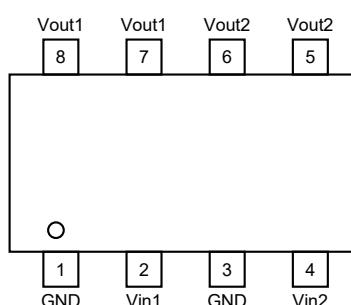


1. Description

LC1118 is a dual channel low-dropout regulator that delivers a maximum current of 1A for each individual output. Typical dropout voltage at 1A load current is 1.3V. Each individual output voltage can be set independently as fixed voltage (e.g 1.2V, 1.8V, 2.5V, 3.3V, 5V) or adjustable output which can provide an output voltage from 1.25 to 12V with two external resistors. The output accuracy of each channel is set within 2% by trimming. LC1118 offers thermal shut down and current limit functions to ensure reliability of device and power system.


2. Features

- Dual channel output with each individual output can be either fixed output version or adjustable version.
- Maximum output current for each channel is 1A
- Range of operation input voltage: Max 15V
- Standby current of each output: 2mA (typ.)
- Line regulation: 0.1%/V (typ.)
- Load regulation: 10mV (typ.)
- Environment Temperature: -20°C~85°C
- Compatible with tantalum capacitor, electrolytic capacitor and MLCC.

3. Applications

- Power Management for Computer Mother Board, Graphic Card
- LCD Monitor and LCD TV
- DVD Decode Board
- ADSL Modem
- Post Regulators for Switching Supplies

4. Pinning information

ESOP-8

5. Pin Configuration

PIN	Symbol	Description
1	GND	Ground
2	Vin1	Channel 1 input
3	GND	Ground
4	Vin2	Channel 2 Input
5	Vout2	Channel 2 Output
6	Vout2	Channel 2 Output
7	Vout1	Channel 1 Output
8	Vout1	Channel 1 Output

6. Ordering Information

Code	Description
1	Temperature&Rohs: C:-40~85°C, Pb Free Rohs Std.
2	Package type: S8: ESOP-8
3	Packing type: TR: Tape&Reel (Standard)
4	CH1 Output voltage: e.g. 33=3.3V, AD=ADJ
5	CH2 Output voltage: e.g. 33=3.3V, AD=ADJ

