

UMW LMV61x

Single, Dual, and Quad, 1.4-MHz, Low-Power General-Purpose 1.8-V Operational Amplifiers

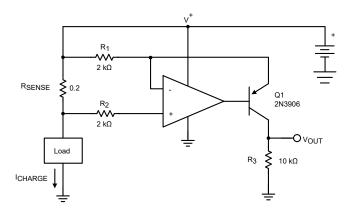
1.Description

The LMV61x devices are single, dual, and quad low voltage, low-power operational amplifiers (op amps). They are designed specifically for low-voltage, general-purpose applications. Other important product characteristics are, rail-to-rail input or output, low supply voltage of 1.8 V and wide temperature range. The LMV61x input common mode extends 200 mV beyond the supplies and the output can swing rail-to-rail unloaded and within 30 mV with 2-k Ω load at 1.8-V supply. The LMV61x achieves a gain bandwidth of 1.4 MHz while drawing 100- μ A (typical) quiescent current.

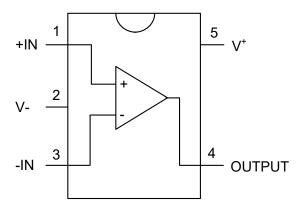
3. Applications

- Consumer Communication
- Consumer Computing
- PDAs
- Audio Pre-Amplifiers

2.Features


- Supply Values: 1.8 V (Typical)
- Ensured 1.8-V, 2.7-V, and 5-V
 Specifications
- Output Swing:
 - 80mV From Rail With 600-Ω Load
 - 30mV From Rail With 2-kΩ Load
- V_{CM}=200mV Beyond Rails
- 100-µA Supply Current (Per Channel)
- 1.4-MHz Gain Bandwidth Product
- Maximum VOS = 4 mV
- Temperature Range: -40°C to 125°C
- Portable or Battery-Powered Electronic
 Equipment
- Supply Current Monitoring
- Battery Monitoring

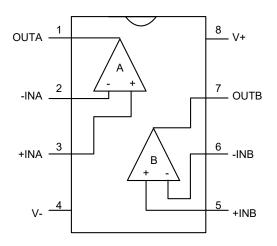
4.Typical Application


$$V_{OUT} = \frac{R_{SENSE} \cdot R3}{R1} \cdot I_{Charge} = 1\Omega \cdot I_{Charge}$$

5.Pin Configuration and Functions

DCK and DBV Packages 5-Pin SC70 and SOT-23 **Top View**

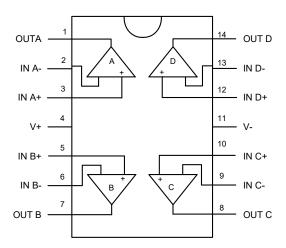
Pin Functions - LMV611


Р	Pin Type(1)		Description			
No.	Name	Type ⁽¹⁾	Description			
1	+IN	I	Noninverting input			
2	V-	Р	Negative supply input			
3	-IN	I	Inverting input			
4	OUTPUT	0	Output			
5	V+	Р	Positive supply input			

(1) I=Input, O=Output, and P=Power

DGK and D Packages 8-Pin SOP Top View

Pin Functions - LMV611


Р	in	Type(1)	Description
No.	Name	Type ⁽¹⁾	Description
1	OUTA	0	Output A
2	-INA	1	Inverting input A
3	+INA	I	Noninverting input A
4	V-	Р	Negative supply input
5	+INB	I	Noninverting input B
6	-INB	I	Inverting input B
7	OUTB	0	Output B
8	V+	Р	Positive supply input

(1) I=Input, O=Output, and P=Power

UMW LMV61x

Single, Dual, and Quad, 1.4-MHz, Low-Power General-Purpose 1.8-V Operational Amplifiers

PW and D Packages 14-Pin TSSOP and SOP Top View

Pin Functions - LMV611

Р	in	Type ⁽¹⁾	Description				
No.	Name	Type	Description				
1	OUTA	0	Output A				
2	INA-	I	Inverting input A				
3	INA+	I	Noninverting input A				
4	V+	Р	Negative supply input				
5	INB+	I	oninverting input B				
6	INB-	I	Inverting input B				
7	OUTB	0	Output B				
8	OUTC	0	Output C				
9	INC-	I	Inverting input C				
10	INC+	I	Noninverting input C				
11	V-	Р	Negative supply input				
12	IND+	I	Noninverting input				
13	IND-	ı	DInverting input D				
14	OUTD	0	Output D				

(1) I=Input, O=Output, and P=Power

5.Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)(2)(3)

Parameter	Symbol	Min	Max	Units	
Differential input voltage		±Supply	±Supply voltage		
Supply voltage	V+-V-		6	V	
Voltage at input or output pin		V0.3	V++0.3	V	
Junction temperature	T _{JMAX}		150	°C	
Storage temperature	T _{STG}	-65	150	°C	

Notes:

- (1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and specifications.

