limit. All voltages are referenced to ground.

ESD Protect									
Parameter	symbol	Test condition	Minimum	Typical case	Maximum	Unit			
A、B、Y、Z		Human bodymodel		±15		KV			
Other ports		Human bodymodel		±6		KV			

Receiver Switching Characteris-tics								
Parameter	symbol	Test condition	Minimum	Typical case	Maximum	Unit		
Acceptor	tRPLH	See Figure 7 and Figure 8	20	60	90	ns		
Input to output propag- ation delay from low to high								
The propagation delay from receiverinput to output is from high to low	tRPHL	V 2.0V;risingand falling edgetime ViD 15ns	20	60	90	ns		
tRPLH-tRPHLI	tsKEW2			7	10	ns		
Enable low time out	tRPZL	CL=15pF SeeFigures 7 and 8		20	50	ns		
Enable to output high time	tRPZH	CL=15pF SeeFigures 7 and 8	icon	20	50	ns		
Time from output low to disable	tpRLZ	CL=15pF SeeFigures 7 and 8	10011	20	45	ns		
Time from output high to disable	tpRHZ	CL=15pF SeeFigures 7 and 8		20	45	ns		
Off stateEnable to output high time	tRPSH	CL=15pF SeeFigures 7 and 8		200	1400	ns		
Off stateEnable low time out	tRPSL	CL=15pF SeeFigures 7 and 8		200	1400	ns		
Time to turn off	tsHDN	NOTE2	80		300	ns		

(If not otherwise, VCC= $3V\sim5.5V$, Temp = TMIN \sim TMAX, typical value at Temp = 25) NOTE 1:? VO D and? VOC is the change in VOD and VOC amplitude caused when the DI state of the input signal changes, respectively.

DC electrical characteristics of thedriver								
Parameter	symbol	Test condition	Minimum	Typical case	Maximum	Unit		
Driver differential output (non-loaded)	VoD ₁			4.5	VCC	V		
Drive differential output	VoD ₂	graph 2,RL=27	1.5	2.3	VCC	V		
Drive differential output	V O D 2	graph 2,RL=50	2	2.8	VCC	V		
Variation in the amplitude of the output voltage (NOTE1)	VoD	graph 2,RL=27			0.2	V		
Output common mode voltage	Voc	graph 2,RL=27	7 \	/ E	3	V		
Amplitude Variation of Common Mode Output Voltage(NOTE1)	Voc	graph 2,RL=27			0.2	V		
High-level input	VH	DI	2.0	lauc	tol	V		
Low level input	V	DI			0.8	V		
Logic input current	IN1	DI	-2		2	uA		
Output the current during ashort circuit, with high short-circuit	IosD ₁	Short circuit to OV~12V	35		250	mA		
Output the current during ashort circuit,down to low	losD ₂	Short circuit to- 7V~0V	-250		-35	mA		

(If not otherwise, VCC= $3V\sim5.5V$, Temp = TMIN \sim TMAX, typical value at Temp = 25) NOTE 1:? VO D and? VOC is the change in VOD and VOC amplitude caused when the DI state of the input signal changes, respectively.

drive switch characteristics								
Parameter	symbol	Test condition	Minimum	Typical case	Maximum	Unit		
Input to output propagation delay (low to high)	tDPLH			12	35	ns		
Input to output propagation delay (high to low)	tDPHL	RDIFF=54 ,CL ₁ =CL ₂ =100pF(see		12	35	ns		
tDPLH-tDPHLI	tsKEW1	Figure 3 and Figure 4)		6	10	ns		
Rise time /fall time	tDR,tDF			9	25	ns		
Enable to high output	tpZH	R=110 (see Figure 5 and 6)		20	90	ns		
Enable to output low	tpZL	-	1 \	20	90	ns		
Input low to disable	tpLZ	R=110 (see Figure 5 and 6)		20	80	ns		
Enable high input	tpHZ	ıdi Sen	nicor	20	80	ns		
Enable high outputunder off condition	tDSH	R=110 (see Figure 5 and 6)		500	900	ns		
Enable low outputunder shutdown conditions	tDSL	RL=110 (see Figure 5 and 6)		500	900	ns		

Supply Current								
Parameter	symbol	Test condition	Minimum	Typicel case	Maximum	Unit		
	Iccl	/RE=0V,DE=0V		220	400	uA		
Supply current	lcc2	/RE=VCC, DE=VCC		240	400	uA		
Turn-off current	IsHDN	/RE=VCC,DE=0V		0.5	10	uA		

