

UMW LM124/224/324/2902

Quadruple Operational Amplifiers

1.Features

Wide Supply Ranges

Single Supply: 3V to 32V (26 V for LM2902)

Dual Supplies: +1.5V to +16V (+13V for LM2902)

Low Supply-Current Drain independent of Supply
 Voltage: 0.8mA Typical

Common-Mode Input Voltage Range includes
 Ground, Allowing Direct Sensing Near Ground

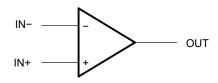
Low Input Bias and Offset Parameters
 Input Offset Voltage: 3mV Typical
 Input Offset Current: 2nA Typical
 Input Bias Current: 20 nA Typical

 Differential Input Voltage Range Equal to Maximum-Rated Supply Voltage: 32V(26V for LM2902)

Open-Loop Differential Voltage Amplification: 100V/mV Typical

■ Internal Frequency Compensation

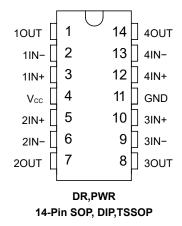
On Products Compliant to MIL-PRF-38535, All
 Parameters are Tested Unless Otherwise Noted.
 On All Other Products, Production Processing
 Does Not Necessarily Include Testingof All
 Parameters.


2.Description

These devices consist of four independent high-gain frequency-compensated operational amplifiers that are designed specifically to operate from a single supply or split supply over a wide range of voltages.

3. Applications

- Blu-ray Players and Home Theaters
- Chemical and Gas Sensors
- DVD Recorders and Players
- Digital Multimeter: Bench and Systems
- Digital Multimeter: Handhelds
- Field Transmitter: Temperature Sensors
- Motor Control: AC Induction, Brushed DC,
 Brushless DC, High-Voltage, Low-Voltage,
 Permanent Magnet, and Stepper Motor
- Oscilloscopes
- TV: LCD and Digital
- Temperature Sensors or Controllers Using Modbus
- Weigh Scales


4.Symbol (Each Amplifier)

5.Pinning Information

Pin Functions

	Pin		1/0	Description
Name	LCCC NO.	SOP, DIP	I/O	Description
1IN-		2	ı	Negative input
1IN+		3	I	Positive input
10UT		1	0	Output
2IN-		6	1	Negative input
2IN+		5	I	Positive input
2OUT		7	0	Output
3IN-		9	I	Negative input
3IN+		10	ı	Positive input
3OUT		8	0	Output
4IN-		13	ı	Negative input
4IN+		12	I	Positive input
4OUT		14	0	Output
GND		11	-	Ground
V _{cc}	6	4	-	Power supply

6.Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

Parameter	Symbol	LM2	2902	LM	Units	
Parameter	Symbol	Min	Max	Min	Max	Units
Supply voltage (2)	V _{cc}		26		32	V
Differential input voltage (3)	V _{ID}		±26		±32	V
Input voltage (either input)	Vı	-0.3	26	-0.3	32	V
Duration of output short circuit (one amplifier) to ground at		Unlimited		Unlir		
(or Unlimited Unlimited below) T _A =25°C, V _{CC} ≤15V ⁽⁴⁾						
Operating virtual junction temperature	T _J		150		150	°C
Storage temperature	T _{STG}	-65	150	-65	150	°C

- (1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device
- (2) All voltage values (except differential voltages and V_{CC} specified for the measurement of I_{OS}) are with respect to the network GND.
- (3) Differential voltages are at IN+, with respect to IN-.
- (4) Short circuits from outputs to V_{CC} can cause excessive heating and eventual destruction.

7.ESD Ratings

	Parameter (LMX24, LM2902)						
Flootrootatio	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾		±500	٧			
Electrostatic	Charged-device model (CDM), per JEDEC specification	V_{ESD}	14000	V			
discharge	JESD22-C101		±1000	V			

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

8. Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)(1)

Parameter		Symbol	LM2	2902	LM	Units		
Farameter		Symbol	Min	Max	Min	Max	Units	
Supply voltage	V _{cc}	3	26	3	30	V		
Common-mode voltage	V _{CM}	0	V _{cc} -2	0	V _{cc} -2	V		
	LM124				-40	105	°C	
Operating free air temperature	LM2902	T _A	-40	105			°C	
Operating nee all temperature	LM224	'A			-20	85	°C	
	LM324				0	70	°C	

9.Thermal Information

		LMX24,LM2902			
Thermal Metric ⁽¹⁾	Symbol	(SOP)	(DIP)	11:::4:	
		14Pins	14Pins	Units	
Junction-to-ambient thermal resistance	R _{0JA} (2) (3)	86	80	°C/W	
Junction-to-case (top) thermal resistance	R _{0JC} (4)	-	-	°C/W	