7.Internal Block Diagram

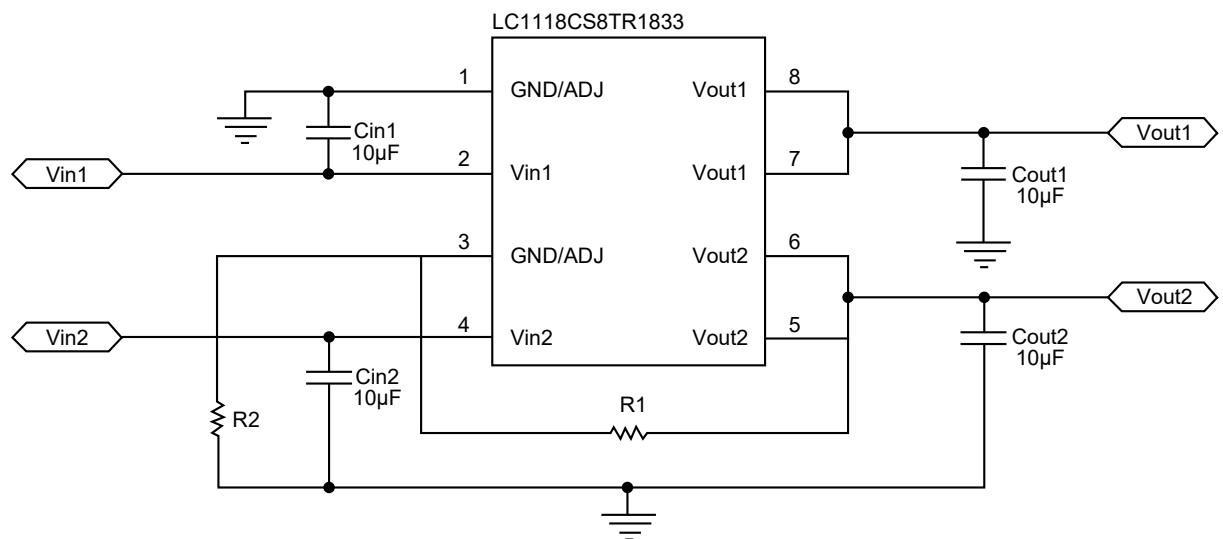


Fig.1. Typical Application of LC1118CS8TR1833

8. Absolute Maximum Rating

Parameter	Value
Max Input Voltage	15V
Junction Temperature(T_J)	125°C
Ambient Temperature(T_A)	-20°C to 85°C
Package Thermal Resistance (θ_{JC})	ESOP8
Storage Temperature(T_S)	-40°C to 150°C
Lead Temperature & Time	260°C, 10s

Notes:

- 1) Exceed these limits to damage to the device.
- 2) Exposure to absolute maximum rating conditions may affect device reliability.

9. Recommended Work Conditions

Parameter	Value
Input Voltage Range	Max.15V
Ambient Temperature	-20°C~85°C

10.1 Electrical Characteristics

*For each individual channel output Test Conditions: $C_{in}=0.1\mu F$, $C_{out}=10\mu F$, $T_A=25^\circ C$, unless otherwise specified.

Parameter	Symbol	Conditions	Min	Typ	Max	Units
Reference Voltage	V_{ref}	LC1118-ADJ $10mA \leq I_{out} \leq 1A$, $V_{in}=3.25V$	1.225	1.25	1.275	V
Output Voltage	V_{out}	LC1118-1.2V $0 \leq I_{out} \leq 1A$, $V_{in}=3.2V$	1.176	1.2	1.224	V
		LC1118-1.8V $0 \leq I_{out} \leq 1A$, $V_{in}=3.8V$	1.764	1.8	1.836	V
		LC1118-2.5V $0 \leq I_{out} \leq 1A$, $V_{in}=4.5V$	2.45	2.5	2.55	V
		LC1118-3.3V $0 \leq I_{out} \leq 1A$, $V_{in}=5.3V$	3.234	3.3	3.366	V
		LC1118-5.0V $0 \leq I_{out} \leq 1A$, $V_{in}=7.0V$	4.9	5	5.1	V
Line Regulation	ΔV_{out}	LC1118-1.2V $I_{out}=10mA$, $2.7V \leq V_{in} \leq 10V$		0.1	0.2	%/V
		LC1118-ADJ $I_{out}=10mA$, $2.75V \leq V_{in} \leq 12V$		0.1	0.2	%/V
		LC1118-1.8V $I_{out}=10mA$, $3.3V \leq V_{in} \leq 12V$		0.1	0.2	%/V
		LC1118-2.5V $I_{out}=10mA$, $4.0V \leq V_{in} \leq 12V$		0.1	0.2	%/V
		LC1118-3.3V $I_{out}=10mA$, $4.8V \leq V_{in} \leq 12V$		0.1	0.2	%/V
		LC1118-5.0V $I_{out}=10mA$, $6.5V \leq V_{in} \leq 12V$		0.1	0.2	%/V

Parameter	Symbol	Conditions	Min	Typ	Max	Units
Load Regulation	ΔV_{OUT}	LC1118-1.2V $V_{IN}=2.7V, 10mA \leq I_{OUT} \leq 1A$		10	30	mV
		LC1118-ADJ $V_{IN}=2.75V, 10mA \leq I_{OUT} \leq 1A$		10	30	mV
		LC1118-1.8V $V_{IN}=3.3V, 10mA \leq I_{OUT} \leq 1A$		10	30	mV
		LC1118-2.5V $V_{IN}=4.0V, 10mA \leq I_{OUT} \leq 1A$		10	30	mV
		LC1118-3.3V $V_{IN}=4.8V, 10mA \leq I_{OUT} \leq 1A$		10	30	mV
		LC1118-5.0V $V_{IN}=6.5V, 10mA \leq I_{OUT} \leq 1A$		10	30	mV