6.ESD Ratings

	Parameter			Units
Electrostatic	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	V	±2000	V
discharge	Machine model (MM) ⁽²⁾	V_{ESD}	±200	V

7. Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

Parameter	Min	Max	Units
Supply voltage	1.8	5.5	V
Temperature	-40	125	°C

UMW LMV61x

Single, Dual, and Quad, 1.4-MHz, Low-Power General-Purpose 1.8-V Operational Amplifiers

8.Thermal Information

		LMV611		LMV612	LMV		
Parameter	Symbol	DBV (SOT-23)	DCK (SC70)	D (SOP)	D (SOP)	PW (TSSOP)	Units
		5 Pins	5 Pins	8 Pins	14 Pins	14 Pins	
Junction-to-ambient thermal resistance	$R_{\theta JA}$	197.2	285.9	125.9	94.4	124.8	°C/W
Junction-to-case: (top) thermal resistance	$R_{\theta JC(top)}$	156.7	115.9	70.2	52.5	51.4	°C/W
Junction-to-board thermal resistance	$R_{\theta JB}$	55.6	63.7	66.5	48.9	67.2	°C/W
Junction-to-top characterization parameter	Ψлт	41.4	4.5	19.8	14.3	6.6	°C/W
Junction-to-board characterization parameter	ΨЈВ	55	62.9	65.9	48.6	66.6	°C/W
Junction-to-case (bottom) thermal resistance	$R_{\theta JC(bot)}$	-	-	-	-	-	°C/W

9.1 Electrical Characteristics – 1.8V(DC)

All limits ensured for T_J =25°C, V+=1.8V, V-=0V, V_{CM} =V+/2, V_O =V+/2, and R_L >1M Ω (unless otherwise noted).(1)

Parameter	Symbol	Cor	nditions	Min ⁽²⁾	Typ ⁽³⁾	Max ⁽²⁾	Units
Input offset voltage	Vos	LMV611 (single)			1	4	mV
input onset voltage	V os	LMV612 (dual)	and LMV614 (quad)		1	5.5	mV
Input offset voltage average drift	TCVos				5.5		μV/°C
Input bias current	I _B				15		nA
Input offset current	I _{os}				13		nA
Supply current (per channel)	I _S				103	185	μA
		LMV611, 0V≤V	_{CM} ≤0.6 V,	60	78		
		1.4V≤V _{CM} ≤1.8V	<i>(</i> 4)	60	/ 0		
Common-mode rejection ratio	CMRR	LMV612 and LI	MV614	55	76		dB
		0V≤V _{CM} ≤0.6 V, 1.4V≤V _{CM} ≤1.8V (4)		33	70		ub
		-0.2V≤V _{CM} ≤0V, 1.8V≤V _{CM} ≤2V		50	72		
Power supply rejection ratio	PSSR	1.8V≤V+≤5V			100		
			V-, T _A =25°C	V ⁻ -0.2	-0.2		
Input common-mode voltage	CMVR	For CMRR	V+, T _A =25°C		2.1	V++0.2	V
Impat common mode voltage	OWITE	range ≥50dB	T _A =-40°C to 85°C	V-		V+	
			T _A =125°C	V⁻+0.2		V+-0.2	
		$R_L = 600\Omega$ to 0.9	9V,	77	101		
Large signal voltage gain		V ₀ =0.2V to 1.6	$V, V_{CM}=0.5V$	' '	101		
LMV611 (single)		$R_L=2k\Omega$ to 0.9V	/,	80	105		
	A_{\vee}	V ₀ =0.2V to 1.6	$V, V_{CM} = 0.5V$	80	103		dB
		R_L =600Ω to 0.9	θV,	75	90		uБ
Large signal voltage gain		V _o =0.2V to 1.6	75	90			
LMV612 (dual) and LMV614 (quad)		$R_L=2k\Omega$ to 0.9\	/,	78	100		
		V _o =0.2V to 1.6	V, V _{CM} =0.5V	18	100		

UMW LMV61x

Single, Dual, and Quad, 1.4-MHz, Low-Power General-Purpose 1.8-V Operational Amplifiers

Parameter	Symbol	Conditions	Min ⁽²⁾	Typ ⁽³⁾	Max ⁽²⁾	Units
Output swing		R _L =600Ω to 0.9V	1.65	1.72		V
	V	V _{IN} =±100mV		0.077	0.105	V
	V _o	R_L =2k Ω to 0.9V	1.75	1.77		V
		V _{IN} =±100mV		0.024	0.035	V
		Sourcing, V ₀ =0V		8		m A
Output abort aircuit aurrant (5)	I _o	V _{IN} =100mV		0		mA
Output short-circuit current (5)		Sourcing, V _o =1.8V		0		m A
		V _{IN} =-100mV		9		mA

- (1) Electrical characteristics values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that TJ = TA. No assurance of parametric performance is indicated in the electrical tables under conditions of internal self-heating where TJ > TA. See Application and Implementation for information of temperature derating of the device. Absolute Maximum Ratings indicated junction temperature limits beyond which the device may be permanently degraded, either mechanically or electrically.
- (2) All limits are specified by testing or statistical analysis.
- (3) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may varyover time and also depends on the application and configuration. The typical values are not tested and are not ensured on shipped production material.
- (4) For specified temperature ranges, see Input common mode voltage specifications.
- (5) Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C. Output currents in excess of 45 mA over long term may adversely affect reliability