DC Electrical Characteristics of the Receiver

Parameter	symbol	Test condition	Minimum	Typical case	Maximum	Unit
Input ourropt(A.D)	IN2	VCC=0 or 3.3V VIn=12V			125	uA
Input current(A,B)	IIVZ	VCC=0 or 3.3V VIn=-7V	-100			uA
Forward input threshold voltage	VIT+	-7V Vcm 12V			-10/-50	mV
Reverse input threshold voltage	VIT-	-7V Vcm 12V	-200			mV
Input hysteresis voltage	Vhys	-7V Vcm 12V	10	30	= '	mV
High level output voltage	VoH	IoUT=-4mA, VID=+200 mV	VCC-1.5	ndu	ctor	٧
Low level output voltage	VoL	IoUT=+4mA, VID=-200 mV			0.4	V
Three state input leakage cur-rent	lozR	0.4V <vo<2.4v< td=""><td></td><td></td><td>±1</td><td>uA</td></vo<2.4v<>			±1	uA
Input resistance of receiver	RIN	-7V VcM 12V	96			k
Receiver short circuit curr-ent	IosR	0V Vo VCC	±7		±95	mA

Drive switch characteristics								
Parameter	symbol	Test condition	Minimu m	Typical case	Maximum	Unit		
Input to output propag -ation delay (low to high)	tDPLH	RDIF=54 Q,CL1=CL2		12	35	ns		
Input to output propag -ation delay(high to low)	tDPHL	=100pF(see Fi-gure 10 and Figure 11)		12	35	ns		
tDPLH-tDPHLI	tsKEW1	,		7	10	ns		

HOIHTCCCIVCI		ig and rai	O			
		: timeVm	15ns	_		
tRPLH-tRPHL	tsKEW2			/	10	ns

Function table

Receiving function table							
cor	trol	input	output				
/RE	DE	A-B	RO				
0	х	≥-10mV	Н				
0	х	≤-200mV	L				
0	Х	Open/short circuit	Н				
1	Х	×	Z				

X: any level; Z: high impedance.

Send function table					
control		input	output		
/RE	DE	DI Y		Z	
Х	1	1	Н	L	
х	1	0	L H		
0	0	Х	Z	Z	
1	0	Х	Z(shutdown)		

X: any level; Z: high impedance.

Additional description Udi Semiconductor

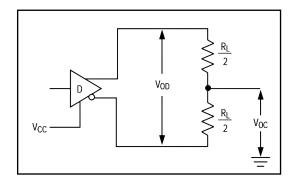
Introduction

The 490/491 is a full-duplex high-speed transceiver for RS-485/RS-42 communication, containing a driver and a receiver. It has fail-safe, overvoltage protection, and overcurrent protection. The 490/491 achieves error-free transmission up to 12Mbps.

fail-safe

The 490/491 guarantees a logic high receiver output if the receiver input is short-circuited or open-circuited,or drivers connected to the terminated transmission line are disabled (idle). This is achieved by setting the receiver input thresholds to -10mV and -20mV, respectively. RO is logic high if the differential receiver input voltage(A-B)≥-10mV, and RO is logic low the voltage(A-B)≤-200mV. Logic high with a minimum noise margin of 50mV can be realized depending the receiver thresholds. The-10mV to -200mV threshold voltage is in accordance with the EIA/TIA-485 of ±200mV.

256 transceivers on the bus


The input impedance of the standard RS485 receiver is 12k (1 unit load), and the standard driver can drive to 32 unit loads. The receiver of the 490/491 transceiver has an input impedance of 1/8 unit load (96k , allowing up to 256 transceivers to be connected in parallel on the same communication bus. These devices can be combined arbitrarily, or combined with other 485 transceivers, as long as the total load does not exceed 256 unit loads, they can be connected to the same bus.

Drive output protection

Protection against excessive output current and dissipation by fault or bus contention is provided by overcurrent and overvoltage protection mechanisms, with fast short-circuit throughout the common-mode voltage range(see Typical Operating Characteristics).