10.2 Electrical Characteristics Continued

Parameter	Symbol	Conditions	Min	Typ	Max	Units
Dropout Voltage	V_{drop}	$I_{OUT}=100mA$		1.23	1.3	V
		$I_{OUT}=1A$		1.3	1.5	V
Current Limit	I_{limit}	$V_{IN}-V_{OUT}=2V, T_J=25^{\circ}C$	1			A
Minimum Load Current	I_{min}	LC1118-ADJ		2	10	mA
Quiescent Current	I_q	LC1118-1.2V, $V_{IN}=10V$		2	5	mA
		LC1118-1.8V, $V_{IN}=12V$		2	5	mA
		LC1118-2.5V, $V_{IN}=12V$		2	5	mA
		LC1118-3.3V, $V_{IN}=12V$		2	5	mA
		LC1118-5.0V, $V_{IN}=12V$		2	5	mA
Adjust Pin Current	I_{Adj}	LC1118-ADJ $V_{IN}=5V, 10mA \leq I_{OUT} \leq 1A$		55	120	μA
I_{adj} change	I_{change}	LC1118-ADJ $V_{IN}=5V, 10mA \leq I_{OUT} \leq 1A$		0.2	10	μA
Temperature coefficient	$\Delta V/\Delta T$			± 100		ppm
Junction-Ambient Thermal Resistance	θ_{JA}	ESOP-8		63		$^{\circ}C/W$

Notes:

- 1) All test are conducted under ambient temperature $25^{\circ}C$ and within a short period of time 20ms.
- 2) Load current smaller than minimum load current of LC1118-ADJ will lead to unstable or oscillation output.

11. Block Diagram

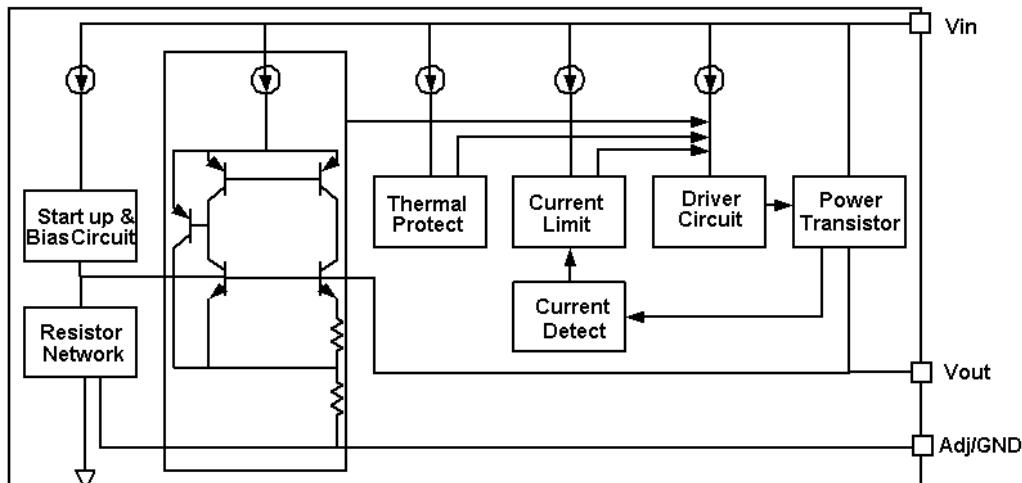


Fig.2 Block Diagram for each individual Channel

DETAILED DESCRIPTION

LC1118 is a series of dual channel low-dropout regulator that delivers a maximum current of 1A for each individual output. Typical dropout voltage at 1A load current is 1.3V. Each individual output voltage can be set independently as fixed voltage (i.e. 1.2V, 1.8V, 2.5V, 3.3V, 5V) or adjustable output which can provide an output voltage ranges from 1.25 to 12V with two external resistors. The output accuracy of each channel is set within 2% by trimming. The device has build-in modules including start-up circuit, bias circuit, bandgap, thermal shutdown, current limit, power transistors and driver circuit. Thermal shut down and current limit functions ensure reliability of device and power system.

The bandgap module provides stable reference voltage whose temperature coefficient is compensated by careful design considerations. The temperature coefficient is under 100 ppm/°C. The accuracy of output voltage is guaranteed by trimming technique.

Package input/output pin configuration can be customized on demand (i.e both output can share one input to save one input capacitor and corresponding PCB real estate).

