


## MCP602T-I/SN-HX Micro-Power 1 MHz, Low-Noise, RRIO, 2.7V CMOS Amplifiers

### General Description

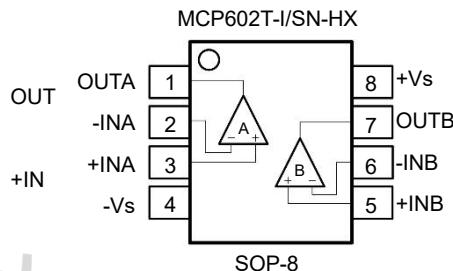
The MCP602T-I/SN-HX family of operational amplifiers, including single-, dual-, and quad- channel options, is specifically designed for cost-sensitive systems and applications. These amplifiers feature rail-to-rail input and output swings, low quiescent current (typically 100  $\mu$ A), wide bandwidth (1 MHz), and very low noise (25 nV/  $\sqrt$  Hz at 1 kHz), making them highly suitable for battery-powered applications that require a balance between cost and performance. Examples of such applications include audio outputs, consumer electronics, smoke detectors, portable medical devices, and white goods. The low input bias current allows these amplifiers to be used with high impedance sources.



SOP-8

The robust design of the MCP602T-I/SN-HX amplifiers offers ease-of-use for circuit designers, with unity-gain stability even with capacitive loads up to 500 pF, integrated RF/EMI rejection filter, no phase reversal in overdrive conditions, and high electro-static discharge (ESD) protection (5-kV HBM).

The MCP602T-I/SN-HX amplifiers are optimized for operation at voltages ranging from +2.7 V ( $\pm 0.9$  V) to +5.5 V ( $\pm 2.75$  V) within a temperature range of 0  $^{\circ}$ C to 70  $^{\circ}$ C. They can also operate at voltages from +2.0 V ( $\pm 1.0$  V) to +5.5 V ( $\pm 2.75$  V) over an extended temperature range of -40  $^{\circ}$ C to +125  $^{\circ}$ C.


### Features

- Rail-to-Rail Input and Output
- Low Input Offset Voltage: 0.5 mV
- Precision Amplifiers for Cost-Sensitive Systems
- Single 2.7 V to 5.5 V Supply Voltage Range at 0  $^{\circ}$ C to 70  $^{\circ}$ C
- Extended Temperature Range: -40  $^{\circ}$ C to +125  $^{\circ}$ C
- Low Noise: 25 nV/  $\sqrt$  Hz at 1 kHz
- Micro-Power: 100  $\mu$ A Supply Current Per Amplifier
- Internal RF/EMI Filter
- 1 MHz GBW for Unity-Gain Stable

### Applications

- Sensor Signal Conditioning
- Sensor Interfaces, Loop-Powered, Active Filters
- Wireless Sensors
- Home Security, Remote Sensing, Wireless Metering
- Battery-Powered Instruments
- Consumer, Industrial, Medical, Notebooks
- Audio Outputs

## PIN CONFIGURATIONS

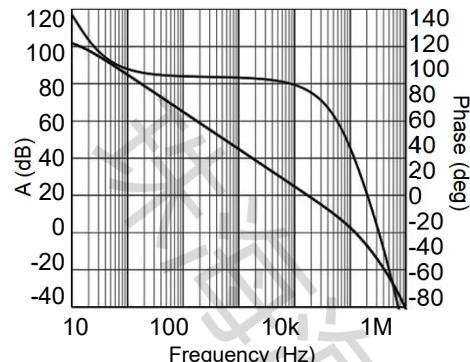


| Pin Description |                                                                                                         |
|-----------------|---------------------------------------------------------------------------------------------------------|
| Symbol          | Description                                                                                             |
| -IN             | Inverting input of the amplifier. The voltage range is from ( $V_{S-} - 0.1V$ ) to ( $V_{S+} + 0.1V$ ). |
| +IN             | Non-inverting input of the amplifier. This pin has the same voltage range as -IN.                       |
| +Vs             | Positive power supply.                                                                                  |
| -Vs             | Negative power supply.                                                                                  |
| OUT             | Amplifier output.                                                                                       |

