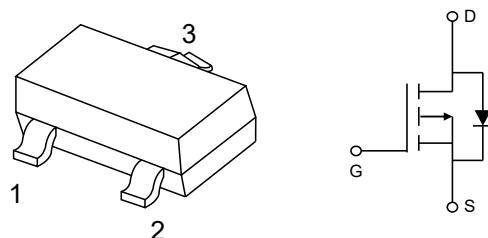


1. Description

The AO3481 provide excellent RDS(ON) , low gate charge and operation gate voltages as low as 2.5V. This device is suitable for use as a load switch or other general applications.


2. Features

- $V_{DS}(V)=-30V$
- $I_D = -4A$
- $R_{DS(ON)} < 41m\Omega (V_{GS}=-10V)$
- $R_{DS(ON)} < 47m\Omega (V_{GS}=-4.5V)$
- RoHS and Halogen-Free Compliant

3. Pinning information

Pin	Symbol	Description
1	G	GATE
2	S	SOURCE
3	D	DRAIN

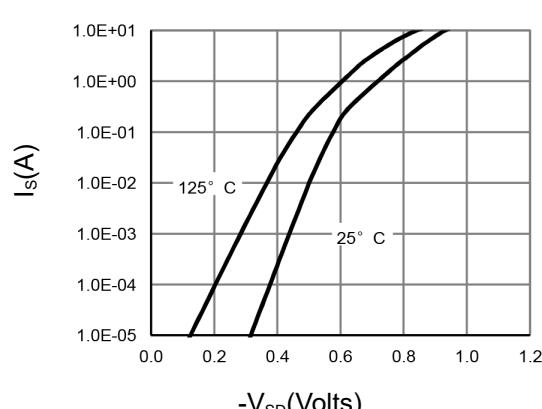
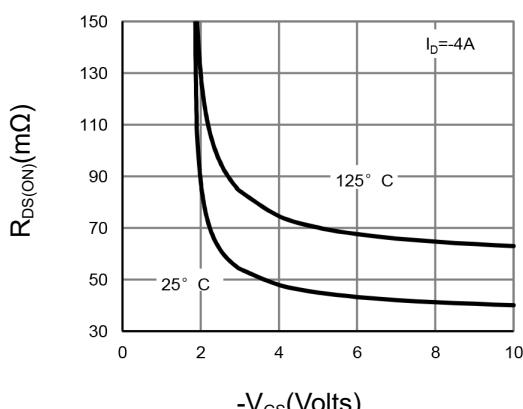
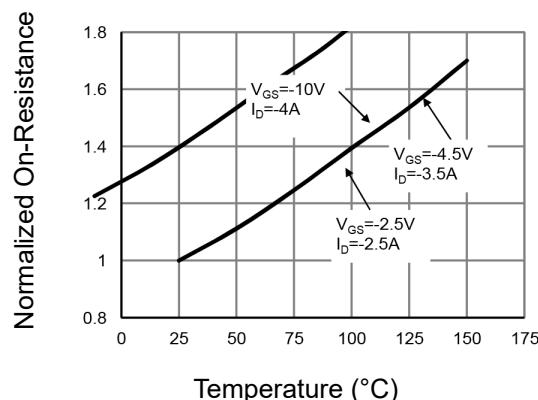
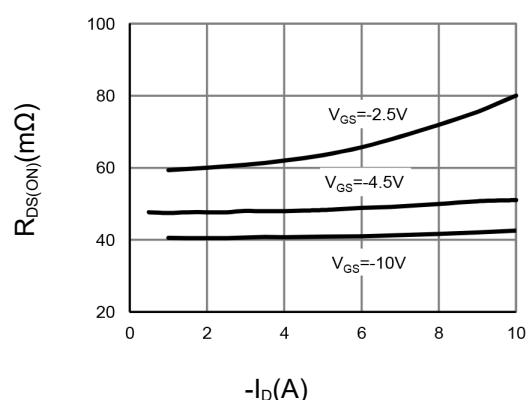
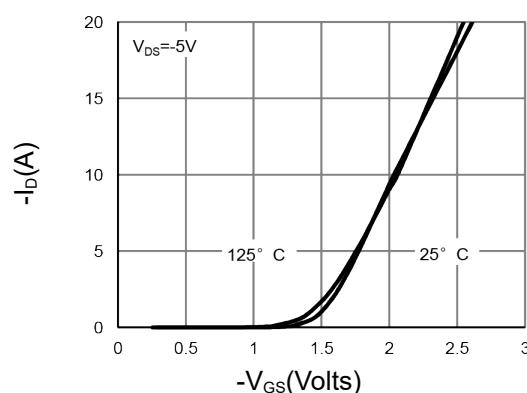
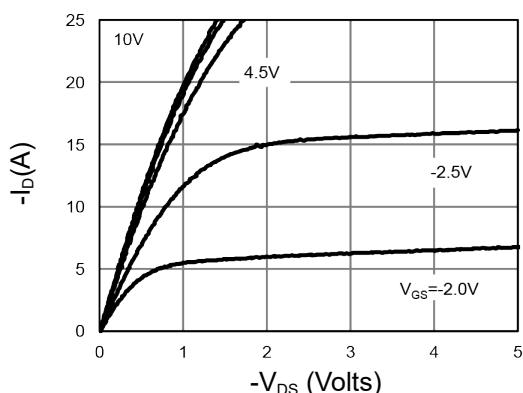
SOT-23

