

LM337

DATASHEET

Specification Revision History:

Version	Date	Description
V1.0	2019/11	New
V1.1	2021/05	Modify Ordering Information
V1.2	2025/02	Modify Ordering Information
V1.3	2025/03	Add application precautions and overall typesetting.

General Description

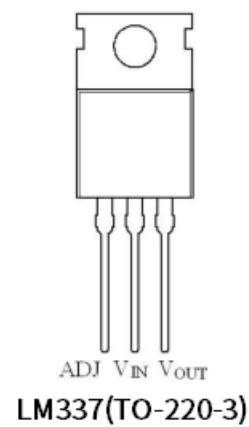
The LM337 are adjustable 3-terminal negative voltage regulators capable of supplying in excess of -1.5A over an output voltage range of -1.2V to -37V. These regulators are exceptionally easy to apply, requiring only 2 external resistors to set the output voltage and 1 output capacitor for frequency compensation. The circuit design has been optimized for excellent regulation and low thermal transients.

The LM337 serve a wide variety of applications including local on-card regulation, programmable-output voltage regulation or precision current regulation. The LM337 is ideal complements to the LM337 adjustable positive regulators.

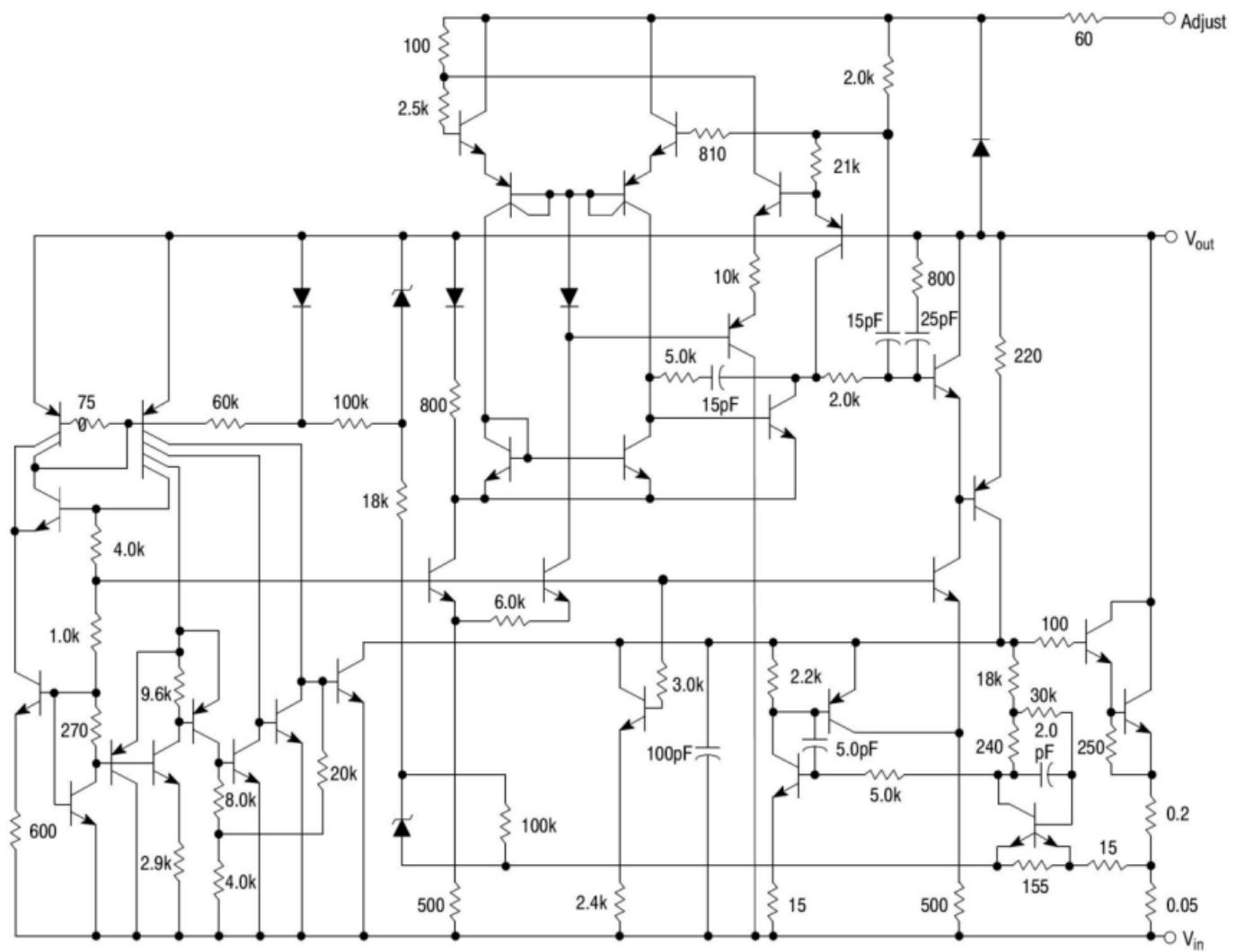
Features

- Output voltage adjustable from -1.2V to -37V
- 1.5A output current guaranteed
- Line regulation typically 0.01%/V
- Excellent thermal regulation, 0.002%/W
- Excellent rejection of thermal transients
- Temperature-independent current limit
- Internal thermal overload protection

Simplified Outline



TO-220-3


Ordering Information

Product Model	Package Type	Marking	Packing	Packing Qty
LM337TBT	TO-220-3	LM337 S315	TUBE	1000PCS/BOX
LM337T	TO-220-3	LM337 G3A5	TUBE	1000PCS/BOX

Pin Configuration

Block Diagram

Absolute Maximum Ratings*1

Characteristic	Value	Unit
Power dissipation	Internally limited	
