

FEATURES

- 1)ESD Protected
- 2)Low RDS(on)
- 3)Surface Mount Package
- 4)This is a Pb-Free Device
- 5)We declare that the material of product compliant with RoHS requirements and Halogen Free.
- 6)S- Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable.

APPLICATIONS

- 1)Low Side Load Switch
- 2)Level Shift Circuits
- 3)DC-DC Converter
- 4)Portable Applications i.e. DSC, PDA, Cell Phone, etc.

SOT-23

MAXIMUM RATINGS(T_j = 25°C unless otherwise stated)

Rating	Symbol	Value	Unit
Drain-to-Source Voltage	V _{DSS}	60	Vdc
Gate-to-Source Voltage	V _{GS}	±20	Vdc
Drain Current – Steady State – t < 5 s	I _D	320 230 380 270	mA
Power Dissipation (Note 1) Steady State t < 5 s	P _D	300 420	mW
Pulsed Drain Current (tp = 10 µs)	I _{DM}	1.5	A
Operating Junction and Storage Temperature Range	T _J , T _{STG}	-55 to +150	°C
Source Current (Body Diode)	I _S	300	mA
Lead Temperature for Soldering Purposes (1/8 " from case for 10s)	T _L	260	°C
Gate-Source ESD Rating (HBM, Method 3015)	ESD	2000	V

Stresses exceeding Maximum Ratings may damage the device.

Maximum Ratings are stress ratings only. Functional operation above the Recommended

Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces)

THERMAL CHARACTERISTICS

Characteristic	Max	Value	Unit
Junction-to-Ambient – Steady	$R_{\theta JA}$	417	°C/W
Junction-to-Ambient – $t \leq 5$ s	$R_{\theta JA}$	300	

ELECTRICAL CHARACTERISTICS (Ta= 25°C)

Characteristic	Symbol	Test Condition	Min.	Typ.	Max.	Unit
----------------	--------	----------------	------	------	------	------

OFF CHARACTERISTICS

Drain-to-Source Breakdown Voltage	$V_{(BR)DSS}$	$V_{GS} = 0$ V, $I_D = 250$ μ A	60			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	$V_{(BR)DSS}/T_J$			71		mV/°C
Zero Gate Voltage Drain Current	I_{DSS}	$V_{GS} = 0$ V, $V_{DS} = 60$ V	$T_J = 25$ °C		1	μ A
			$T_J = 125$ °C		500	
		$V_{GS} = 0$ V, $V_{DS} = 50$ V	$T_J = 25$ °C		100	nA
Gate-to-Source Leakage Current	I_{GSS}	$V_{DS} = 0$ V, $V_{GS} = \pm 20$ V			± 10	μ A

ON CHARACTERISTICS (Note 2.)

Gate Threshold Voltage	$V_{GS(TH)}$	$V_{GS} = V_{DS}$, $I_D = 250$ μ A	1		2.5	V
Negative Threshold Temperature Coefficient	$V_{GS(TH)/TJ}$			4		mV/°C
Drain-to-Source On Resistance	$R_{DS(on)}$	$V_{GS} = 10$ V, $I_D = 500$ mA			2.3	Ω
		$V_{GS} = 5.0$ V, $I_D = 50$ mA			2.7	
Forward Transconductance	G_{fs}	$V_{DS} = 5$ V, $I_D = 200$ mA	80			mS

CHARGES AND CAPACITANCES

Input Capacitance	C_{iss}	$V_{GS} = 0$ V, $f = 1$ MHz, $V_{DS} = 25$ V		34		pF
Output Capacitance	C_{oss}			3		
Reverse Transfer Capacitance	C_{rss}			2.2		
Total Gate Charge	$Q_{G(TOT)}$	$V_{GS} = 4.5$ V, $V_{DS} = 10$ V; $I_D = 500$ mA		0.71		nC
Threshold Gate Charge	$Q_{G(TH)}$			0.1		
Gate-to-Source Charge	Q_{GS}			0.32		
Gate-to-Drain Charge	Q_{GD}			0.16		

SWITCHING CHARACTERISTICS (VGS = V (Note 3))