9.2 Electrical Characteristics - 1.8V(AC)

All limits ensured for $T_J=25^{\circ}C$, V+=1.8V, V-=0V, $V_{CM}=V+/2$, $V_O=V+/2$, and $R_L>1M\Omega$ (unless otherwise noted).(1)

Parameter	Symbol	Conditions	Min ⁽²⁾	Typ ⁽³⁾	Max ⁽²⁾	Units
Slew rate (4)	SR			0.35		V/µs
Gain-bandwidth product	GBW			1.4		MHz
Phase margin	Фт			67		°C
Gain margin	G _m			7		dB
Input-referred voltage noise	e _n	f=10kHz, V _{CM} =0.5V		60		nV/√Hz
Input-referred current noise	i _n	f=10kHz		0.08		pA/√Hz
Total harmonic distortion	THD	f=1kHz, A _V =+1, R _L =600Ω, VIN=1V _{PP}		0.023		%
Amp-to-amp isolation (5)				123		dB

- (1) Electrical characteristics values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that T_J=T_A. No assurance of parametric performance is indicated in the electrical tables under conditions of internal self-heating where T_J>T_A. See Application and Implementation for information of temperature derating of the device. Absolute Maximum Ratings indicated junction temperature limits beyond which the device may be permanently degraded, either mechanically or electrically.
- (2) All limits are specified by testing or statistical analysis.
- (3) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and also depends on the application and configuration. The typical values are not tested and are not ensured on shipped mproduction material.
- (4) Connected as voltage follower with input step from V- to V+. Number specified is the slower of the positive and negative slew
- (5) Input-referred, R_L=100kΩ connected to V+/ 2. Each amp excited in turn with 1 kHz to produce V_O=3V_{PP} (for supply voltages <3V, V_O=V+).

9.3 Electrical Characteristics – 2.7V(DC)

All limits ensured for $T_J=25^{\circ}C$, V+=2.7V, V-=0V, $V_{CM}=V+/2$, $V_O=V+/2$, and $R_L>1M\Omega$ (unless otherwise noted).(1)

Parameter	Symbol	Conditions	Min ⁽²⁾	Typ ⁽³⁾	Max ⁽²⁾	Units
Input offset voltage	Vos	LMV611 (single)		1	4	mV
Input onset voltage	V OS	LMV612 (dual) and LMV614 (quad)		1	5.5	mV
Input offset voltage average drift	TCVos			5.5		μV/°C
Input bias current	I _B			15		nA
Input offset current	I _{os}			8		nA
Supply current (per channel)	Is			105	190	μΑ
		LMV611, 0V≤V _{CM} ≤1.5V,	60	0.4		
		2.3V≤V _{CM} ≤2.7V ⁽⁴⁾	60	81		
Common-mode rejection ratio	CMRR	LMV612 and LMV614				٩D
		0V≤V _{CM} ≤1.5V, 2.3V≤V _{CM} ≤2.7V (4)	55	80		dB
		-0.2V≤V _{CM} ≤0V, 2.7V≤V _{CM} ≤2.9V	50	74		
Power supply rejection ratio	PSSR	1.8V≤V+≤5V, V _{CM} =0.5V		100		

- (1) Electrical characteristics values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that T_J=T_A. No assurance of parametric performance is indicated in the electrical tables under conditions of internal self-heating where T_J>T_A. See Application and Implementation for information of temperature derating of the device. Absolute Maximum Ratings indicated junction temperature limits beyond which the device may be permanently degraded, either mechanically or electrically.
- (2) All limits are specified by testing or statistical analysis.
- (3) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and also depends on the application and configuration. The typical values are not tested and are not ensured on shipped production material.
- (4) For specified temperature ranges, see input common mode voltage specifications.

9.4 Electrical Characteristics – 2.7V(DC)

All limits ensured for $T_J=25$ °C, V+=2.7V, V-=0V, $V_{CM}=V+/2$, $V_O=V+/2$, and $R_L>1M\Omega$ (unless otherwise noted).(1)

Parameter	Symbol	Cor	nditions	Min ⁽²⁾	Typ ⁽³⁾	Max ⁽²⁾	Units
			V-, T _A =25°C	V ⁻ -0.2	-0.2	V++0.2	V
Input common-mode voltage	V _{CM}	For CMRR	V+, T _A =25°C		3	V+	V
	V CM	range ≥50dB	T _A =-40°C to 85°C	V-		V+-0.2	V
			T _A =125°C	V ⁻ +0.2			V
		R_L =600Ω to 1.3	R _L =600Ω to 1.35V		104		
Large signal voltage gain		V ₀ =0.2V to 2.5	V	87	104		
LMV611 (single)		R_L =2k Ω to 1.35	iV	92	110		
	A_{V}	V ₀ =0.2V to 2.5	V	92			- dB
	A v	R _L =600Ω to 1.3	35V	78	90		ив
Large signal voltage gain		V ₀ =0.2V to 2.5	V	10			
LMV612 (dual) and LMV614 (quad)		R _L =2kΩ to 1.35	ïV	81	100		
		$R_L=2k\Omega$ to 1.35V $V_O=0.2V$ to 2.5V		01	100		
		R_L =600 Ω to 1.35 V		2.55	2.62		
Output swing	Vo	V _{IN} =±100mV			0.083	0.11	V
Output swing	VO	R_L =2kΩ to 1.35V		2.65	2.675		v
		V _{IN} =±100mV			0.025	0.04	
		Sourcing, V _o =0	V		30		
Output short-circuit current (5)	Io	V _{IN} =100mV			30		m ^
Output Short-Glouit Culterit 17	10	Sourcing, Vo=0V			25		mA
		V _{IN} =-100mV			25		_