Input-output voltage differential	40	V
Operating junction temperature range	-20~+125	°C
Storage temperature	-65~+150	°C
Lead temperature(soldering,10 sec.)	300	°C
Plastic package(soldering,4 sec.)	260	°C
ESD rating	2k	Volts

Electrical Characteristics *1

Characteristics	Test conditions	Min	Typ	Max	Unit
Line regulation	$T_J=25^{\circ}\text{C}, 3V \leq V_{IN}-V_{OUT} \leq 40V$ *2 $I_L=10\text{mA}$		0.01	0.04	%/V
Load regulation	$T_J=25^{\circ}\text{C}, 10\text{mA} \leq V_{OUT} \leq I_{MAX}$		0.3	1.0	%
Thermal regulation	$T_J=25^{\circ}\text{C}, 10\text{ms pulse}$		0.003	0.04	%/W
Adjustment pin current			65	100	μA
Adjustment pin current charge	$10\text{mA} \leq I_L \leq I_{MAX}, T_A=25^{\circ}\text{C}$ $3V \leq V_{IN}-V_{OUT} \leq 40V$		2	5	μA
Reference voltage	$T_J=25^{\circ}\text{C}$ *3 $3V \leq V_{IN}-V_{OUT} \leq 40V$ *3 $10\text{mA} \leq I_{OUT} \leq I_{MAX}, P \leq P_{MAX}$	-1.213 -1.200	-1.250 -1.250	-1.287 -1.300	V
Line regulation	$3V \leq V_{IN}-V_{OUT} \leq 40V$ *2		0.02	0.07	%/V
Load regulation	$10\text{mA} \leq I_{OUT} \leq I_{MAX}$ *2		0.3	1.5	%
Temperature stability	$T_{MIN} \leq T_J \leq T_{MAX}$		0.6		%
Minimum load current	$ V_{IN}-V_{OUT} \leq 40V$ $ V_{IN}-V_{OUT} \leq 10V$		2.5 1.5	10 6	mA
Current limit	$ V_{IN}-V_{OUT} \leq 15V$ $ V_{IN}-V_{OUT} =40V, T_J=25^{\circ}\text{C}$	1.5 0.15	2.2 0.4	3.7	A
RMS output noise,%of V _{OUT}	$T_J=25^{\circ}\text{C}, 10\text{Hz} \leq f \leq 10\text{kHz}$		0.003		%
Ripple rejection ratio	$V_{OUT}=10V, f=120\text{Hz}$ $C_{ADJ}=10\mu\text{F}$	66	60 77		dB
Long-term stability	$T_J=125^{\circ}\text{C}, 1000\text{ Hours}$		0.3	1	%