Turn-On Delay Time	$t_{d(ON)}$	$V_{DS} = 10$ V, $V_{GEN} = 10$ V, $I_D = 500$ mA		3.8		ns
Rise Time	t_r			3.4		
Turn-Off Delay Time	$t_{d(OFF)}$			19		
Fall Time	t_f			12		

DRAIN-SOURCE DIODE CHARACTERISTICS

Forward Diode Voltage	V_{SD}	$V_{GS} = 0$ V, $I_S = 115$	$T_J = 25$ °C		1.4	V
			$T_J = 85$ °C		0.7	

 2. Pulse Test: pulse width ≤ 300 s, duty cycle $\leq 2\%$

3. Switching characteristics are independent of operating junction temperatures

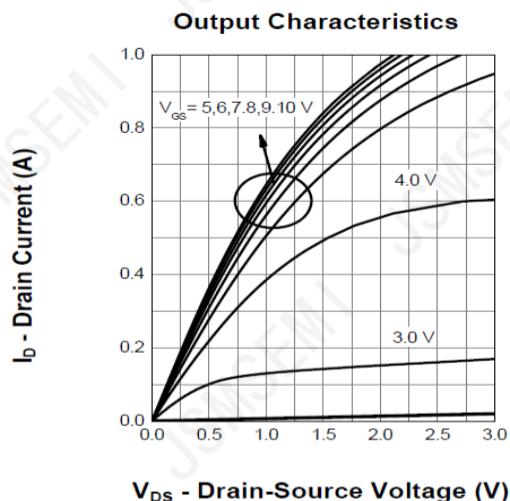

ELECTRICAL CHARACTERISTIC CURVES

Fig. 1

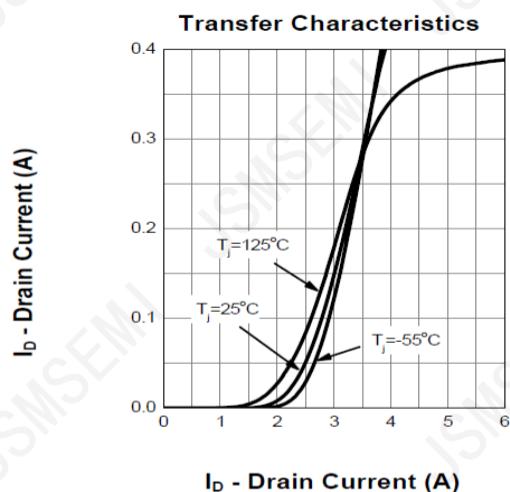


Fig. 2

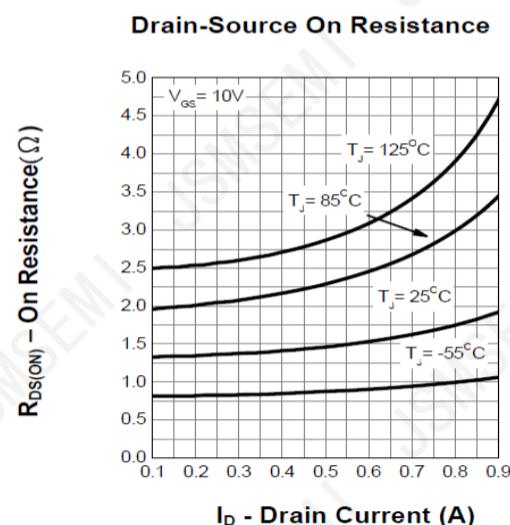


Fig. 3

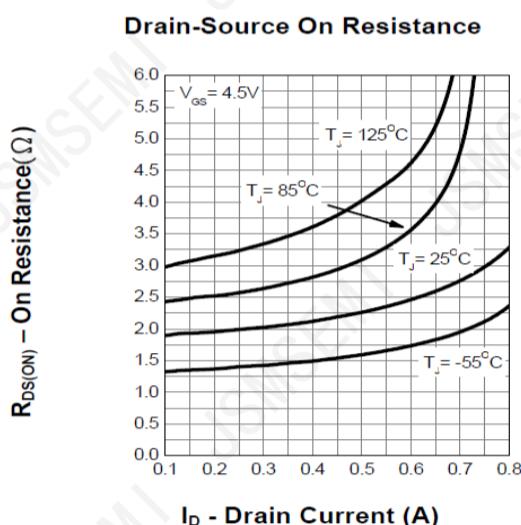


Fig. 4

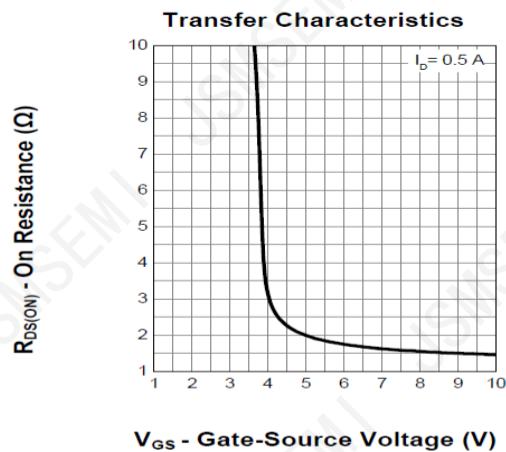


Fig. 5

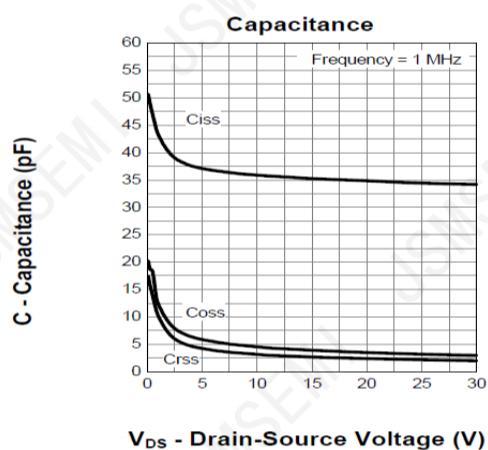


Fig. 7

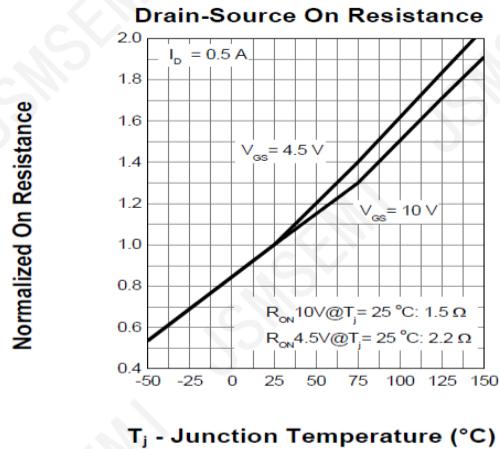


Fig. 6

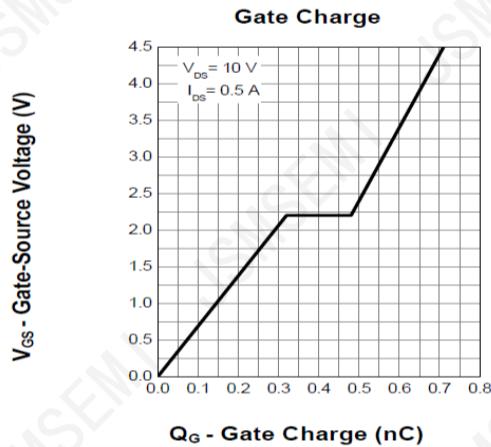


Fig. 8

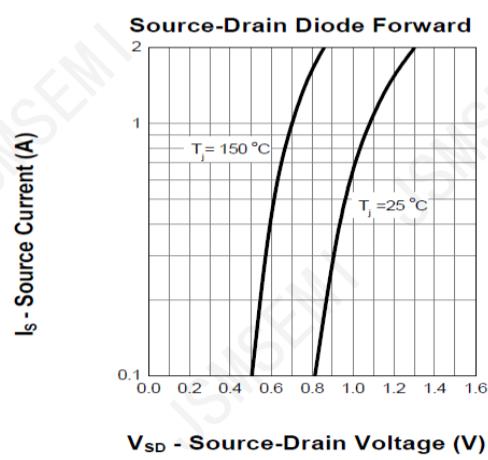
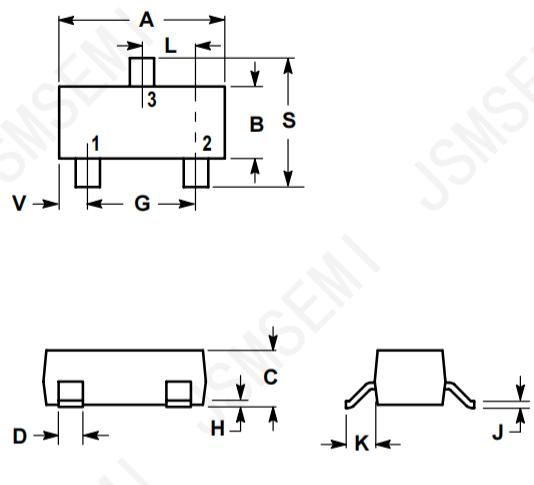