SP491 Test circuit

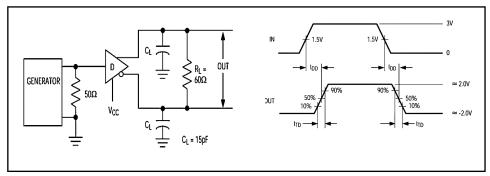


Figure 2: DC test load for the drive

Figure 3 Drive-line Differential Delay and Transit Time

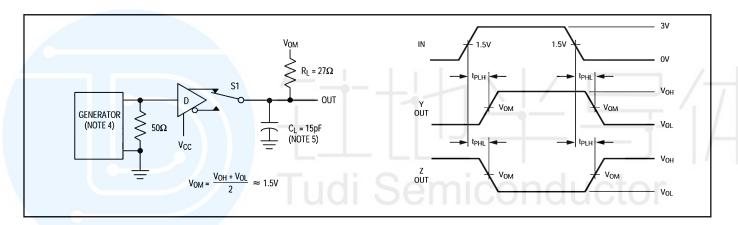


Figure 4 Drive propagation delay

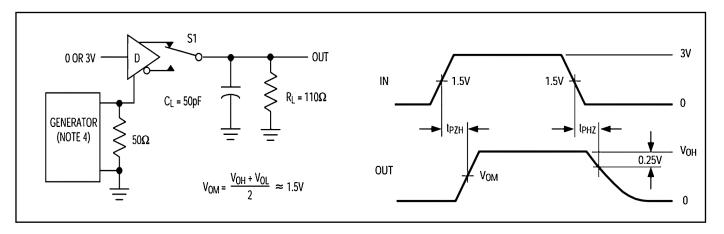


Figure 5 Drive enable and disable time

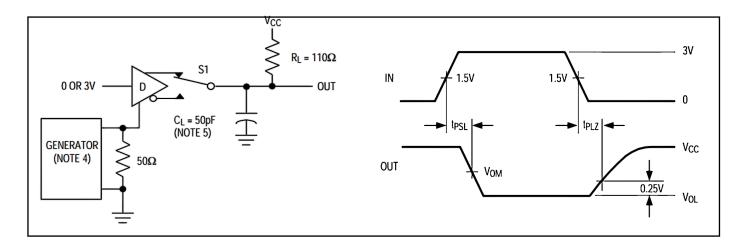


Figure 6 Drive enable and disable time

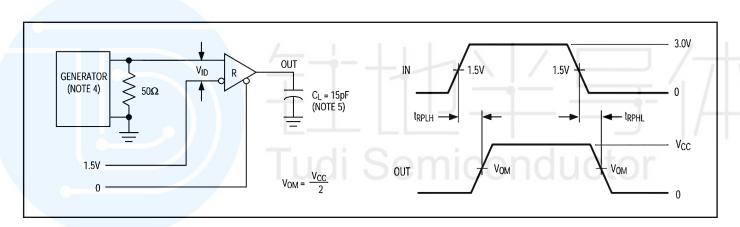
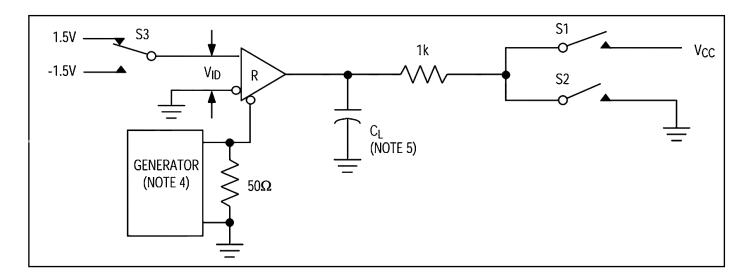



Figure 7: Receiver Propagation Delay Test Circuit

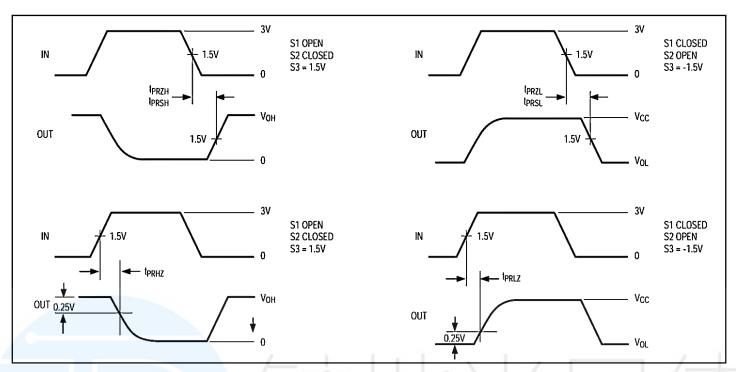


Figure 8 Receive enable and disable time

Order information

Order Number	Package	Package Quantity	Marking On The park	Temperature	
SP490CN-L/TR-TUDI	SOP8	Tape,Reel,2500	Tape,Reel,2500 SP490C		
SP490CS-TUDI	DIP8	Tube,50,A box of 2000	SP490CS	0°C to 70°C	
SP490EN-L/TR-TUDI	OEN-L/TR-TUDI SOP8 Tape,Reel,2500 SP490E		- 40°C to 85°C		
SP490ES-TUDI	DIP8	Tube,50,A box of 2000	SP490ES	- 40 C 10 65 C	
SP491CN-L/TR-TUDI SOP14		Tape,Reel,2500	SP491CN	0°C to 70°C	
SP491CS-TUDI	DIP14	Tube,25,A box of 1000	SP491CS	0°C to 70°C	
SP491EN-L/TR-TUDI	2491EN-L/TR-TUDI SOP14 Tape,Reel,2500 SP491EN		SP491EN	- 40°C to 85°C	
SP491ES-TUDI	DIP14	Tube,25,A box of 1000	SP491ES	- 40 C 10 65 C	