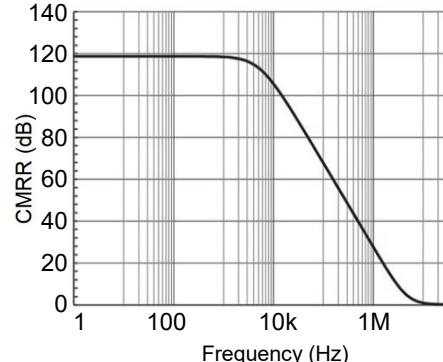
| Limiting Value                            |                                                         |
|-------------------------------------------|---------------------------------------------------------|
| Parameter                                 | Absolute Maximum Rating                                 |
| Supply Voltage, $V_{S+}$ to $V_{S-}$      | 10.0 V                                                  |
| Signal Input Terminals: Voltage, Current  | $V_{S-} - 0.5V$ to $V_{S+} + 0.5V$ , $\pm 10\text{ mA}$ |
| Output Short-Circuit                      | Continuous                                              |
| Storage Temperature Range, $T_{stg}$      | -65 °C to +150 °C                                       |
| Junction Temperature, $T_J$               | 150 °C                                                  |
| Lead Temperature Range (Soldering 10 sec) | 260 °C                                                  |

| Electrical Characteristics |                              |                                                |      |           |           |       |
|----------------------------|------------------------------|------------------------------------------------|------|-----------|-----------|-------|
| Symbol                     | Parameter                    | Conditions                                     | Min. | Typ.      | Max.      | Unit  |
| OFFSET VOLTAGE             |                              |                                                |      |           |           |       |
| $V_{os}$                   | Input offset voltage         |                                                |      | $\pm 0.5$ | $\pm 2.5$ | mV    |
|                            |                              | $T_A = -40$ to $+125$ °C                       |      |           | $\pm 2.8$ |       |
| $V_{os\,TC}$               | Offset voltage drift         | $T_A = -40$ to $+125$ °C                       |      | $\pm 1$   | 3         | µV/°C |
| $P_{SRR}$                  | Power supply rejection ratio | $V_S = 2.0$ to $5.5$ V, $V_{CM} < V_{S+} - 2V$ | 80   | 110       |           | dB    |
|                            |                              | $T_A = -40$ to $+125$ °C                       | 75   |           |           |       |
| INPUT BIAS CURRENT         |                              |                                                |      |           |           |       |
| $I_B$                      | Input bias current           |                                                |      | 20        |           | fA    |
|                            |                              |                                                |      |           |           |       |
|                            |                              |                                                |      |           |           |       |

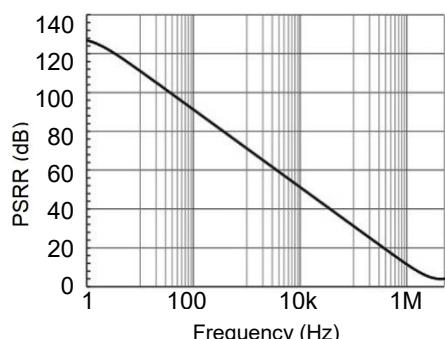
[www.haixindianzi.com](http://www.haixindianzi.com)


