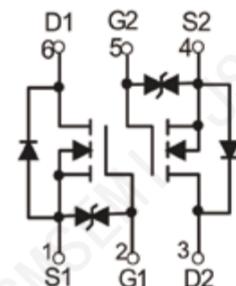


Description

The 2N7002BKS,115-JSM is a dual N-channel enhanced MOS field-effect transistor.

Uses advanced trenchtechnology and design to provide excellent R_{on} (low), with low gate charge. Device is suitable for use in DC-DC conversion, power switch and charging circuit.


SOT-363

General Features

- ◆ High density cell design for Low $R_{DS(on)}$
- ◆ Voltage controlled small signal switch
- ◆ Rugged and reliable
- ◆ High saturation current capability
- ◆ ESD protected

Applications

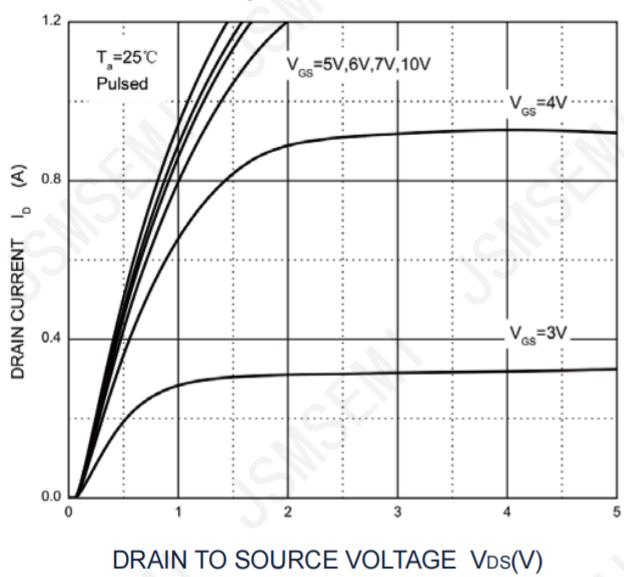
- ◆ Load Switch for Portable Devices
- ◆ DC/DC Converter

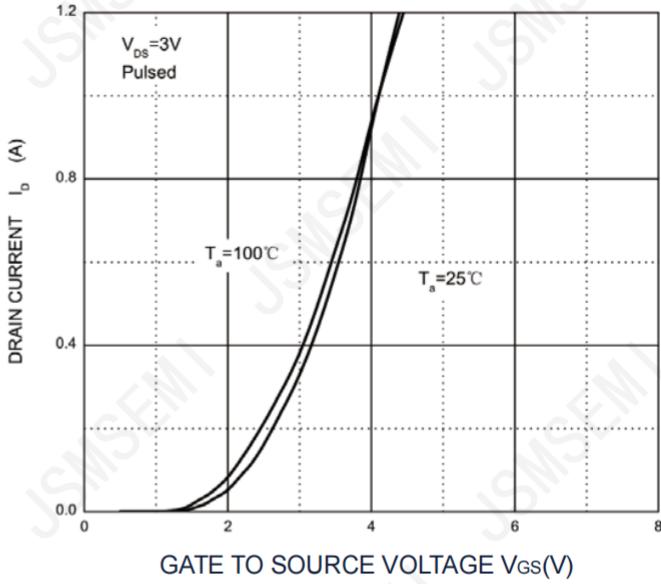
Equivalent Circuit

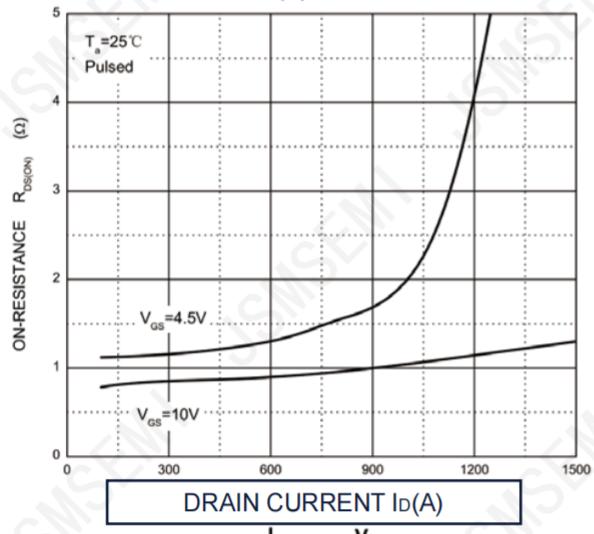
Absolute Maximum Ratings (TA=25°C unless otherwise noted)