- (1) Short circuits from outputs to V_{CC} can cause excessive heating and eventual destruction.
- (2) Maximum power dissipation is a function of $T_{J(max)}$, $R_{\theta JA}$, and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_{J(max)} - T_A)/R_{\theta JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.
- (3) Maximum power dissipation is a function of T_{J(max)}, R_{θ,JA}, and T_C. The maximum allowable power dissipation at any allowable case temperature is $P_D = (T_{J(max)} - T_C)/R_{\theta JC}$. Operating at the absolute maximum T_J of 150°C can affect reliability.

10.Electrical Characteristics (LMx24)

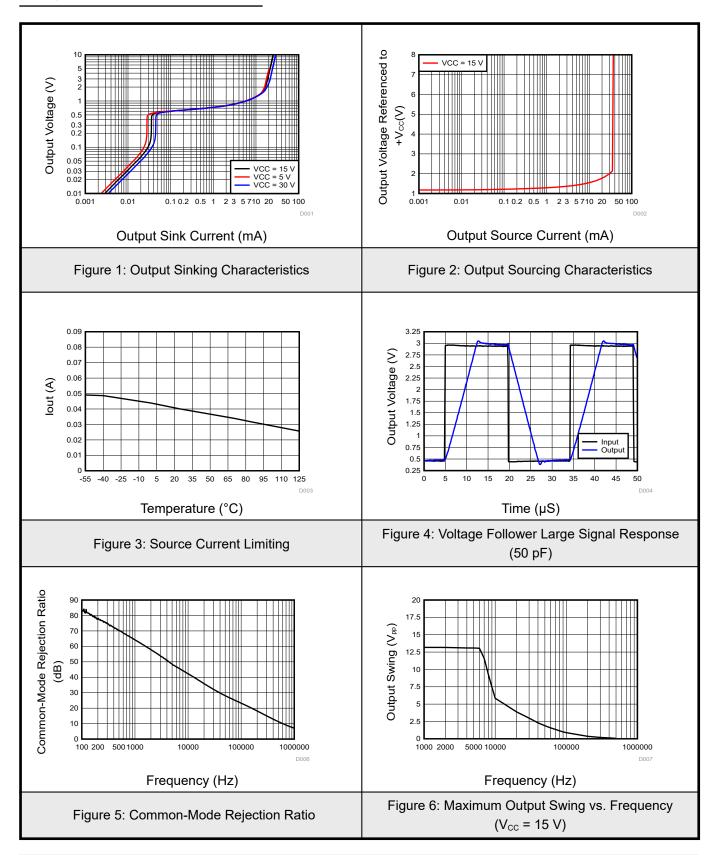
at specified free-air temperature, V_{CC} =5V (unless otherwise noted)

Domonoston	Oursels all	Tast Car	-1:4:(1)	T (2)	I	LMX2	4	L	M290	2	Linita
Parameter	Symbol	Test Con	aitions	T _A ⁽²⁾	Min	Typ ⁽³⁾	Max	Min	Typ ⁽³⁾	Max	Units
Input offset voltage	V _{IO}	V _{CC} =5V to	MAX	25°C		3	5		3	7	mV
input onset voltage	V 10	V _{IC} =V _{ICR} m	in,V _O =1.4V	Full range			7			10	mV
Input offset current		V _o =1.4V		25°C		2	30		2	50	nA
input onset current	I _{IO}	V ₀ -1.4V		Full range			100			300	nA
Input bias current		V _o =1.4V		25°C		-20	-150		-20	-250	nA
input bias current	l _{IB}	V ₀ -1.4V		Full range			-300			-500	nA
Common-mode	V _{ICR}	V _{cc} =5V to	MAY	25°C			0 to V _{CC} - 1.5			0 to Vcc - 1.5	V
input voltage range	V ICR	V _{CC} -5V 10	IVIAA	Full range			0 to Vcc - 2			0 to V _{CC} - 2	V
High-level output		$R_L=2k\Omega$		25°C	Vcc - 1.5			Vcc - 1.5			V
	\ \/	\/ -N4A\	R _L =2kΩ	Full range	26			22			V
voltage	V_{OH}	V _{CC} =MAX	R _L =10kΩ	Full range	27	28		23	24		V
Low-level output	V _{OL}	R _L ≤10kΩ		Full range		5	20		5	20	mV
voltage	V OL	IV[=10K22		Full range		5	20		5	20	mv
Large-signal		V _{cc} =15V, \	/ -1\/ to	25°C	50	100					V/mV
differential voltage	A _{VD}	v _{cc} –13v, v									
amplification		IIV, NLZZF	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Full range	25			15	100		V/mV
Common-mode	CMRR	\/ =\/ mi	n	05°0	70	00		50	00		-ID
rejection ratio	CIVILLY	$V_{IC}=V_{ICR}$ min		25°C	70	80		50	80		dB
Supply-voltage											
rejection ratio	k _{SVR}			25°C	65	100		50	100		dB
$(\Delta V_{CC}/\Delta V_{IO})$											
Crosstalk attenuation	V _{O1} /V _{O2}	f=1kHz to	20kHz	25°C		120			120		dB