LC1118 is available in lead (Pb)-free ESOP-8 package.

12. Typical Application

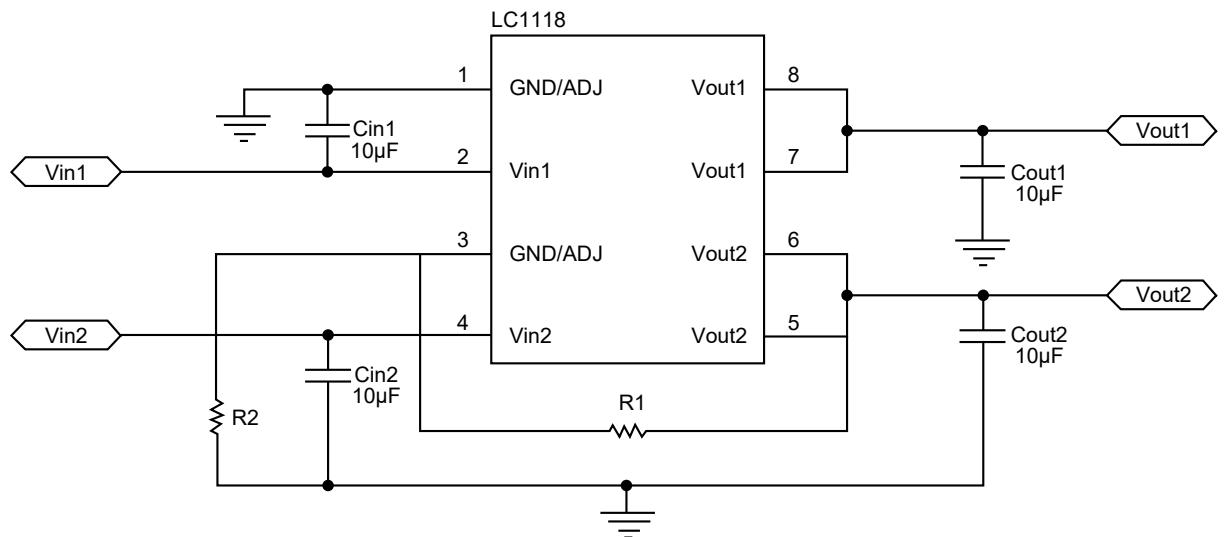


Fig.3. Typical Application Schematic of LC1118

LC1118 has both fixed voltage version (1.2V, 1.8V, 2.5V, 3.3V, 5V) and adjustable voltage version. The input and output capacitors of each channel can be either tantalum, electrolytic or ceramic capacitor.