|                                |                                 |                                                                                |             |             |             |                              |
|--------------------------------|---------------------------------|--------------------------------------------------------------------------------|-------------|-------------|-------------|------------------------------|
| $I_{OS}$                       | Input offset current            |                                                                                |             | 1           |             |                              |
| <b>NOISE</b>                   |                                 |                                                                                |             |             |             |                              |
| $V_n$                          | Input voltage noise             | $f = 0.1 \text{ to } 10 \text{ Hz}$                                            |             | 5.6         |             | $\mu\text{VP-P}$             |
| $e_n$                          | Input voltage noise density     | $f = 10 \text{ kHz}$                                                           |             | 22          |             | $\text{nV}/\sqrt{\text{Hz}}$ |
|                                |                                 | $f = 1 \text{ kHz}$                                                            |             | 25          |             |                              |
| $I_n$                          | Input current noise density     |                                                                                |             |             |             |                              |
| <b>INPUT VOLTAGE</b>           |                                 |                                                                                |             |             |             |                              |
| $V_{CM}$                       | Common-mode voltage range       |                                                                                | $V_{S-0.1}$ |             | $V_{S+0.1}$ | $V$                          |
| CMRR                           | Common-mode rejection ratio     | $V_S = 5.5 \text{ V}, V_{CM} = -0.1 \text{ to } 5.6 \text{ V}$                 | 70          | 83          |             | dB                           |
|                                |                                 | $V_{CM}=0 \text{ to } 5.3 \text{ V}, T_A = -40 \text{ to } +125^\circ\text{C}$ | 65          |             |             |                              |
|                                |                                 | $V_S = 2.0 \text{ V}, V_{CM} = -0.1 \text{ to } 2.1 \text{ V}$                 | 65          | 77          |             |                              |
|                                |                                 | $V_{CM}=0 \text{ to } 2.7 \text{ V}, T_A = -40 \text{ to } +125^\circ\text{C}$ | 60          |             |             |                              |
| <b>INPUT IMPEDANCE</b>         |                                 |                                                                                |             |             |             |                              |
| $C_{IN}$                       | Input capacitance               | Differential                                                                   |             | 2.0         |             | $\text{pF}$                  |
|                                |                                 | Common mode                                                                    |             | 3.5         |             |                              |
| OPEN-LOOP                      |                                 |                                                                                |             |             |             |                              |
| AVOL                           | Open-loop voltage AVOL gain     | $R_L = 25 \text{ k}\Omega, V_O = 0.05 \text{ to } 3.5 \text{ V}$               | 90          | 105         |             | dB                           |
|                                |                                 | $T_A = -40 \text{ to } +125^\circ\text{C}$                                     | 85          |             |             |                              |
|                                |                                 | $R_L = 2 \text{ k}\Omega, V_O = 0.15 \text{ to } 3.5 \text{ V}$                | 85          | 100         |             |                              |
|                                |                                 | $T_A = -40 \text{ to } +125^\circ\text{C}$                                     | 80          |             |             |                              |
| <b>FREQUENCY RESPONSE</b>      |                                 |                                                                                |             |             |             |                              |
| GBW                            | Gain bandwidth product          |                                                                                |             | 1           |             | MHz                          |
| SR                             | Slew rate                       | $G=+1, CL=100\text{pF}, VO=1.5\text{to}3.5\text{V}$                            |             | 1.2         |             | $\text{V}/\mu\text{s}$       |
| THD+N                          | Total harmonic distortion+noise | $G=+1, f=1 \text{ kHz}, VO = 1\text{V}_{\text{RMS}}$                           |             | 0.002       |             | %                            |
| ts                             | Settling time                   | To 0.1%, $G = +1, 1\text{V}$ step                                              |             | 1.2         |             | $\mu\text{s}$                |
|                                |                                 | To 0.01%, $G = +1, 1\text{V}$ step                                             |             | 1.5         |             |                              |
| $t_{OR}$                       | Overload recovery time          | To 0.1%, $V_{IN} * \text{Gain} > V_S$                                          |             | 2           |             |                              |
| <b>OUTPUT</b>                  |                                 |                                                                                |             |             |             |                              |
| $V_{OH}$                       | High output voltage swing       | $R_L = 25 \text{ k}\Omega$                                                     | $V_{S-9}$   | $V_{S+5}$   |             | $\text{mV}$                  |
|                                |                                 | $R_L = 2 \text{ k}\Omega$                                                      | $V_{S+95}$  | $V_{S+63}$  |             |                              |
| $V_{OL}$                       | Low output voltage swing        | $R_L = 25 \text{ k}\Omega$                                                     |             | $V_{S+3.5}$ | $V_{S+6}$   | $\text{mV}$                  |
|                                |                                 | $R_L = 2 \text{ k}\Omega$                                                      |             | $V_{S+43}$  | $V_{S+65}$  |                              |
| <b>POWER SUPPLY</b>            |                                 |                                                                                |             |             |             |                              |
| $V_S$                          | Operating supply voltage        | $T_A = 0 \text{ to } +70^\circ\text{C}$                                        | 2.7         |             | 5.5         | $\text{V}$                   |
|                                |                                 | $T_A = -40 \text{ to } +125^\circ\text{C}$                                     | 2.0         |             | 5.5         |                              |
| $I_Q$                          | Quiescent current(peramplifier) |                                                                                |             | 100         |             | $\mu\text{A}$                |
|                                |                                 | $T_A = -40 \text{ to } +125^\circ\text{C}$                                     |             |             | 160         |                              |
| <b>THERMAL CHARACTERISTICS</b> |                                 |                                                                                |             |             |             |                              |
| $T_A$                          | Operating temperature range     |                                                                                | -40         |             | +125        | $^\circ\text{C}$             |
| $\theta_{JA}$                  | Package Thermal Resistance      | SOT23-5L                                                                       |             | 190         |             | $^\circ\text{C}/\text{W}$    |
|                                |                                 | SOP-8                                                                          |             | 125         |             |                              |
|                                |                                 | SOP-14                                                                         |             | 115         |             |                              |