4. Absolute Maximum Ratings $T_A=25^\circ C$ unless otherwise noted

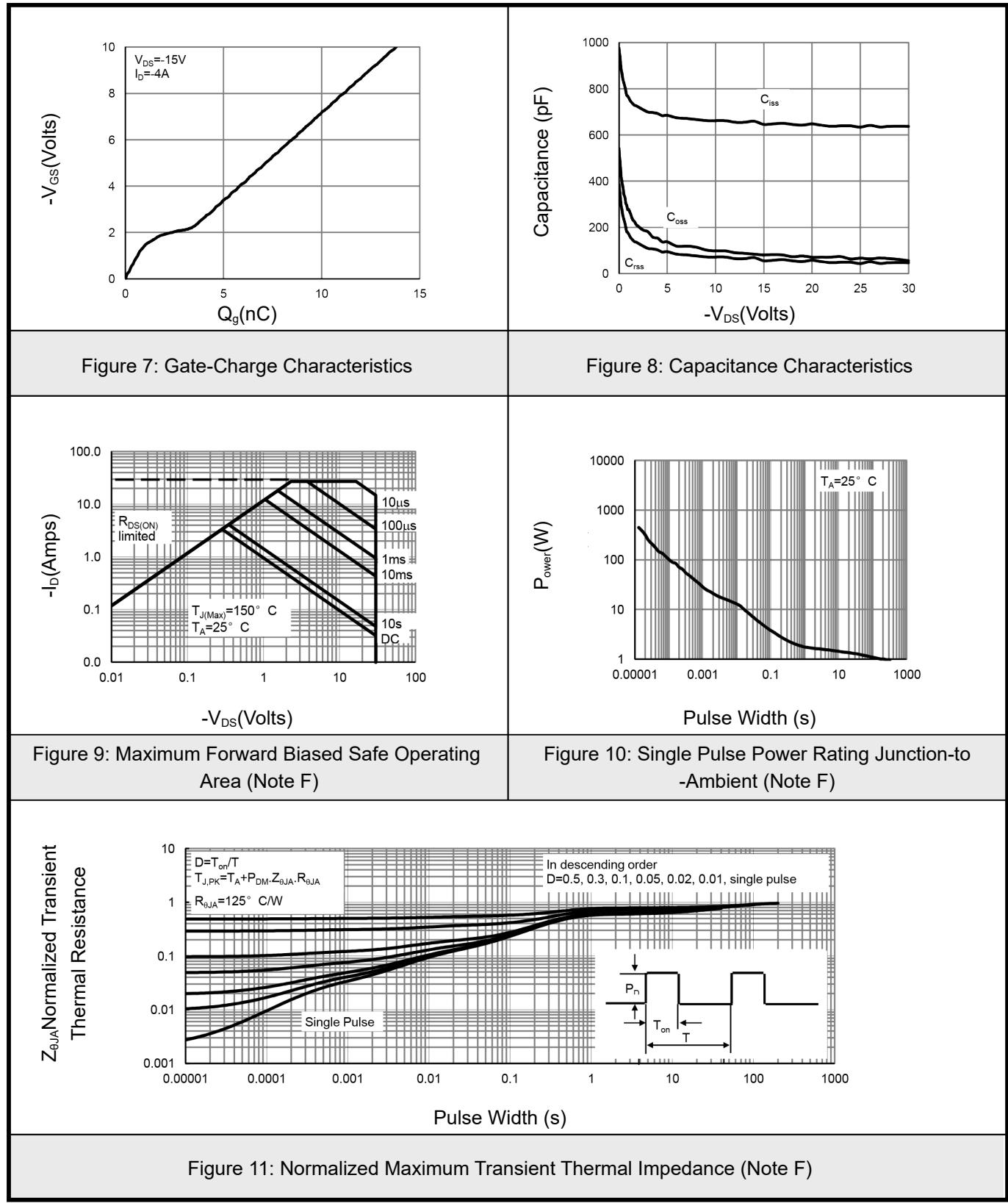
Parameter	Symbol	Maximum	Units
Drain-Source Voltage	V_{DS}	-30	V
Gate-Source Voltage	V_{GS}	± 12	V
Continuous Drain Current	I_D	-4	A
$T_A=70^\circ C$		-3.2	
Pulsed Drain Current ^C	I_{DM}	-27	
Power Dissipation ^B	P_D	1.4	W
$T_A=70^\circ C$		0.9	
Junction and Storage Temperature Range	T_J, T_{STG}	-55 to 150	°C