Thermal resistance,junction to case	SOT223 TO220 TO252	2.3 12 4	3 15	°C/W
Thermal resistance,junction to ambient(no heat sink)	SOT223 TO220 TO252	35 140 50		C/W

*1:Unless otherwise specified,these specifications apply-20°C $\leq T_j \leq +125^{\circ}\text{C}$ for the LM337;VIN-VOUT=5V;and IOUT=0.5A for the TO252,SOT223 and TO220 packages.Although power dissipation is internally limited,these specifications are applicable for power dissipations of 2W for the SOT223 (see Application Hints),and 20W for the TO252, and TO220.IMAX is 1.5A for the TO252,SOT223 and TO220 packages.

*2:Regulation is measured at constant junction temperature,using pulse testing with a low duty cycle. Changes in output voltage due to heating effects are covered under the specification for thermal regulation.Load regulation is measured on the output pin at a point 1/8"below the base of the TO252 packages.

*3:Selected devices with tightened tolerance reference voltage available.

Application Summary

When a value for $\theta(H-A)$ is found using the equation shown,a heatsink must be selected that has a value that is less than or equal to this number.

Heatsinking SOT223 Package Parts

The SOT223 packages use a copper plane on the PCB and the PCB itself as a heatsink.To optimize the heat sinking ability of the plane and PCB,solder the tab of the package to the plane.