Dovomotov	Cymahal	Took Conditions(1)	T (2)		LMX24	ļ	L	M290	2	Linita
Parameter	Symbol	Test Conditions ⁽¹⁾	T _A ⁽²⁾	Min	Typ ⁽³⁾	Max	Min	Typ ⁽³⁾	Max	Units
		V _{CC} =15V, V _{ID} =1V	25°C	-20	-30	-60	-20	-30	-60	mA
Output current		V _o =0 (Source)	Full range	-10			-10			mA
	l _o	V _{CC} =15V, V _{ID} =-1V	25°C	10	20		10	20		mA
		V _O =15V (Sink)	Full range	5			5			mA
		V _{ID} =-1V, V _O =200mV	25°C	12	30			30		μA
Short-circuit output current	l _{os}	V _{cc} at 5V, V _o =0 GND at -5V	25°C		±40	±60		±40	±60	mA
Committee and		V _o =2.5V, no load	Full range		0.7	1.2		0.7	1.2	mA
Supply current (four amplifiers)	I _{cc}	V _{CC} =MAX, V _O =0.5V _{CC}	Full range		1.4	3		1.4	3	mA

⁽¹⁾ All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified. MAX V_{CC} for testing purposes is 26 V for LM2902 and 30 V for the others.

- (2) Full range is -40°C to 125°C for LM124, –20°C to 85°C for LM224
- (3) All typical values are at T_A=25°C


11.Operating Conditions

V_{CC}=±15 V, T_A=25°C

Parameter	Symbol	Test Conditions	Тур	Units
Slew rate at unity gain	SR	R_L =1M Ω , C_L =30pF, V_I =±10V (see Figure 7)	0.5	V/µs
Unity-gain bandwidth	B ₁	R_L =1M Ω , C_L =20pF (see Figure 7)	1.2	MHz
Equivalent input noise voltage	V _n	R _s =100Ω, V _i =0V, f=1kHz (see Figure 8)	35	nV/√Hz

12. Typical Characterisitics

13.Parameter Measurement Information

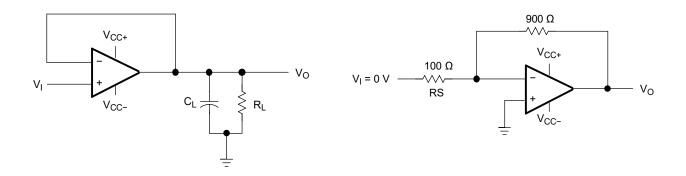
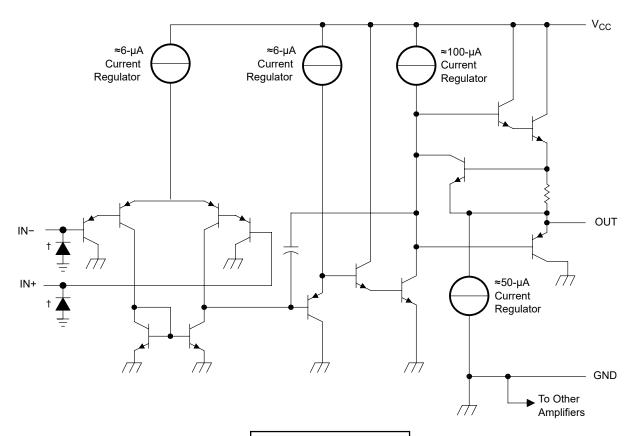