Notes:

(5) Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C. Output currents in excess of 45 mA over long term may adversely affect reliability

9.5 Electrical Characteristics – 2.7V(AC)

All limits ensured for $T_J=25^{\circ}C$, V+=2.7V, V-=0V, $V_{CM}=1V$, $V_O=1.35V$, and $R_L>1M\Omega$ (unless otherwise noted).(1)

Parameter	Symbol	Conditions	Min ⁽²⁾	Typ ⁽³⁾	Max ⁽²⁾	Units
Slew rate (4)	SR			0.4		V/µs
Gain-bandwidth product	GBW			1.4		MHz
Phase margin	Φ_{m}			70		°C
Gain margin	G _m			7.5		dB
Input-referred voltage noise	e _n	f=10kHz, V _{CM} =0.5V		57		nV/√Hz
Input-referred current noise	i _n	f=10kHz		0.08		pA/√Hz
Total harmonic distortion	THD	f=1kHz, A _V =+1, R _L =600Ω, VIN=1V _{PP}		0.022		%
Amp-to-amp isolation (5)				123		dB

- (1) Electrical characteristics values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that T_J=T_A. No assurance of parametric performance is indicated in the electrical tables under conditions of internal self-heating where T_J>T_A. See Application and Implementation for information of temperature derating of the device. Absolute Maximum Ratings indicated junction temperature limits beyond which the device may be permanently degraded, either mechanically or electrically.
- (2) All limits are specified by testing or statistical analysis.
- (3) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and also depends on the application and configuration. The typical values are not tested and are not ensured on shipped mproduction material.
- (4) Connected as voltage follower with input step from V- to V+. Number specified is the slower of the positive and negative slew
- (5) Input-referred, R_L=100kΩ connected to V+/ 2. Each amp excited in turn with 1 kHz to produce V_O=3V_{PP} (for supply voltages <3V, V_O=V+).

9.6 Electrical Characteristics – 5V(DC)

All limits ensured for $T_J=25$ °C, V+=5V, V-=0V, $V_{CM}=V+/2$, $V_O=V+/2$, and $R_L>1M\Omega$ (unless otherwise noted).(1)

Parameter	Symbol	Cor	nditions	Min ⁽²⁾	Typ ⁽³⁾	Max ⁽²⁾	Units
Input offset voltage	Vos	LMV611 (single	e)		1	4	mV
input onset voltage	v os	LMV612 (dual)	and LMV614 (quad)		1	5.5	mV
Input offset voltage average drift	TCVos			5.5		μV/°C	
Input bias current	I _B				14	35	nA
Input offset current	I _{os}				9		nA
Supply current (per channel)	Is				116	210	μA
Common-mode rejection ratio	CMRR	0V≤V _{CM} ≤3.8V, 4	4.6V≤V _{CM} ≤5V ⁽⁴⁾	60	86		
Common-mode rejection ratio	Civilata	-0.2V≤V _{CM} ≤0V,	5V≤V _{CM} ≤5.2V	50	78		dB
Power supply rejection ratio	PSSR	1.8V≤V+≤5V, V	1.8V≤V+≤5V, V _{CM} ≤0.5V				
			V-, T _A =25°C	V0.2	-0.2		
Input common-mode voltage	CMVR	For CMRR	V+, T _A =25°C		5.3	V⁺+0.2	V
input common-mode voltage	CIVIVIX	range ≥50dB	T _A =-40°C to 85°C	V-		V+	
			T _A =125°C	V-+0.3		V⁺-0.3	
		R _L =600Ω to 2.5	5V	88	400		
Large signal voltage gain		V ₀ =0.2V to 4.8	V	00	102		
LMV611 (single)	A_{\vee}	R_L =2k Ω to 2.5 V	/	0.4	113		
		V _o =0.2V to 4.8V		94	113		dB
		R _L =600Ω to 2.5V		0.1	00		ub
Large signal voltage gain		V ₀ =0.2V to 4.8	81	90			
LMV612 (dual) and LMV614 (quad)		$R_L=2k\Omega$ to 2.5 V	0.5	400			
		V _o =0.2V to 4.8	V	85	100		