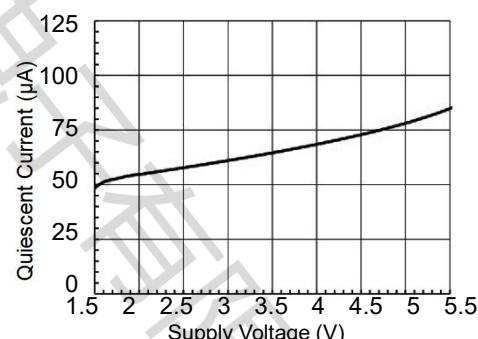
#### Note


$V_S = 5.0\text{V}$ ,  $T_A = +25^\circ\text{C}$ ,  $V_{CM} = V_S / 2$ ,  $V_O = V_S / 2$ , and  $R_L = 10\text{k}\Omega$  connected to  $V_S / 2$ , unless otherwise noted.

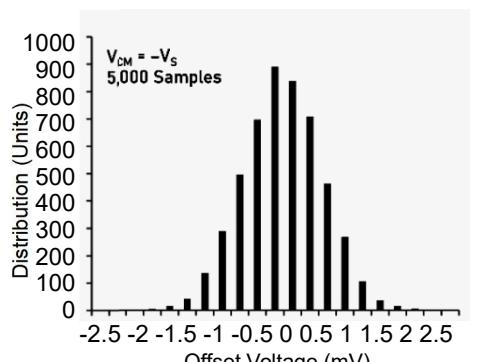
#### TYPICAL PERFORMANCE CHARACTERISTICS


Version 1.1 At  $T_A = +25^\circ\text{C}$ ,  $V_{CM} = V_S / 2$ , and  $R_L = 10\text{k}\Omega$  connected to  $V_S / 2$ , unless otherwise noted. Date: Oct. 2023

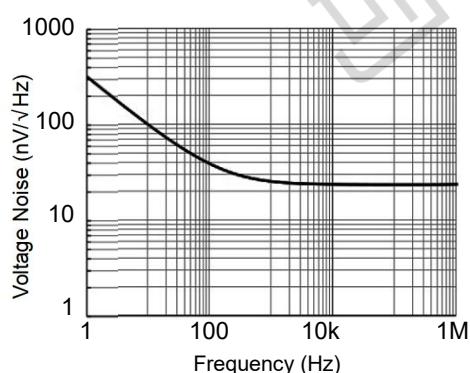



Open-loop Gain and Phase as a function of Frequency.



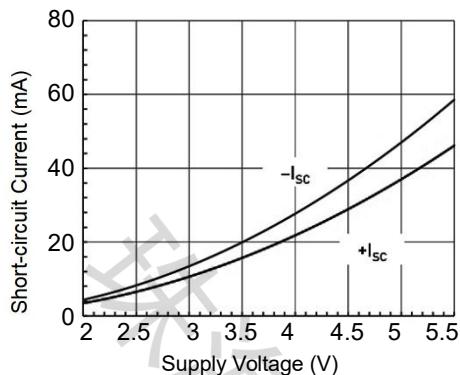

Common-mode Rejection Ratio as a function of Frequency.