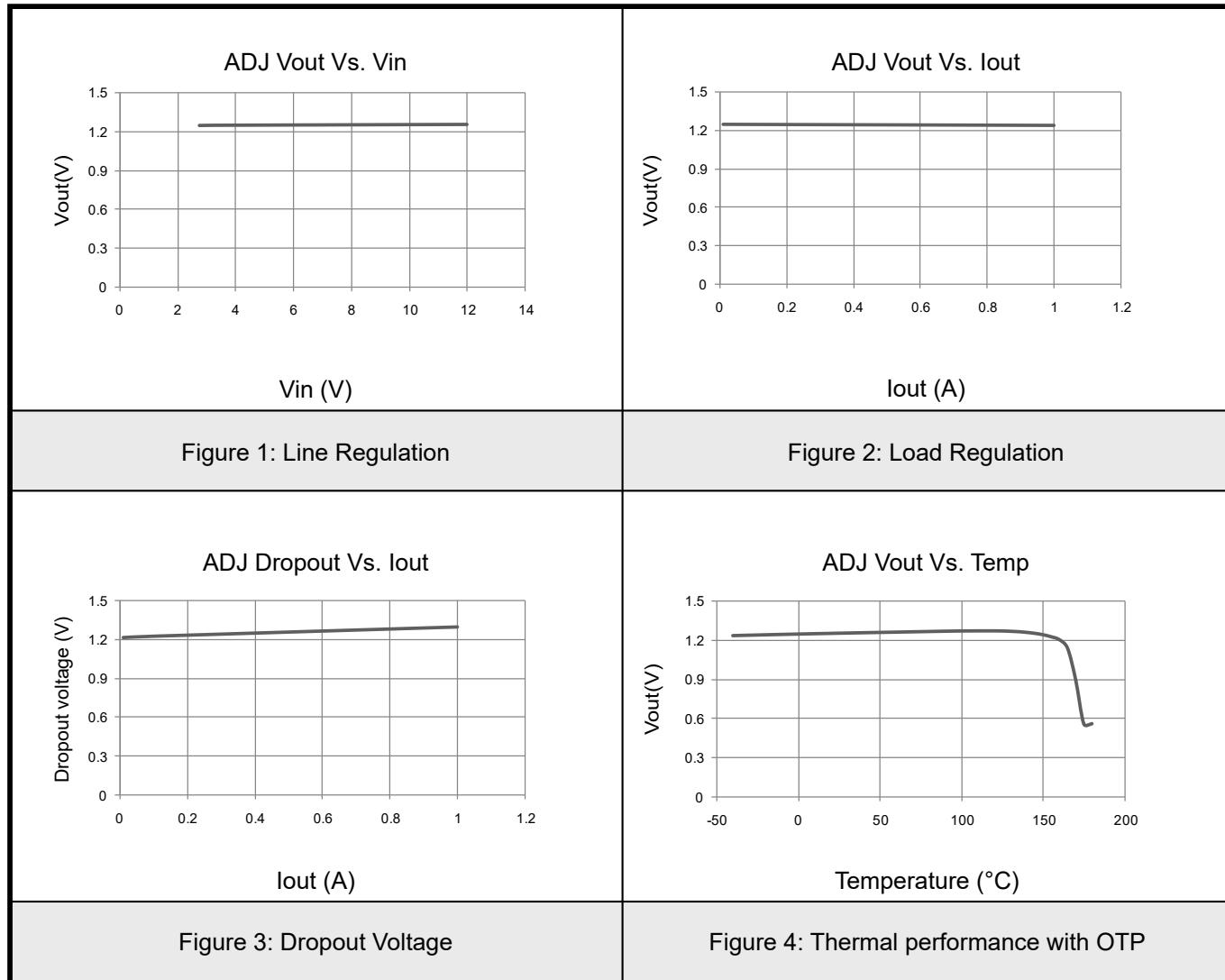
Figure 3 shows both fixed voltage and adjustable voltage application schematic. Channel 1 (designated as pin 1\2\7\8) is a typical application of fixed voltage. Channel 2 (designated as pin 3\4\5\6) is the schematic of adjustable version application. The adjustable version provides a 1.25V reference voltage with regard to its ADJ pin (shown as PIN 5\6 as its output and PIN3 as its adjustable pin in Fig.3). The output voltage of adjustable version follows the equation:

$$V_{OUT} = 1.25 \times (1 + R2/R1) + I_{Adj} \times R2.$$

We can ignore I_{Adj} because I_{Adj} (about 50µA) is much less than the current of R1 (in the order of several milliamps)