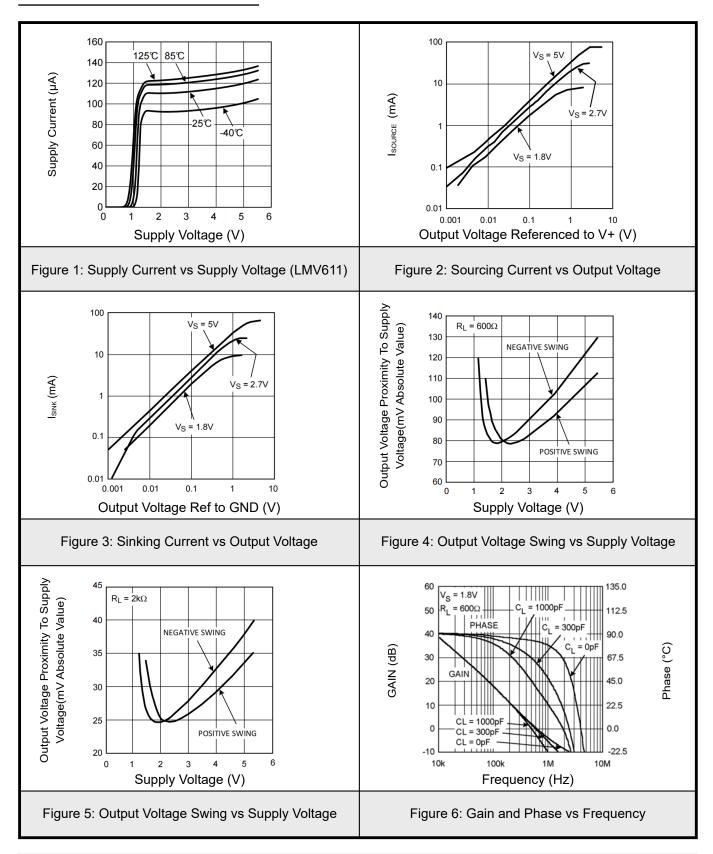
UMW LMV61x

Single, Dual, and Quad, 1.4-MHz, Low-Power General-Purpose 1.8-V Operational Amplifiers

Parameter	Symbol	Conditions	Min ⁽²⁾	Typ ⁽³⁾	Max ⁽²⁾	Units
		R _L =600Ω to 2.5V	4.855	4.89		V
Output swing	V	V _{IN} =±100mV		0.12	0.16	V
Output swing	V _o	R_L =2k Ω to 2.5V	4.945	4.967		V
		V _{IN} =±100mV		0.037	0.065	V
		LMV611, Sourcing, V ₀ =0V		100		m A
Output abort aircuit aurrant (5)	,	V _{IN} =100mV		100		mA
Output short-circuit current (5)	Io	Sinking, V _o =5V		6E		m A
		V _{IN} =-100mV	65			mA

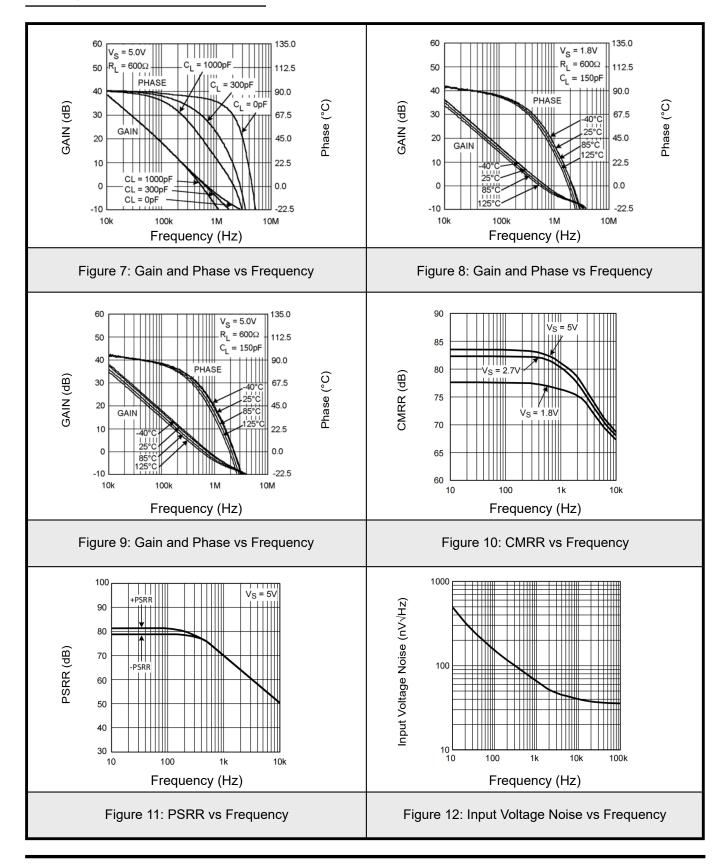
- (1) Electrical characteristics values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that TJ = TA. No assurance of parametric performance is indicated in the electrical tables under conditions of internal self-heating where TJ > TA. See Application and Implementation for information of temperature derating of the device. Absolute Maximum Ratings indicated junction temperature limits beyond which the device may be permanently degraded, either mechanically or electrically.
- (2) All limits are specified by testing or statistical analysis.
- (3) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may varyover time and also depends on the application and configuration. The typical values are not tested and are not ensured on shipped production material.
- (4) For specified temperature ranges, see Input common mode voltage specifications.
- (5) Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C. Output currents in excess of 45 mA over long term may adversely affect reliability