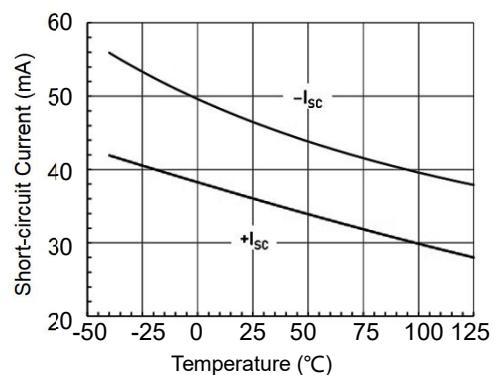

Power Supply Rejection Ratio as a function of Frequency.



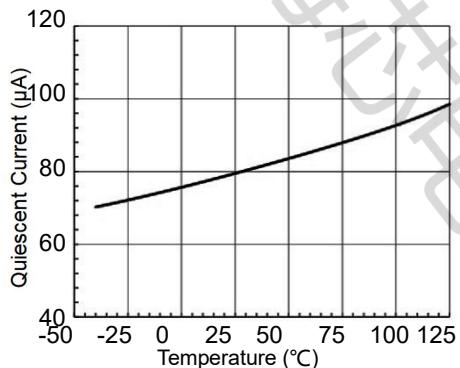
Quiescent Current as a function of Supply Voltage.



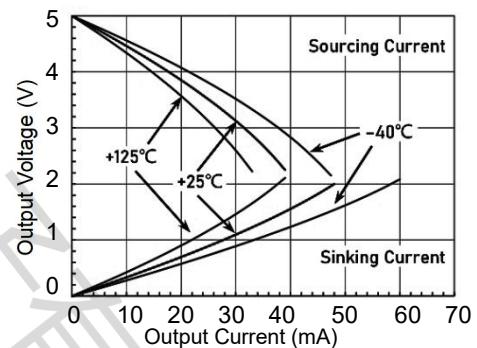

Offset Voltage Production Distribution



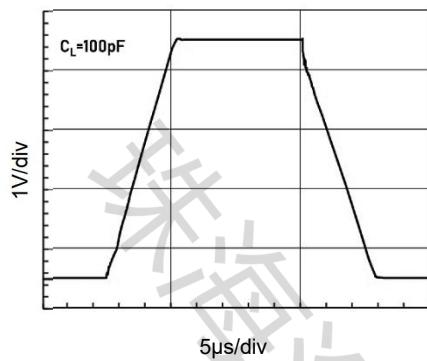

Input Voltage Noise Spectral Density as a function of Frequency.


[www.haixindianzi.com](http://www.haixindianzi.com)