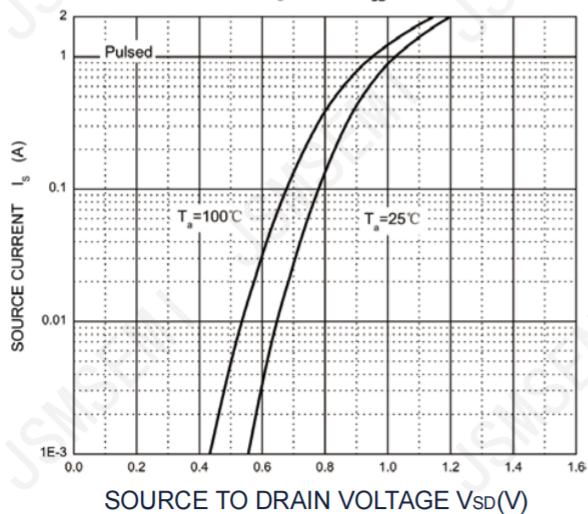
Symbol	Parameter	Rating	Units
V_{DSS}	Drain-Source Voltage	60	V
V_{GS}	Gate-Source Voltage	± 20	V
I_D	Continuous drain current ($t \leq 10s$)	0.34	A
P_D	Power Dissipation	0.15	W
R_{QJA}	Thermal Resistance from Junction to Ambient	833	°C/W
T_J	Junction temperature	150	°C
T_{STG}	Storage temperature	-55~+150	°C

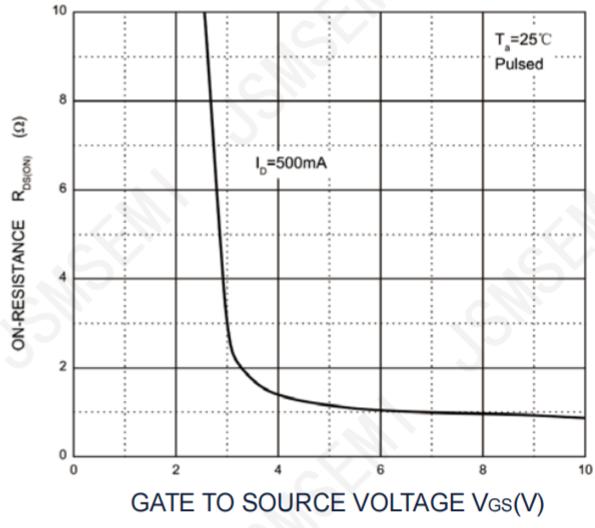
Electrical Characteristics (TA=25°C, unless otherwise noted)


Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
STATIC CHARACTERISTICS						
V _{DS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =250μA	60	---	---	V
V _{GS(th)}	Gate Threshold Voltage ¹	V _{DS} =V _{GS} , I _D =1mA	1	1.6	2.5	V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =48V, V _{GS} =0V	---	---	1	μA
I _{GSS1}	Gate -Source leakage current	V _{GS} =±20V, V _{DS} =0V	---	---	±10	μA
R _{Ds(on)}	Drain-Source On-Resistance ¹	V _{GS} = 4.5V, I _D =200mA	---	1.1	3	Ω
		V _{GS} = 10V, I _D =500mA	---	2	2.5	
V _{SD}	Diode Forward Voltage	V _{GS} =0V, I _S =300mA	---	---	1.5	V
Q _r	Recovered charge	V _{GS} =0V, I _S =300mA, V _R =25V, dI _S /dt=-100A/μS	---	30	---	nC
DYNAMIC CHARACTERISTICS²						
C _{iss}	Input Capacitance	V _{DS} =10V, V _{GS} =0V, f=1MHz	---	---	40	pF
C _{oss}	Output Capacitance		---	---	30	
C _{rss}	Reverse Transfer Capacitance		---	---	10	
SWITCHING CHARACTERISTICS²						
T _{d(on)}	Turn-On Delay Time	V _{GS} =10V, V _{DD} =50V, R _G =50Ω, R _{GS} =50Ω, R _L =250Ω	---	---	10	ns
T _r	Rise Time		---	---	15	
T _{rr}	Reverse recovery Time	V _{GS} =0V, I _S =300mA, V _R =25V, dI _S /dt=-100A/μS	---	30	---	
GATE-SOURCE ZENER DIODE						
BV _{GSO}	Gate-Source Breakdown Voltage	I _{GS} =±1mA (Open Drain)	±21.5	---	±30	V


Notes :