9.7 Electrical Characteristics - 5V(AC)

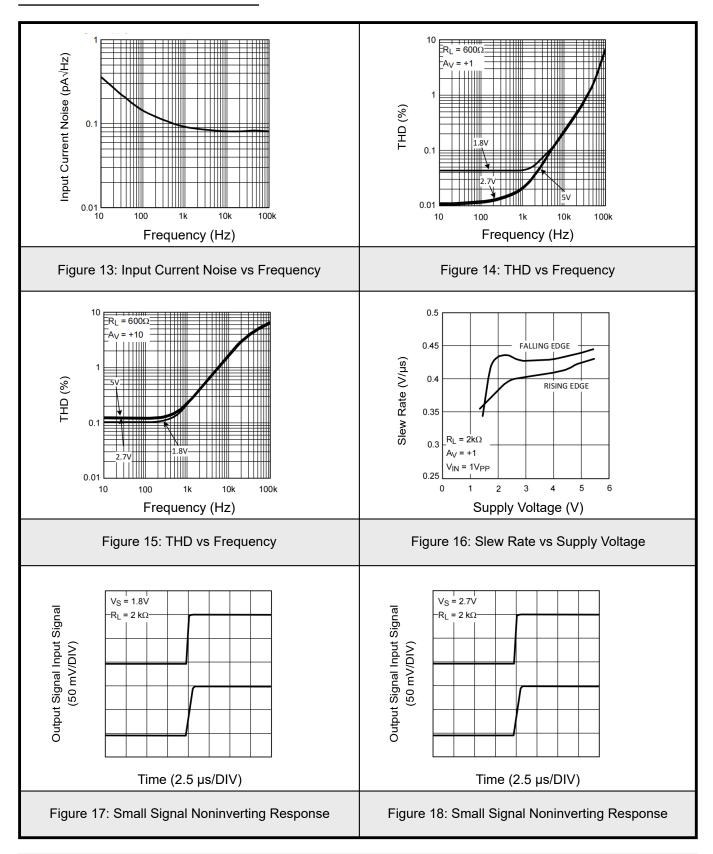

All limits ensured for $T_J=25^{\circ}C$, V+=5V, V-=0V, $V_{CM}=V+/2$, $V_0=2.5V$, and $R_L>1M\Omega$ (unless otherwise noted).⁽¹⁾

Parameter	Symbol	Conditions	Min ⁽²⁾	Typ ⁽³⁾	Max ⁽²⁾	Units
Slew rate (4)	SR			0.42		V/µs
Gain-bandwidth product	GBW			1.5		MHz
Phase margin	Фт			71		°C
Gain margin	G _m			8		dB
Input-referred voltage noise	e _n	f=10kHz, V _{CM} =1V		50		nV/√Hz
Input-referred current noise	i _n	f=10kHz		0.08		pA/√Hz
Total harmonic distortion	THD	$f=1kHz$, $A_V=+1$, $R_L=600Ω$, $V_O=1V_{PP}$		0.022		%
Amp-to-amp isolation (5)				123		dB

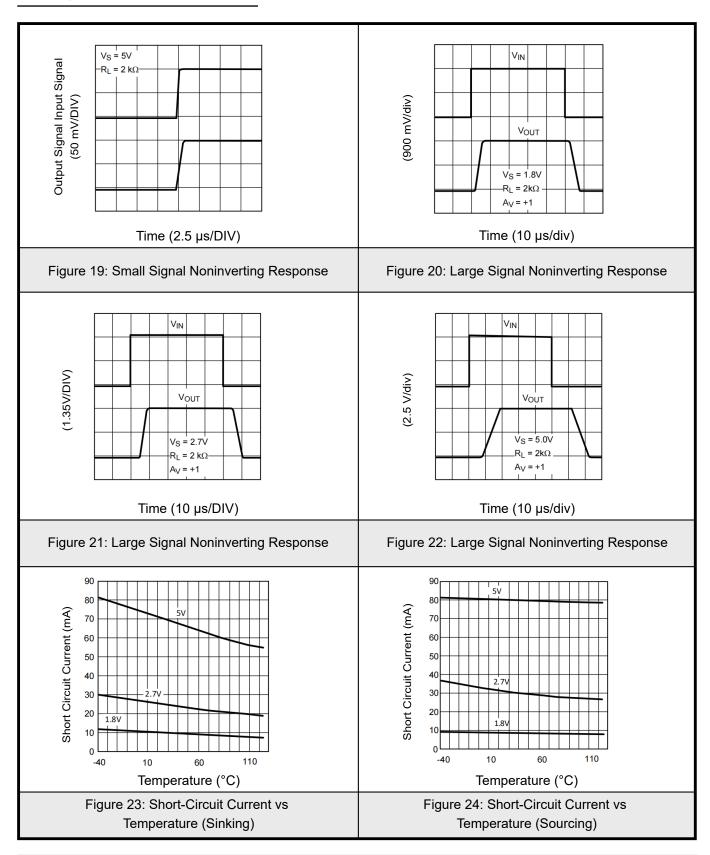
- (1) Electrical characteristics values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that T_J=T_A. No assurance of parametric performance is indicated in the electrical tables under conditions of internal self-heating where T_J>T_A. See Application and Implementation for information of temperature derating of the device. Absolute Maximum Ratings indicated junction temperature limits beyond which the device may be permanently degraded, either mechanically or electrically.
- (2) All limits are specified by testing or statistical analysis.
- (3) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and also depends on the application and configuration. The typical values are not tested and are not ensured on shipped mproduction material.
- (4) Connected as voltage follower with input step from V- to V+. Number specified is the slower of the positive and negative slew
- (5) Input-referred, R_L=100kΩ connected to V+/ 2. Each amp excited in turn with 1 kHz to produce V_O=3V_{PP} (for supply voltages <3V, V_O=V+).