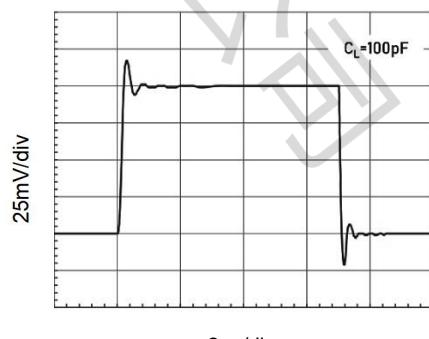



**Short-circuit Current as a function of Supply Voltage.**




**Short-circuit Current as a function of Temperature.**

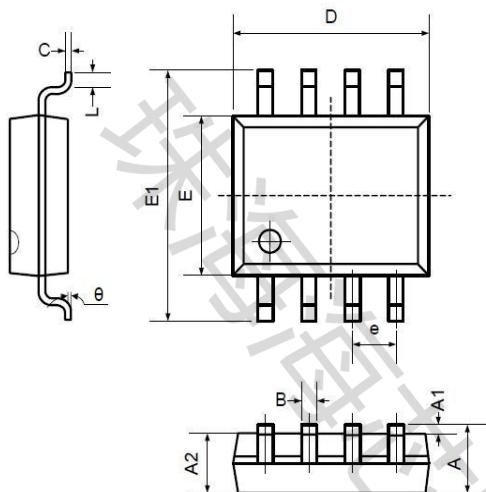



**Quiescent Current as a function of Temperature.**

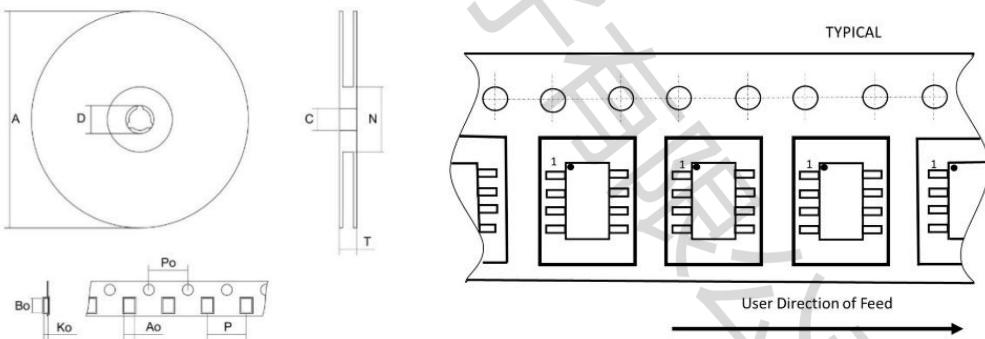


**Output Voltage Swing as a function of Output Current.**




**Large Signal Step Response.**




**Small Signal Step Response.**

## DIMENSIONAL DRAWINGS

## SOP-8 (Package Outline Dimensions)



| Symbol | Dimensions In Millimeters |       | Dimensions In Inches |       |
|--------|---------------------------|-------|----------------------|-------|
|        | Min                       | Max   | Min                  | Max   |
| A      | 1.350                     | 1.750 | 0.053                | 0.069 |
| A1     | 0.100                     | 0.250 | 0.004                | 0.010 |
| A2     | 1.350                     | 1.550 | 0.053                | 0.061 |
| B      | 0.330                     | 0.510 | 0.013                | 0.020 |
| C      | 0.190                     | 0.250 | 0.007                | 0.010 |
| D      | 4.780                     | 5.000 | 0.188                | 0.197 |
| E      | 3.800                     | 4.000 | 0.150                | 0.157 |
| E1     | 5.800                     | 6.300 | 0.228                | 0.248 |
| e      | 1.270TYP                  |       | 0.050TYP             |       |
| L      | 0.400                     | 1.270 | 0.016                | 0.050 |
| θ      | 0°                        | 8°    | 0°                   | 8°    |



| Part Number | Package Type | package | quantity |
|-------------|--------------|---------|----------|
| HX602-S     | SOP-8        | Taping  | 2500     |

## Disclaimer

All products due to improve reliability, function or design or for other reasons, product specifications and data are subject to change without notice.

Zhuhai Haixin Electronics Co., Ltd., branches, agents, employees, and all persons acting on its or their representatives (collectively, the "zhuhai Haixin"), assumes no responsibility for any errors, inaccuracies or incomplete data contained in the table or any other any disclosure of any information related to the product.(www.haixindianzi.com)

Zhuhai Haixin makes no guarantee, representation or warranty on the product for any particular purpose of any goods or continuous production. To the maximum extent permitted by applicable law on Zhuhai Haixin relinquished: (1) any application and all liability arising out of or use of any products; (2) any and all liability, including but not limited to special, consequential damages or incidental ; (3) any and all implied warranties, including a particular purpose, non-infringement and merchantability guarantee.

Statement on certain types of applications are based on knowledge of the product is often used in a typical application of the general product Haixin Zhuhai demand that the Zhuhai Haixin of. Statement on whether the product is suitable for a particular application is non-binding. It is the customer's responsibility to verify specific product features in the products described in the specification is appropriate for use in a particular application. Parameter data sheets and technical specifications can be provided may vary depending on the application and performance over time. All operating parameters, including typical parameters must be made by customer's technical experts validated for each customer application. Product specifications do not expand or modify Zhuhai Haixin purchasing terms and conditions, including but not limited to warranty herein.

Unless expressly stated in writing, Zhuhai Haixin products are not intended for use in medical, life saving, or life sustaining applications or any other application. Wherein Haixin product failure could lead to personal injury or death, use or sale of products used in Zhuhai Haixin such applications using client did not express their own risk. Contact your authorized Zhuhai Haixin people who are related to product design applications and other terms and conditions in writing.

The information provided in this document and the company's products without a license, express or implied, by estoppel or otherwise, to any intellectual property rights granted to the Haixin act or document. Product names and trademarks referred to herein are trademarks of their respective representatives will be all.