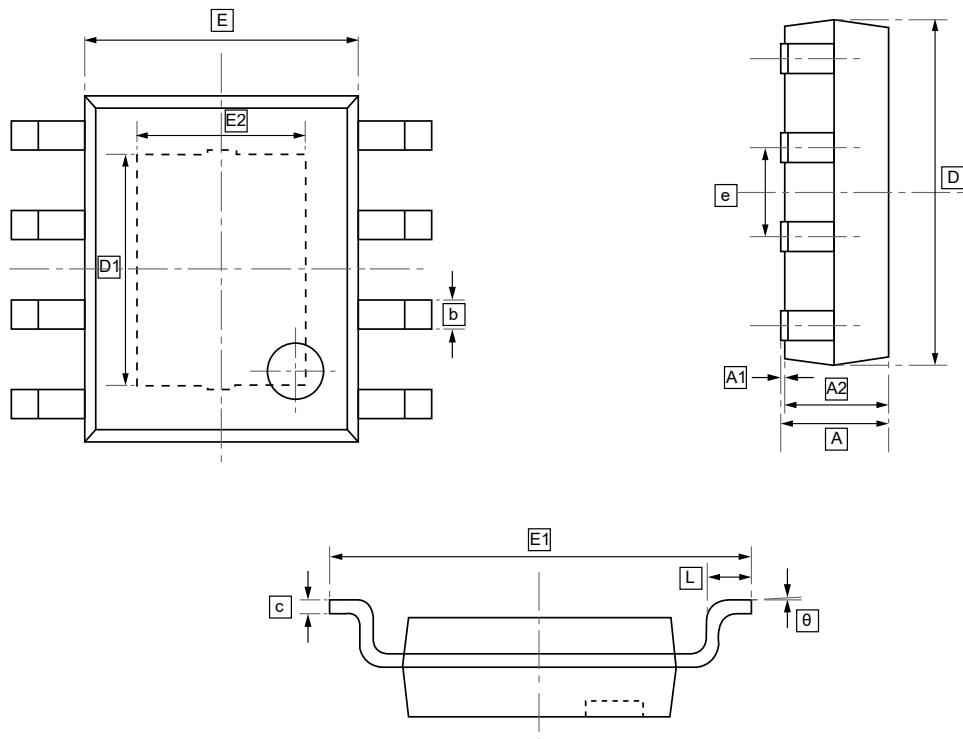
- 1) To meet the minimum load current (>10mA) requirement, R1 is recommended to be 125ohm or lower.
- 2) Using a bypass capacitor (C_{ADJ}) between the ADJ pin and ground can improve ripple rejection. This bypass capacitor prevents ripple from being amplified as the output voltage is increased. The impedance of C_{ADJ} should be less than R1 to prevent ripple from being amplified. As R1 is normally in the range of 100Ω~500Ω, the value of C_{ADJ} should satisfy this equation: $1/(2\pi \times f_{ripple} \times C_{ADJ}) < R1$.

13.Thermal Considerations


Thermal consideration has to be taken account into to ensure proper function of the device. Power dissipation of LC1118 can be calculated as

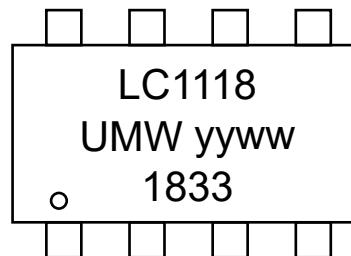
$$\text{Power Dissipation} = (V_{IN1}-V_{OUT1}) \times I_{OUT1} + (V_{IN2}-V_{OUT2}) \times I_{OUT2}$$

For proper function and safe operation of the device, power dissipation is recommended to be limited within 2W.



14.Typical characteristic

15.ESOP-8 Package Outlie Dimensions



DIMENSIONS (mm are the original dimensions)

Symbol	A	A1	A2	b	c	D	D1	E	E1	E2	e	L	θ
Min	1.300	0.000	1.350	0.330	0.170	4.700	3.202	3.800	5.800	2.313	1.270	0.400	0°
Max	1.700	0.100	1.550	0.510	0.250	5.100	3.402	4.000	6.200	2.513			
											BSC	1.270	8°

16.Ordering information

yy: Year Code

ww: Week Code

Order Code	Package	Base QTY	Delivery Mode
UMW LC1118CS8TR1833	ESOP-8	2500	Tape and reel

17. Disclaimer

UMW reserves the right to make changes to all products, specifications. Customers should obtain the latest version of product documentation and verify the completeness and currency of the information before placing an order.

When applying our products, please do not exceed the maximum rated values, as this may affect the reliability of the entire system. Under certain conditions, any semiconductor product may experience faults or failures. Buyers are responsible for adhering to safety standards and implementing safety measures during system design, prototyping, and manufacturing when using our products to prevent potential failure risks that could lead to personal injury or property damage.

Unless explicitly stated in writing, UMW products are not intended for use in medical, life-saving, or life-sustaining applications, nor for any other applications where product failure could result in personal injury or death. If customers use or sell the product for such applications without explicit authorization, they assume all associated risks.

When reselling, applying, or exporting, please comply with export control laws and regulations of China, the United States, the United Kingdom, the European Union, and other relevant countries, regions, and international organizations.

This document and any actions by UMW do not grant any intellectual property rights, whether express or implied, by estoppel or otherwise. The product names and marks mentioned herein may be trademarks of their respective owners.