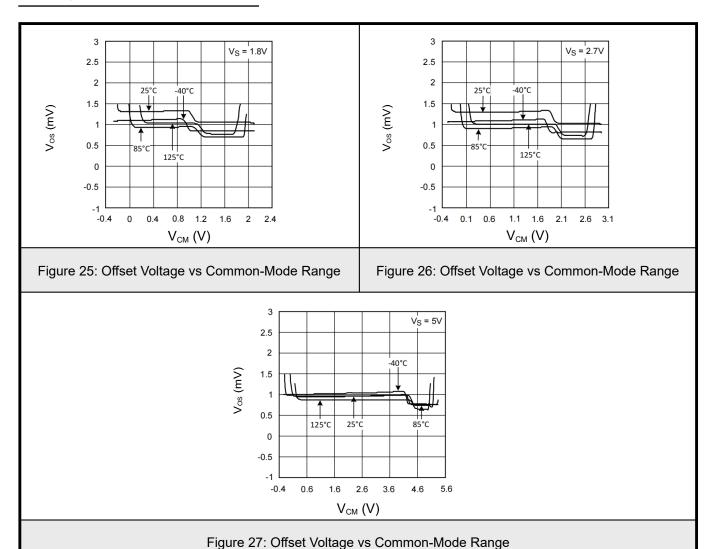
10.1 Typical characteristic



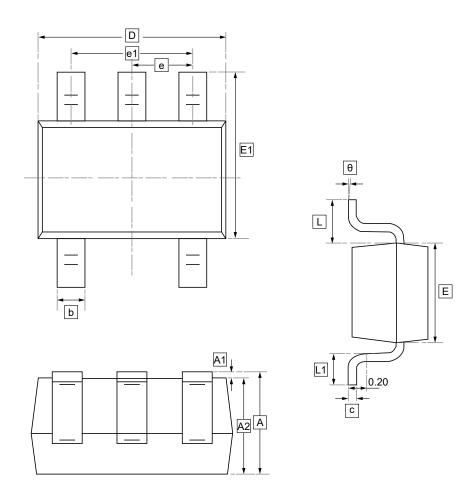
10.2 Typical characteristic



10.3 Typical characteristic

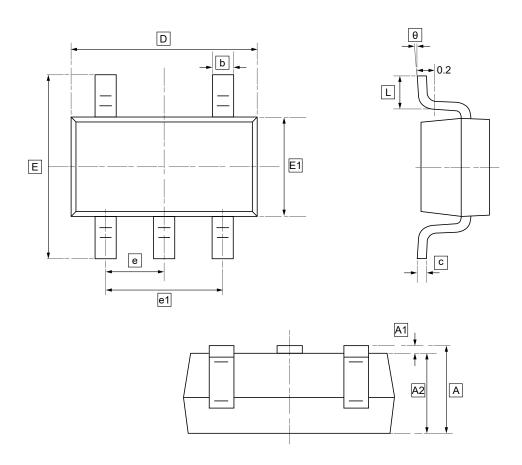


10.4 Typical characteristic



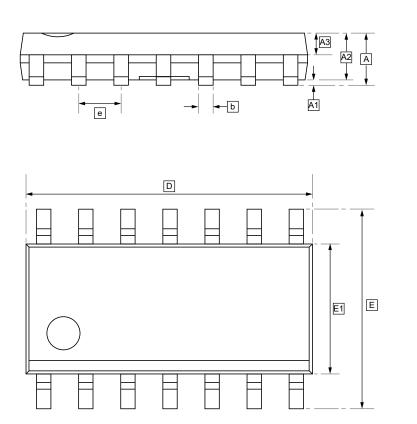
10.5 Typical characteristic

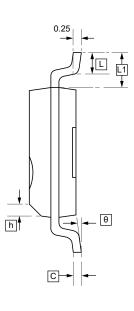
11.1 SC70-5 Package Outline Dimensions



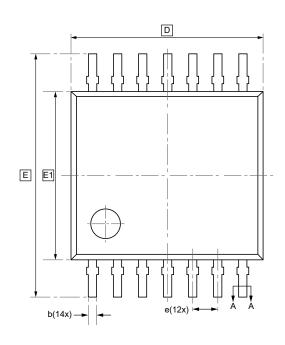
Symbol	Α	A1	A2	b	С	D	E	E1	е	e1	L	θ
Min	0.90	0.00	0.90	0.15	0.08	2.05	1.15	2.15	0.65	1.20	0.26	7°
Max	1.10	0.10	1.00	0.35	0.15	2.25	1.35	2.45	TYP	1.40	0.46	REF.