5. Thermal Characteristics

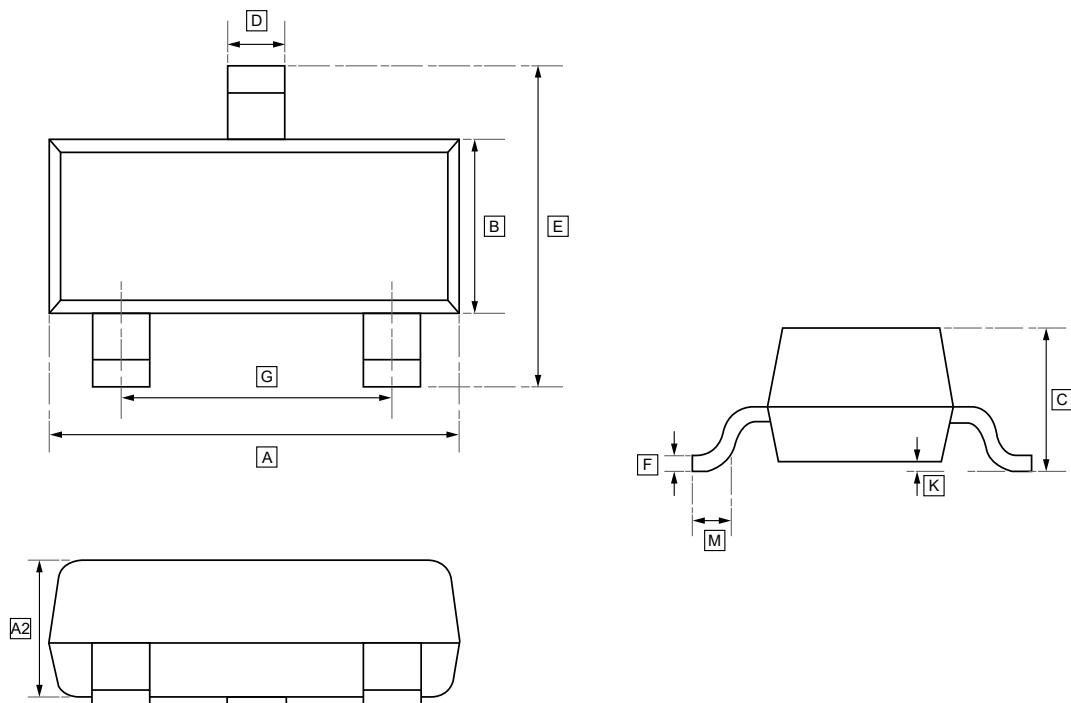
Parameter	Symbol	Typ	Max	Units
Maximum Junction-to-Ambient ^A	$R_{\theta JA}$	70	90	°C/W
Maximum Junction-to-Ambient ^{A,D}		100	125	°C/W
Maximum Junction-to-Lead	$R_{\theta JL}$	63	80	°C/W







