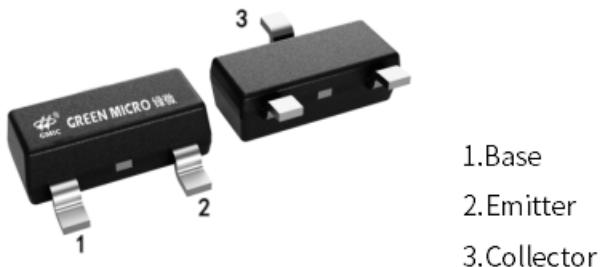


MMBT3904

DATASHEET


Specification Revision History:

Version	Date	Description
V1.0	2021/08	New
V1.1	2022/05	Modify Ordering Information
V1.2	2023/02	Modify Ordering Information
V1.3	2025/05	Add application precautions and overall typesetting.

FEATURES

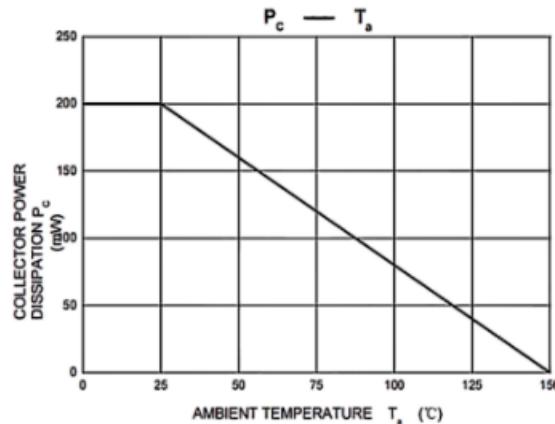
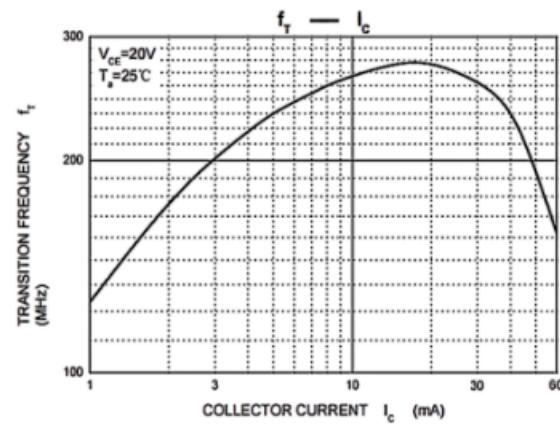
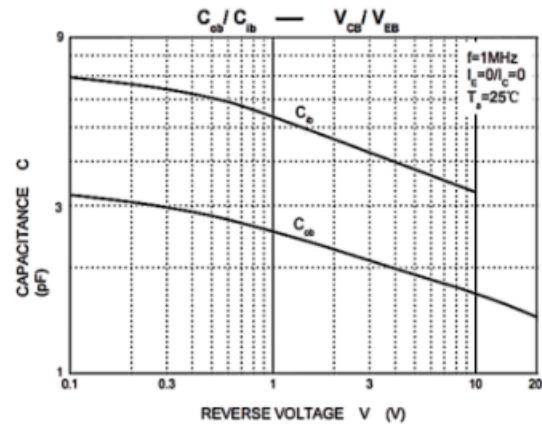
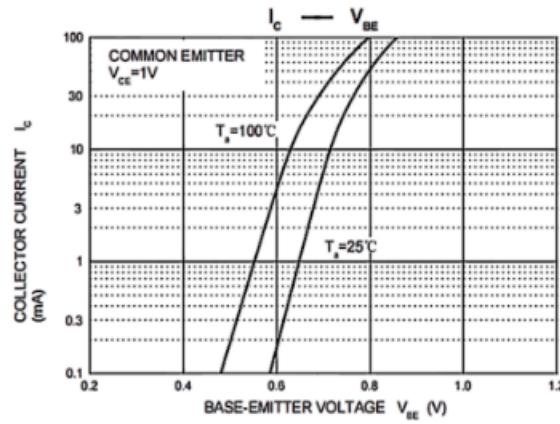
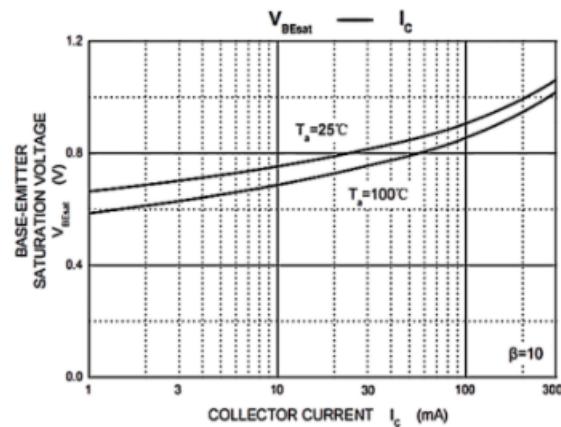
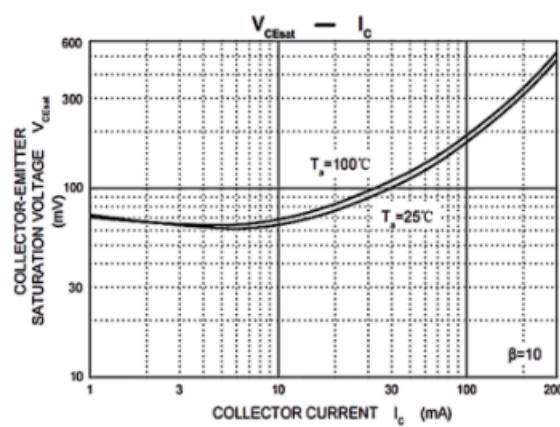
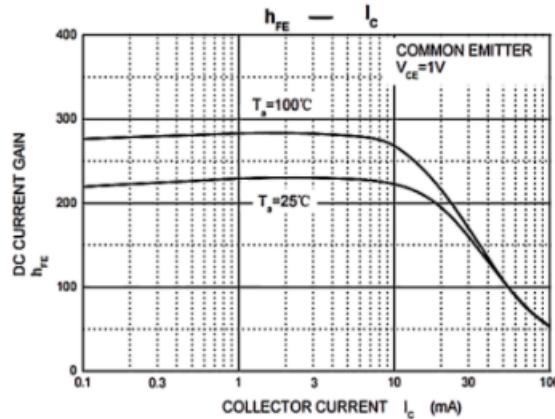
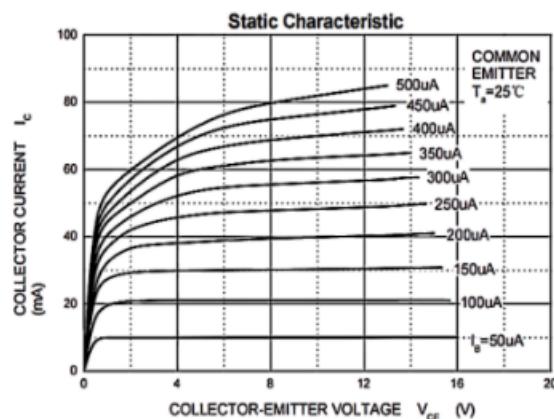
- ※Epitaxial Planar Die Construction
- ※Complementary PNP Type Available (MMBT3906)
- ※Ideal for Medium Power Amplification and Switching