SP490 Test circuit

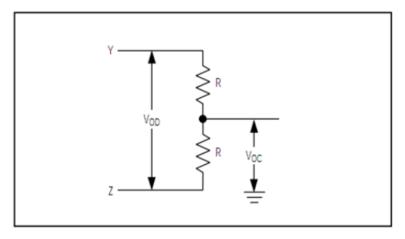


Figure9 DCTestLoadoftheDriver

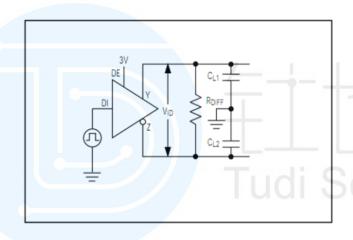


Figure10 DriverTimingTestCircuit

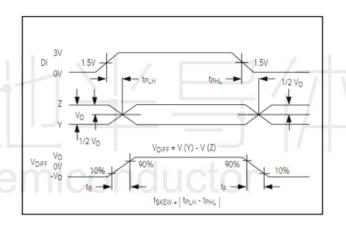


Figure11 PropagationDelayofDriver

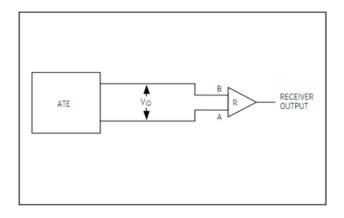
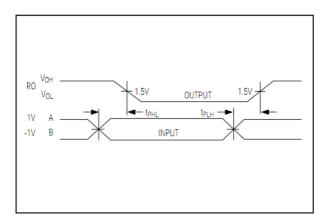
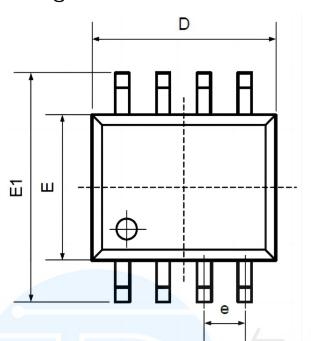
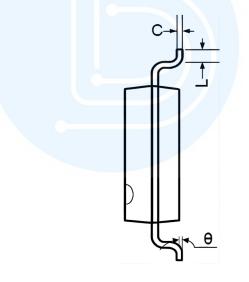
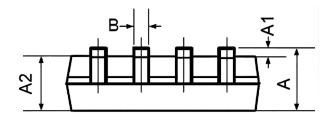
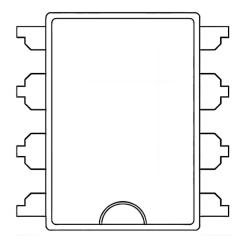


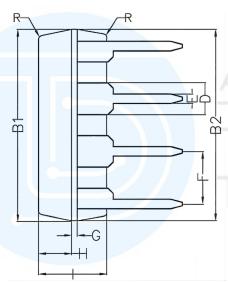
Figure 12 Receiver Propagation Delay Test Circuit

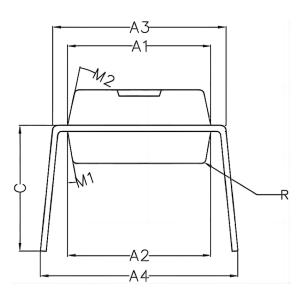





Figure 13 Receiver Propagation Delay Sequence

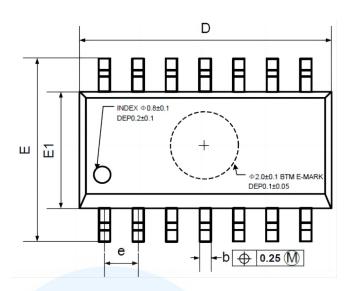
Package SOP8

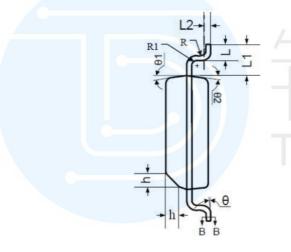


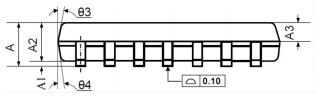


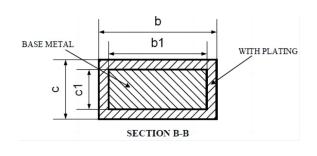

Symbol		nsions imeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
А	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
В	0.330	0.510	0.013	0.020	
С	0.190	0.250	0.007	0.010	
Semi	4.780	5.000	0.188	0.197	
Е	3.800	4.000	0.150	0.157	
E1	5.800	6.300	0.228	0.248	
е	1.27	ОТҮР	0.050TYP		
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