6. Electrical Characteristics ($T_J=25^\circ\text{C}$ unless otherwise noted)

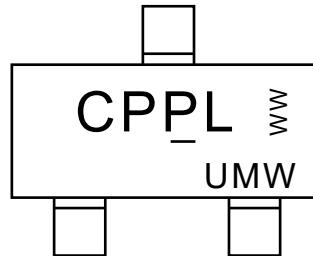
Parameter	Symbol	Conditions	Min	Typ	Max	Units
Drain-Source Breakdown Voltage	BV_{DSS}	$I_D=-250\mu\text{A}, V_{\text{GS}}=0\text{V}$	-30			V
Zero Gate Voltage Drain Current	I_{DSS}	$V_{\text{DS}}=-30\text{V}, V_{\text{GS}}=0\text{V}$ $T_J=55^\circ\text{C}$			-1	μA
					-5	
Gate-Body leakage current	I_{GSS}	$V_{\text{DS}}=0\text{V}, V_{\text{GS}}=\pm 12\text{V}$			± 100	nA
Gate Threshold Voltage	$V_{\text{GS}(\text{th})}$	$V_{\text{DS}}=V_{\text{GS}}, I_D=-250\mu\text{A}$	-0.5	-0.9	-1.3	V
On-State Drain Current	$I_{\text{D}(\text{ON})}$	$V_{\text{GS}}=-10\text{V}, V_{\text{DS}}=-5\text{V}$	-27			A
Static Drain-Source On-Resistance	$R_{\text{DS}(\text{ON})}$	$V_{\text{GS}}=-10\text{V}, I_D=-4.0\text{A}$		41	50	$\text{m}\Omega$
		$V_{\text{GS}}=-4.5\text{V}, I_D=-3.5\text{A}$		47	60	$\text{m}\Omega$
		$V_{\text{GS}}=-2.5\text{V}, I_D=-2.5\text{A}$		60	85	$\text{m}\Omega$
Forward Transconductance	g_{FS}	$V_{\text{DS}}=-5\text{V}, I_D=-4.0\text{A}$		17		S
Diode Forward Voltage	V_{SD}	$I_S=-1\text{A}, V_{\text{GS}}=0\text{V}$		-0.7	-1	V
Maximum Body-Diode Continuous Current	I_S				-2	A
Input Capacitance	C_{iss}	$V_{\text{GS}}=0\text{V}, V_{\text{DS}}=-15\text{V}, f=1\text{MHz}$		645		pF
Output Capacitance	C_{oss}			80		pF
Reverse Transfer Capacitance	C_{rss}			55		pF
Gate resistance	R_g	$V_{\text{GS}}=0\text{V}, V_{\text{DS}}=0\text{V}, f=1\text{MHz}$	4	7.8	12	Ω
Total Gate Charge	$Q_g(10\text{V})$	$V_{\text{GS}}=-10\text{V}, V_{\text{DS}}=-15\text{V}$ $I_D=-4.0\text{A}$		14	20	nC
Total Gate Charge	$Q_g(4.5\text{V})$			7		nC
Gate Source Charge	Q_{gs}			1.5		nC
Gate Drain Charge	Q_{gd}			2.5		nC
Turn-On Delay Time	$t_{\text{D}(\text{on})}$	$V_{\text{GS}}=-10\text{V}, V_{\text{DS}}=-15\text{V}$ $R_L=3.75\Omega, R_{\text{GEN}}=3\Omega$		6.5		ns
Turn-On Rise Time	t_r			3.5		ns
Turn-Off Delay Time	$t_{\text{D}(\text{off})}$			41		ns
Turn-Off Fall Time	t_f			9		ns
Body Diode Reverse Recovery Time	t_{rr}	$I_F=-4.0\text{A}, dI/dt=100\text{A}/\mu\text{s}$		11		ns
Body Diode Reverse Recovery Charge	Q_{rr}	$I_F=-4.0\text{A}, dI/dt=100\text{A}/\mu\text{s}$		3.5		nC