The appearance of the product

SOT-23

Ordering Information

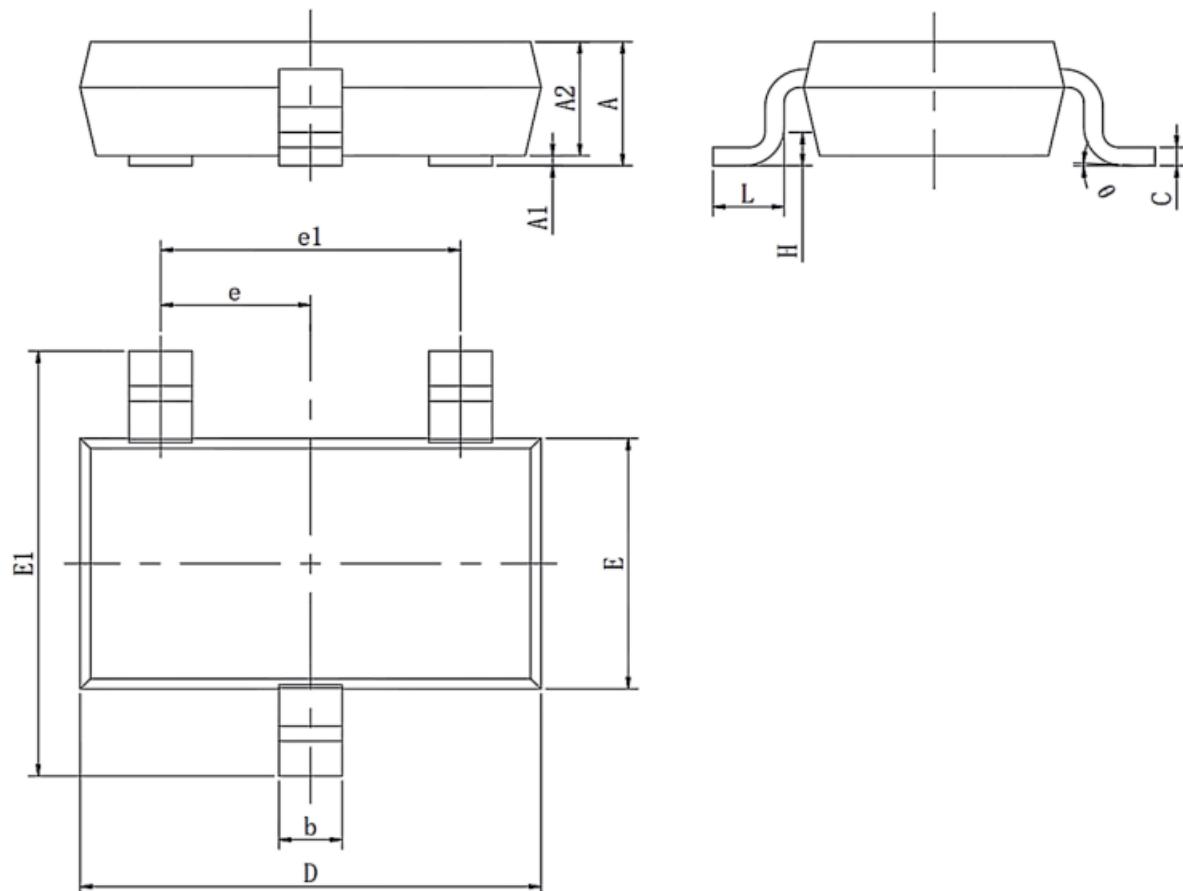
Product Model	Package Type	Marking	Packing	Packing Qty
MMBT3904-GM	SOT-23	1AM	REEL	3000PCS/REEL