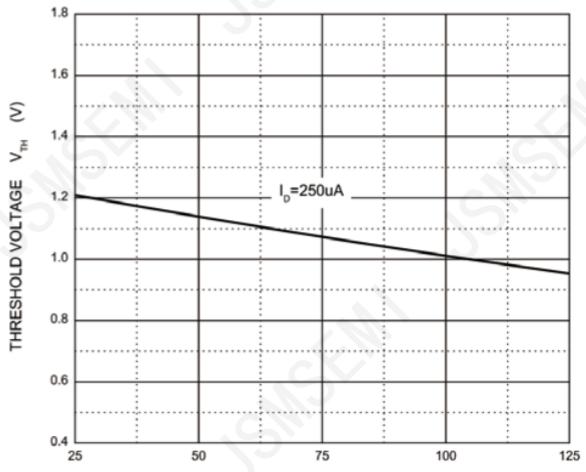

1. Pulse Test : Pulse Width ≤300μs, Duty Cycle ≤2%.


2. These parameters have no way to verify.

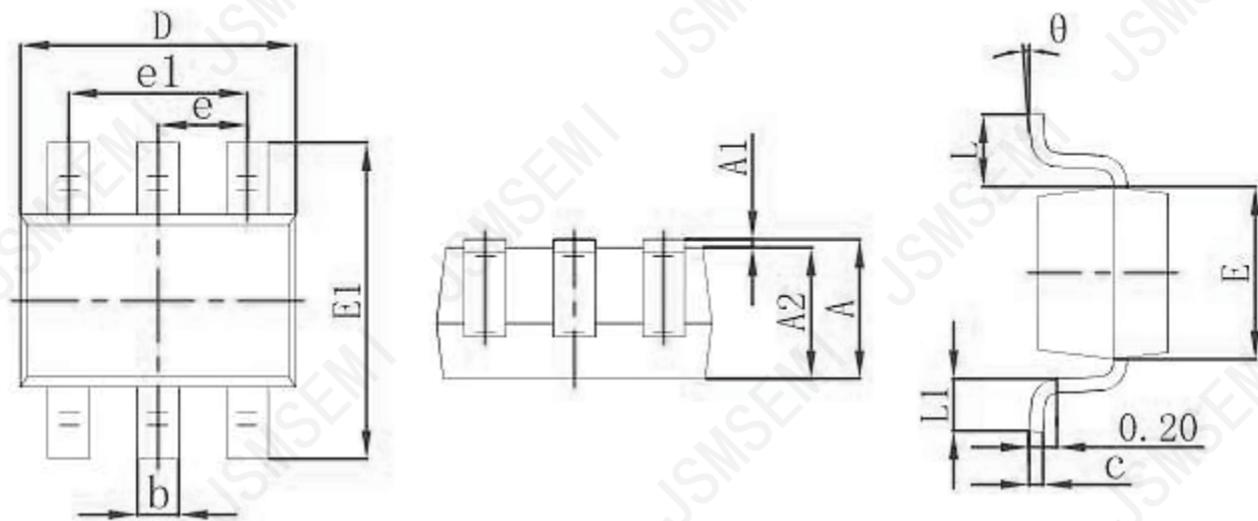

Typical Characteristics

Output Characteristics

 DRAIN TO SOURCE VOLTAGE V_{DS} (V)


Transfer Characteristics

 GATE TO SOURCE VOLTAGE V_{GS} (V)


 $R_{DS(ON)}$ — I_D

 DRAIN CURRENT I_D (A)

 I_s — V_{SD}

 SOURCE TO DRAIN VOLTAGE V_{SD} (V)

 $R_{DS(ON)}$ — V_{GS}

 GATE TO SOURCE VOLTAGE V_{GS} (V)

Threshold Voltage

 JUNCTION TEMPERATURE T_J (C)

SOT-363 Package Outline Dimensions

Symbol	Dimensions in Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
A	0.900	1.100	0.035	0.043
A1	0.000	0.100	0.000	0.004
A2	0.900	1.000	0.035	0.039
b	0.150	0.350	0.006	0.014
c	0.100	0.150	0.004	0.006
D	2.000	2.200	0.079	0.087
E	1.150	1.350	0.045	0.053
E1	2.150	2.450	0.085	0.096
e	0.650 TYP		0.026 TYP	
e1	1.200	1.400	0.047	0.055
L	0.525 REF		0.021 REF	
L1	0.260	0.460	0.010	0.018
θ	0°	8°	0°	8°

Revision History

Rev.	Change	Date
V1.0	Initial version	2/23/2024

Important Notice

JSMSEMI Semiconductor (JSMSEMI) PRODUCTS ARE NEITHER DESIGNED NOR INTENDED FOR USE IN MILITARY AND/OR AEROSPACE, AUTOMOTIVE OR MEDICAL DEVICES OR SYSTEMS UNLESS THE SPECIFIC JSMSEMI PRODUCTS ARE SPECIFICALLY DESIGNATED BY JSMSEMI FOR SUCH USE. BUYERS ACKNOWLEDGE AND AGREE THAT ANY SUCH USE OF JSMSEMI PRODUCTS WHICH JSMSEMI HAS NOT DESIGNATED FOR USE IN MILITARY AND/OR AEROSPACE, AUTOMOTIVE OR MEDICAL DEVICES OR SYSTEMS IS SOLELY AT THE BUYER'S RISK.

JSMSEMI assumes no liability for application assistance or customer product design. Customers are responsible for their products and applications using JSMSEMI products.

Resale of JSMSEMI products or services with statements different from or beyond the parameters stated by JSMSEMI for that product or service voids all express and any implied warranties for the associated JSMSEMI product or service. JSMSEMI is not responsible or liable for any such statements.

JSMSEMI All Rights Reserved. Information and data in this document are owned by JSMSEMI wholly and may not be edited, reproduced, or redistributed in any way without the express written consent from JSMSEMI.

Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the JSMSEMI product that you intend to use.

For additional information please contact Kevin@jsmsemi.com or visit www.jsmsemi.com