- A. The value of $R_{\theta JA}$ is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with $T_A = 25^\circ\text{C}$. The value in any given application depends on the user's specific board design.
- B. The power dissipation P_D is based on $T_{J(MAX)} = 150^\circ\text{C}$, using $\leq 10\text{s}$ junction-to-ambient thermal resistance.
- C. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)} = 150^\circ\text{C}$. Ratings are based on low frequency and duty cycles to keep initial $T_J = 25^\circ\text{C}$.
- D. The $R_{\theta JA}$ is the sum of the thermal impedance from junction to lead $R_{\theta JL}$ and lead to ambient.
- E. The static characteristics in Figures 1 to 6 are obtained using $<300\mu\text{s}$ pulses, duty cycle 0.5% max.
- F. These curves are based on the junction-to-ambient thermal impedance which is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, assuming a maximum junction temperature of $T_{J(MAX)} = 150^\circ\text{C}$. The SOA curve provides a single pulse rating.


7.1 Typical Characteristics

7.2 Typical Characteristics


8.SOT-23 Package Outline Dimensions

DIMENSIONS (mm are the original dimensions)

Symbol	A	B	C	D	E	G	K	M	A2	F
Min	2.85	1.20	0.90	0.40	2.25	1.80	0.00	0.30	0.95	0.095
Max	3.04	1.40	1.10	0.50	2.55	2.00	0.10	-	1.05	0.115

9.Ordering information

WW: Batch Code

Order Code	Package	Base QTY	Delivery Mode
UMW AO3481	SOT-23	3000	Tape and reel

10. Disclaimer

UMW reserves the right to make changes to all products, specifications. Customers should obtain the latest version of product documentation and verify the completeness and currency of the information before placing an order.

When applying our products, please do not exceed the maximum rated values, as this may affect the reliability of the entire system. Under certain conditions, any semiconductor product may experience faults or failures. Buyers are responsible for adhering to safety standards and implementing safety measures during system design, prototyping, and manufacturing when using our products to prevent potential failure risks that could lead to personal injury or property damage.

Unless explicitly stated in writing, UMW products are not intended for use in medical, life-saving, or life-sustaining applications, nor for any other applications where product failure could result in personal injury or death. If customers use or sell the product for such applications without explicit authorization, they assume all associated risks.

When reselling, applying, or exporting, please comply with export control laws and regulations of China, the United States, the United Kingdom, the European Union, and other relevant countries, regions, and international organizations.

This document and any actions by UMW do not grant any intellectual property rights, whether express or implied, by estoppel or otherwise. The product names and marks mentioned herein may be trademarks of their respective owners.