MAXIMUM RATINGS (Ta=25°C unless otherwise noted)

Symbol	Parameter	Value	Unit
V_{CEO}	Collector-Base Voltage	60	V
V_{CEO}	Collector-Emitter Voltage	40	V
V_{EBO}	Emitter-Base Voltage	6	V
I_C	Collector Current	200	mA
P_c	Total Device Dissipation	200	mW
R_{JA}	Thermal Resistance From Junction to Ambient	625	°C/W
T_J	Junction Temperature	150	°C
T_{stg}	Storage Temperature	-55 ~ +150	°C

ELECTRICAL CHARACTERISTICS (Ta=25°C unless otherwise specified)

Parameter	Symbol	Test conditions	Min	Max	Unit
Collector-base breakdown voltage	V _{(BR)CBO}	I _c = 10μA, I _e =0	60		V
Collector-emitter breakdown voltage	V _{(BR)CEO}	I _c = 1mA, I _b =0	40		V
Emitter-base breakdown voltage	V _{(BR)EBO}	I _e =10μA, I _c =0	6		V
Collector cut-off current	I _{CBO}	V _{CB} =60V, I _e =0		0.1	μA
Collector cut-off current	I _{CEX}	V _{CE} =30V, V _{BE(off)} =3V		50	nA
Emitter cut-off current	I _{EBO}	V _{EB} =5V, I _c =0		0.1	μA
DC current gain	h _{FE(1)}	V _{CE} =1V, I _c =10mA	100	300	
	h _{FE(2)}	V _{CE} =1V, I _c = 50mA	60		
	h _{FE(3)}	V _{CE} =1V, I _c = 100mA	30		
Collector-emitter saturation voltage	V _{CE(sat)}	I _c =50mA, I _b = 5mA		0.3	V
Base-emitter saturation voltage	V _{BE(sat)}	I _c = 50mA, I _b = 5mA		0.95	V
Transition frequency	f _T	V _{CE} =20V, I _c =10mA, f=100MHz	300		MHz
Delay Time	t _d	V _{CC} =3V, V _{BE} =-0.5V I _c =10mA, I _{b1} =-I _{b2} =1.0mA		35	nS
Rise Time	t _r			35	nS
Storage Time	t _s	V _{CC} =3V, I _c =10mA, I _{b1} =-I _{b2} =1mA		200	nS
Fall Time	t _f			50	nS


Typical Characteristics

Outline Dimensions

SOT-23

Unit : mm

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
A	0.900	1.150	0.035	0.045
A1	0.000	0.100	0.000	0.004
A2	0.900	1.050	0.035	0.041
b	0.300	0.500	0.012	0.020
C	0.080	0.200	0.003	0.008
D	2.800	3.020	0.110	0.119
E	1.200	1.400	0.047	0.055
E1	2.250	2.550	0.089	0.100
e	0.95 (BSC)		0.037(BSC)	
e1	1.90 (BSC)		0.075(BSC)	
L	0.300	0.500	0.012	0.020
θ	0°	8°	0°	8°

Important Notice

- Green Micro chip reserves the right to change products and documents without notice. Customers should obtain and verify the completeness of the latest technical information before placing orders. Meanwhile, Green Micro chip shall not assume any responsibility or obligation for non-officially revised documents.
- Any parameters in the entire product specification are for reference only, and actual application testing shall prevail. When customers use the products for system design, they must comply with safety regulations and independently assume the following responsibilities: selecting suitable Green Micro chip products according to application requirements; completing design verification and full-link testing of the application; and ensuring that the application complies with safety regulations or other requirements of the target market. Customers shall bear all personal or property losses caused by design defects or illegal operations, which shall have no relation to Green Micro chip.
- Green Micro chip products are prohibited from being used in scenarios such as life support, military equipment, and key aerospace applications. All accidents and legal liabilities arising from out-of-scope use shall be borne by the user, and Green Micro chip shall not be held responsible.
- All technical resources of Green Micro chip (including data sheets and reference designs) are provided "as is", without guarantee of no defects or universality, and without any express or implied warranties. The documents are only authorized for product development and research described in this document. Unauthorized use of intellectual property, public reproduction, and reverse engineering are strictly prohibited. All claims and losses caused by illegal use shall be borne by the user, and Green Micro chip shall not be liable.