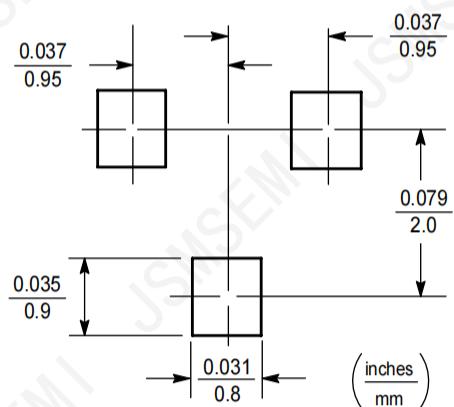



Fig. 9

SOT-23


Dimension Outline:

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982
2. CONTROLLING DIMENSION: INCH.

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.1102	0.1197	2.80	3.04
B	0.0472	0.0551	1.20	1.40
C	0.0350	0.0440	0.89	1.11
D	0.0150	0.0200	0.37	0.50
G	0.0701	0.0807	1.78	2.04
H	0.0005	0.0040	0.013	0.100
J	0.0034	0.0070	0.085	0.177
K	0.0140	0.0285	0.35	0.69
L	0.0350	0.0401	0.89	1.02
S	0.0830	0.1039	2.10	2.64
V	0.0177	0.0236	0.45	0.60

Soldering Footprint:

Revision History

Rev.	Change	Date
V1.0	Initial version	2/23/2024

Important Notice

JSMSEMI Semiconductor (JSMSEMI) PRODUCTS ARE NEITHER DESIGNED NOR INTENDED FOR USE IN MILITARY AND/OR AEROSPACE, AUTOMOTIVE OR MEDICAL DEVICES OR SYSTEMS UNLESS THE SPECIFIC JSMSEMI PRODUCTS ARE SPECIFICALLY DESIGNATED BY JSMSEMI FOR SUCH USE. BUYERS ACKNOWLEDGE AND AGREE THAT ANY SUCH USE OF JSMSEMI PRODUCTS WHICH JSMSEMI HAS NOT DESIGNATED FOR USE IN MILITARY AND/OR AEROSPACE, AUTOMOTIVE OR MEDICAL DEVICES OR SYSTEMS IS SOLELY AT THE BUYER'S RISK.

JSMSEMI assumes no liability for application assistance or customer product design. Customers are responsible for their products and applications using JSMSEMI products.

Resale of JSMSEMI products or services with statements different from or beyond the parameters stated by JSMSEMI for that product or service voids all express and any implied warranties for the associated JSMSEMI product or service. JSMSEMI is not responsible or liable for any such statements.

JSMSEMI All Rights Reserved. Information and data in this document are owned by JSMSEMI wholly and may not be edited, reproduced, or redistributed in any way without the express written consent from JSMSEMI.

Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the JSMSEMI product that you intend to use.

For additional information please contact Kevin@jsmsemi.com or visit www.jsmsemi.com