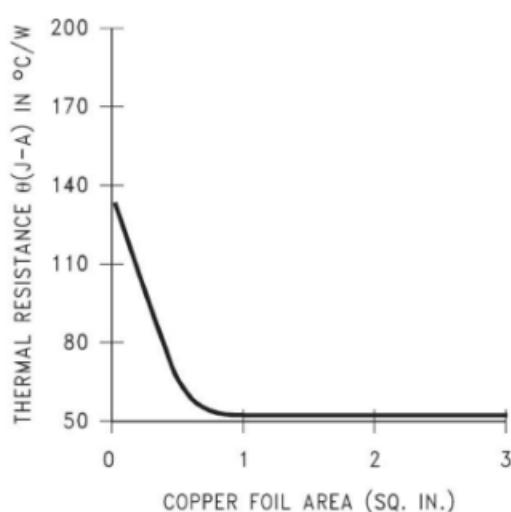


Fig. $\theta(J-A)$ vs Copper (2 ounce) Area for the SOT223 Package

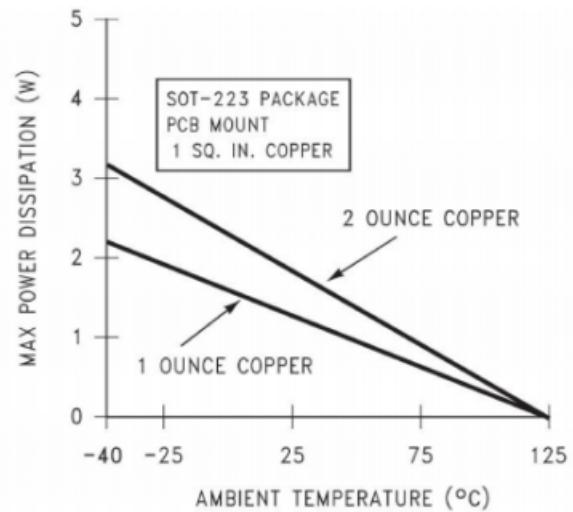
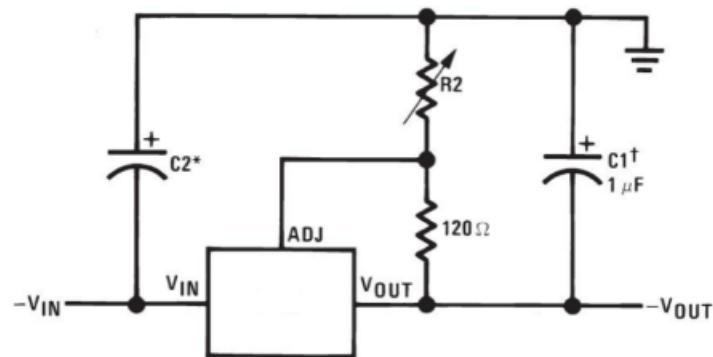
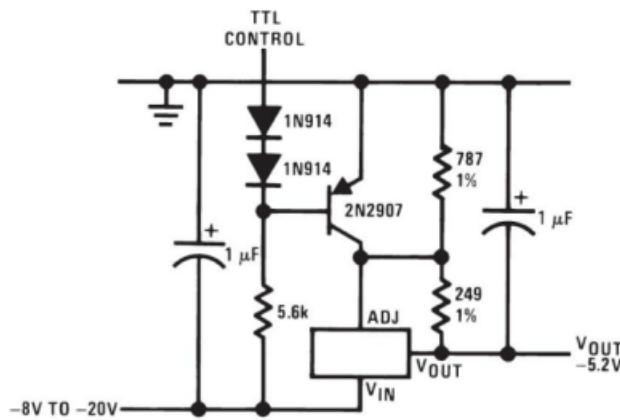



Fig. Maximum Power Dissipation vs. TAMB for the the SOT223 Package

Typical Application

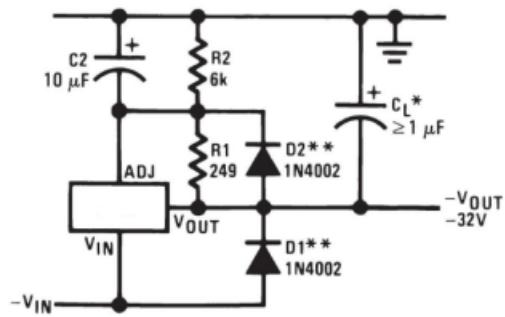
Adjustable Negative Voltage Regulator

Full output current not available at high input-output voltages


$$-V_{OUT} = -1.25V \left(1 + \frac{R2}{120} \right) + \left(-I_{ADJ} \times R2 \right)$$

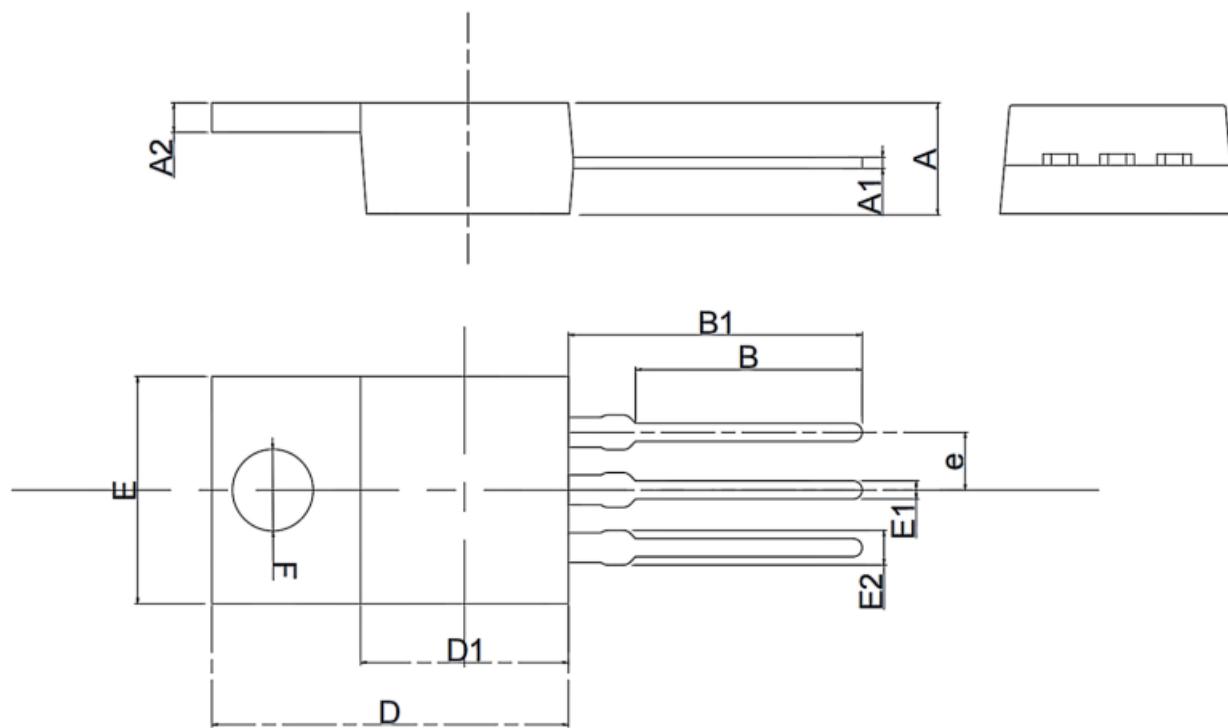
[†]C1 = 1 μ F solid tantalum or 10 μ F aluminum electrolytic required for stability