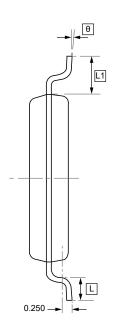
11.2 SOT23-5 Package Outline Dimensions

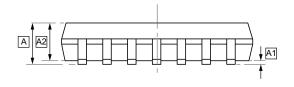



Symbol	Α	A1	A2	b	С	D	E1	E	е	e1	L	θ
Min	1.050	0.000	1.050	0.300	0.100	2.820	1.500	2.650	0.950	1.800	0.300	0°
Max	1.250	0.100	1.150	0.500	0.200	3.020	1.700	2.950	BSC	2.000	0.600	8°

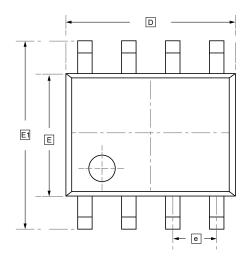
11.3 SOP-14 Package Outline Dimensions

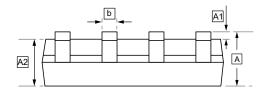


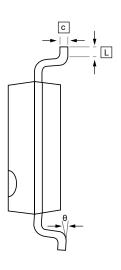

Symbol	Α	A 1	A2	А3	b	С	D	E	E1	е	h	L
Min	-	0.05	1.35	0.65	0.203	0.17	8.45	5.80	3.80	1.24	0.25	0.40
Max	1.75	0.25	1.55	0.75	0.305	0.25	8.85	6.20	4.00	1.30	0.50	0.80


Symbol	L1	θ
Min	1.00	0°
Max	1.10	8°

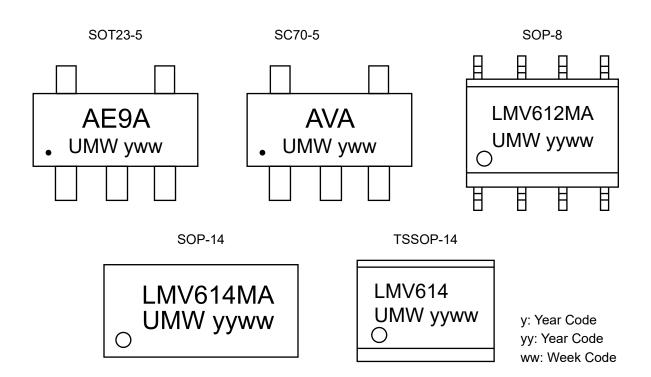
11.4 TSSOP-14 Package Outline Dimensions


Symbol	Α	A 1	A2	b	b1	С	с1	D	E	E1	е	L1
Min	-	0.05	0.90	0.20	0.19	0.13	0.120	4.90	6.20	4.30	0.65	0.85
Max	1.20	0.15	1.05	0.28	0.25	0.17	0.14	5.10	6.60	4.50	BSC	1.15


Symbol	L	θ
Min	0.45	0°
Max	0.75	8°



11.5 SOP-8 Package Outline Dimensions



Symbol	Α	A1	A2	b	С	D	E	E1	е	L	θ
Min	1.350	0.000	1.350	0.330	0.170	4.700	3.800	5.800	1.270	0.400	0°
Max	1.750	0.100	1.550	0.510	0.250	5.100	4.000	6.200	BSC	1.270	8°

12. Ordering information

Order Code	Marking	Package	Base QTY	Delivery Mode
UMW LMV614MTX	LMV614	TSSOP-14	4000	Tape and reel
UMW LMV611MF	AE9A	SOT23-5	3000	Tape and reel
UMW LMV612MAX	LMV612MA	SOP-8	2500	Tape and reel
UMW LMV614MAX	LMV614MA	SOP-14	2500	Tape and reel
UMW LMV611MG	AVA	SC70-5	3000	Tape and reel

13.Disclaimer

UMW reserves the right to make changes to all products, specifications. Customers should obtain the latest version of product documentation and verify the completeness and currency of the information before placing an order.

When applying our products, please do not exceed the maximum rated values, as this may affect the reliability of the entire system. Under certain conditions, any semiconductor product may experience faults or failures. Buyers are responsible for adhering to safety standards and implementing safety measures during system design, prototyping, and manufacturing when using our products to prevent potential failure risks that could lead to personal injury or property damage.

Unless explicitly stated in writing, UMW products are not intended for use in medical, life-saving, or life-sustaining applications, nor for any other applications where product failure could result in personal injury or death. If customers use or sell the product for such applications without explicit authorization, they assume all associated risks.

When reselling, applying, or exporting, please comply with export control laws and regulations of China, the United States, the United Kingdom, the European Union, and other relevant countries, regions, and international organizations.

This document and any actions by UMW do not grant any intellectual property rights, whether express or implied, by estoppel or otherwise. The product names and marks mentioned herein may be trademarks of their respective owners.