Package DIP8

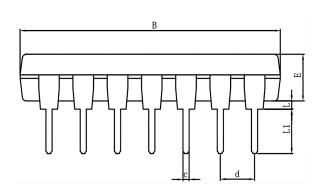


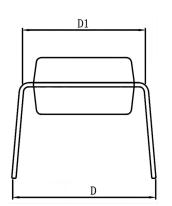

Symbol	Min	Non	Max	
A1	6.28	6.33	6.38	
A2	6.33	6.38	6.43	
A3	7.52	7.62	7.72	
A4	7.80	8.40	9.00	
B1	9.15	9.20	9.25	
B2	9.20	9.25	9.30	
C		5.57	. 47	
D -		1.52		
emic	0.43	0.45	0.47	
F		2.54		
G	0.25			
Н	1.54	1.54 1.59		
I	3.22	3.27	3.32	
R		0.20		
M1	9°	10°	11°	
M2	11°	12°	13°	

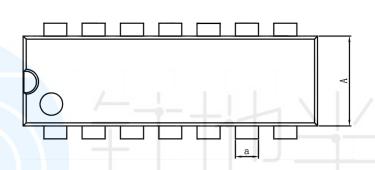




Package SOP14






	Dimensions In Millimeters				
Symbol	MIN NOM		MAX		
Α	1.35	1.60	1.75		
A1	0.10	0.15	0.25		
A2	1.25	1.45	1.65		
A3	0.55	0.65	0.75		
b	0.36		0.49		
b1	0.35	0.40	0.45		
С	0.16		0.25		
c1	0.15	0.20	0.25		
D	8.53	8.63	8.73		
Е	5.80	6.00	6.20		
E1	3.80	3.90	4.00		
е	1.27 BSC				
L	0.45	0.60	0.80		
L1	1.04 REF				
L2		0.25 BS	С		
R	0.07				
R1	0.07				
h	0.30	0.40	0.50		
θ	0°		8°		
θ1	6°	8°	10°		
θ2	6°	8°	10°		
θ3	5°	7°	9°		
θ4	5°	7°	9°		

Package DIP14

DIM.	MIN	ТҮР	MAX	DIM.	MIN	ТҮР	MAX
А	6.100	6.300	6.680	а	1.504	1.524	1.544
В	18.940	19.200	19.560	C	0.437	0.457	0.477
D	8.200	8.700	9.200	d	2.530	2.540	2.550
D1	7.42	7.62	7.82	L	0.500		0.800
Е	3.100	3.300	3.550	L1	3.000	3.200	3.600

Important statement:

- ●TUDI Semiconductor reserves the right to modify the product manual without prior notice! Before placing an order, customers need to confirm whether the obtained information is the latest version and verify the completeness of the relevant information.
- Any semi-guide product is subject to failure or malfunction under specified conditions. It is the buyer's responsibility to comply with safety standards when using TUDI Semiconductor products for system design and whole machine manufacturing. And take the appropriate safety measures to avoid the potential in the risk of loss of personal injury or loss of property situation!
- ●TUDI Semiconductor products have not been licensed for life support, military, and aerospace applications, and therefore TUDI Semiconductor is not responsible for any consequences arising from the use of this product in these areas.
- If any or all TUDI Semiconductor products (including technical data, services) described or contained in this document are subject to any applicable local export control laws and regulations, they may not be exported without an export license from the relevant authorities in accordance with such laws.
- ●The specifications of any and all TUDI Semiconductor products described or contained in this document specify the performance, characteristics, and functionality of said products in their standalone state, but do not guarantee the performance, characteristics, and functionality of said products installed in Customer's products or equipment. In order to verify symptoms and conditions that cannot be evaluated in a standalone device, the Customer should ultimately evaluate and test the device installed in the Customer's product device.
- ●TUDI Semiconductor documentation is only allowed to be copied without any alteration of the content and with the relevant authorization. TUDI Semiconductor assumes no responsibility or liability for altered documents.
- ●TUDI Semiconductor is committed to becoming the preferred semiconductor brand for customers, and TUDI Semiconductor will strive to provide customers with better performance and better quallity products.