^{*}C2 = 1 μ F solid tantalum is required only if regulator is more than 4" from power-supply filter capacitor


Output capacitors in the range of 1 μ F to 1000 μ F of aluminum or tantalum electrolytic are commonly used to provide improved output impedance and rejection of transients

-5.2V Regulator with Electronic Shutdown*

*Minimum output = -1.3V when control input is low


Negative Regulator with Protection Diodes

*When C_L is larger than 20 μ F, D1 protects the LM337 in case the input supply is shorted

**When C2 is larger than 10 μ F and $-V_{OUT}$ is larger than -25V, D2 protects the LM337 in case the output is shorted

Outline Dimensions

TO-220-3
Unit : mm

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
A	4.300	4.800	0.169	0.189
A1	0.340	0.600	0.013	0.023
A2	1.220	1.400	0.047	0.055
B	9.460	10.380	0.372	0.408
B1	12.880	13.760	0.507	0.541
D	14.410	15.900	0.567	0.626
D1	8.000	9.000	0.314	0.354
E	9.700	10.400	0.381	0.409
E1	0.700	0.900	0.027	0.036
E2	1.220	1.400	0.048	0.055
e	2.540 (BSC)		0.984 (BSC)	
F	Φ3.800	Φ3.900	Φ0.149	Φ0.153

Important Notice

- Green Micro chip reserves the right to change products and documents without notice. Customers should obtain and verify the completeness of the latest technical information before placing orders. Meanwhile, Green Micro chip shall not assume any responsibility or obligation for non-officially revised documents.
- Any parameters in the entire product specification are for reference only, and actual application testing shall prevail. When customers use the products for system design, they must comply with safety regulations and independently assume the following responsibilities: selecting suitable Green Micro chip products according to application requirements; completing design verification and full-link testing of the application; and ensuring that the application complies with safety regulations or other requirements of the target market. Customers shall bear all personal or property losses caused by design defects or illegal operations, which shall have no relation to Green Micro chip.
- Green Micro chip products are prohibited from being used in scenarios such as life support, military equipment, and key aerospace applications. All accidents and legal liabilities arising from out-of-scope use shall be borne by the user, and Green Micro chip shall not be held responsible.
- All technical resources of Green Micro chip (including data sheets and reference designs) are provided "as is", without guarantee of no defects or universality, and without any express or implied warranties. The documents are only authorized for product development and research described in this document. Unauthorized use of intellectual property, public reproduction, and reverse engineering are strictly prohibited. All claims and losses caused by illegal use shall be borne by the user, and Green Micro chip shall not be liable.