Figure 7: Unity-Gain Amplifier

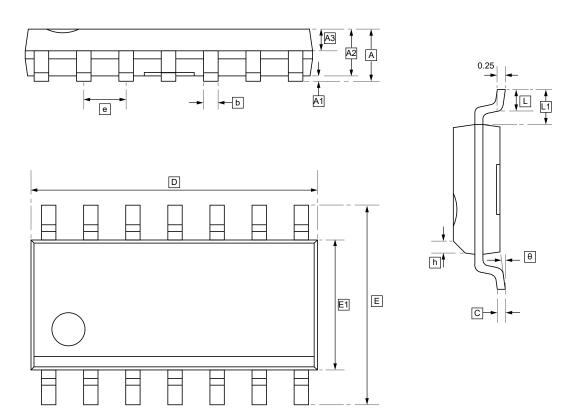
Figure 8: Noise-Test Circuit

14.Detailed Description


14.1 Overview

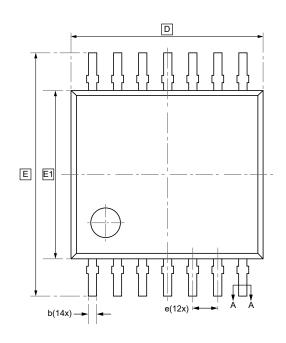
These devices consist of four independent high-gain frequency-compensated operational amplifiers that are designed specifically to operate from a single supply over a wide range of voltages. Operation from split supplies also is possible if the difference between the two supplies is 3 V to 32 V (3 V to 26 V for the LM2902 device), and V_{cc} is at least 1.5 V more positive than the input common-mode voltage. The low supply-current drain is independent of the magnitude of the supply voltage.

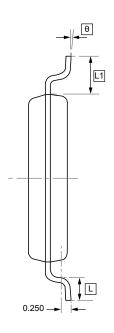
Applications include transducer amplifiers, DC amplification blocks, and all the conventional operational-amplifier circuits that now can be more easily implemented in single-supply-voltage systems. For example, the LM124 device can be operated directly from the standard 5-V supply that is used in digital systems and provides the required interface electronics, without requiring additional ±15-V supplies.

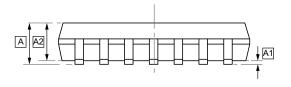

14.2 Functional Block Diagram

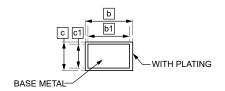
COMPONENT COUNT (total device)								
Epi-FET	1							
Transistors	95							
Diodes	4							
Resistors	11							
Capacitors	4							

15.1 SOP-14 Package Outline Dimensions


DIMENSIONS (mm are the original dimensions)


Symbol	Α	A 1	A2	А3	b	С	D	E	E1	е	h	L
Min	-	0.05	1.35	0.65	0.203	0.17	8.45	5.80	3.80	1.24	0.25	0.40
Max	1.75	0.25	1.55	0.75	0.305	0.25	8.85	6.20	4.00	1.30	0.50	0.80


Symbol	L1	θ
Min	1.00	0°
Max	1.10	8°



15.2 TSSOP-14 Package Outline Dimensions

DIMENSIONS (mm are the original dimensions)

Symbol	Α	A 1	A2	b	b1	С	с1	D	E	E1	е	L1
Min	-	0.05	0.90	0.20	0.19	0.13	0.120	4.90	6.20	4.30	0.65	0.85
Max	1.20	0.15	1.05	0.28	0.25	0.17	0.14	5.10	6.60	4.50	BSC	1.15

Symbol	L	θ
Min	0.45	0°
Max	0.75	8°

16.Ordering Information

SOP-14

LM224 UMW yww TSSOP-14

LM2902 UMW yww

yww: Batch Code

Order Code	Marking	Package	Base QTY	Delivery Mode
UMW LM124DR	LM124	SOP-14	2500	Tape and reel
UMW LM224DR	LM224	SOP-14	2500	Tape and reel
UMW LM2902DR	LM2902	SOP-14	2500	Tape and reel
UMW LM2902PWR	LM2902	TSSOP-14	4000	Tape and reel

17.Disclaimer

UMW reserves the right to make changes to all products, specifications. Customers should obtain the latest version of product documentation and verify the completeness and currency of the information before placing an order.

When applying our products, please do not exceed the maximum rated values, as this may affect the reliability of the entire system. Under certain conditions, any semiconductor product may experience faults or failures. Buyers are responsible for adhering to safety standards and implementing safety measures during system design, prototyping, and manufacturing when using our products to prevent potential failure risks that could lead to personal injury or property damage.

Unless explicitly stated in writing, UMW products are not intended for use in medical, life-saving, or life-sustaining applications, nor for any other applications where product failure could result in personal injury or death. If customers use or sell the product for such applications without explicit authorization, they assume all associated risks.

When reselling, applying, or exporting, please comply with export control laws and regulations of China, the United States, the United Kingdom, the European Union, and other relevant countries, regions, and international organizations.

This document and any actions by UMW do not grant any intellectual property rights, whether express or implied, by estoppel or otherwise. The product names and marks mentioned herein may be trademarks of their respective owners.