

钛迪半导体
Tudi Semiconductor

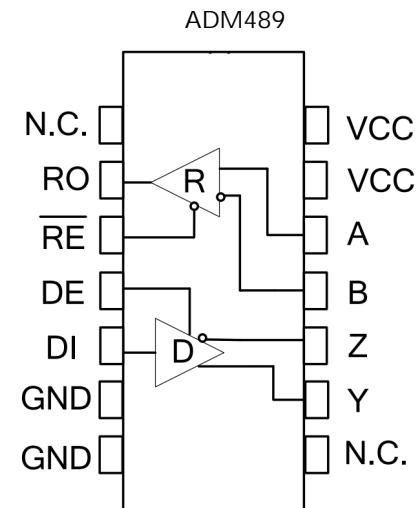
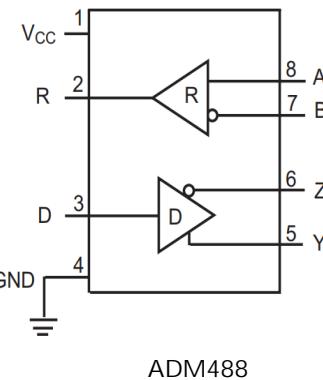
Product Specification

TUDI-ADM488/489

Full-Duplex, Low Power, Slew Rate Limited, EIA RS-485 Transceivers

网址 www.sztbdbdt.com

用芯智造 · 卓越品质



**semiconductor device
manufacturer**

- Design
- research and development
- production
- and sales

Features

- Meets EIA RS-485 and RS-422 standards
- 250 kbps data rate
- Single 5 V \pm 10% supply
- 7 V to +12 V bus common-mode range
- 12 k Ω input impedance
- 2 kV EFT protection meets IEC1000-4-4
- High EM immunity meets IEC1000-4-3
- Reduced slew rate for low EM interference
- Short-circuit protection
- Excellent noise immunity

Description

Figure 1 Pin diagram

The ADM488 and ADM489 are low power differential line transceivers for multipoint bus transmission line communications. They are used for balanced data transmission and are compliant with the Electronic Industries Association (EIA) RS-485 and RS-422 standards. Both products contain a differential line and a differential line receiver, making them suitable for full-duplex data transmission. The ADM489 includes an additional receiver and driver enable control. The input impedance is 12 k Ω , allowing up to 32 transceivers to be connected to the bus. The ADM488/ADM489 are powered from single 5 V \pm 10% supply. Excessive power dissipation caused by bus contention or output short circuit is prevented by thermal shutdown circuitry. This feature, in the event of a fault condition, detects a temperature rise in the internal driver circuitry and forces the driver outputs into a high-impedance state. The receiver contains a fault-safe that drives the output to a logic high if the input is not connected (floating). The ADM488/ADM489 are fully specified over the temperature range and are available in PDIP, SOIC packages.

Applications

- Low power RS-485 and RS-422 systems
- DTE-DCE interface
- Packet switching
- Local area networks
- Data concentration
- Data multiplexers
- Integrated services digital network (ISDN)

ADM489 Pin description

Pin number	Pin name	Pin function
1	NC	No internal connections required
2	RO	Receiver output. When RE is low, the RO output is high if A-B is -10mV, and low if A-B is -200mV.
3	/RE	Receiver output enable control. When/RE is low, the receiver output is enabled and RO is active; when/RE is high, the receiver output is disabled and RO is in high-impedance state. When RE is at a high level and DE is at a low level, the device enters low-power shutdown mode
4	DE	The driver output enables the control. When DE is at high level, the driver outputs effectively; when DE is low, it outputs high-impedance state. When/RE is high and DE is low, the device enters low-power shutdown mode.
5	DI	DI driver input. When DE is high, the low level on DI makes the in-phase output A of the driver low and the in-phase output B high; the high level on DI makes the in-phase output high and the in-phase output B low.
6	GND	Landing
7	GND	Landing
8	NC	No internal connections required
9	Y	Driver in-phase output terminal
10	Z	Driver inverting output
11	B	Receiver inverting input
12	A	Receiver in phase input
13	VCC	This pin can be connected to power or left unconnected
14	VCC	Power connection

ADM488Pin description

Pin number	Pin name	Pin function
1	VCC	Power supply:4.5V VCC 5.5V
2	R	Receiver output.
3	D	Driver Input
4	GND	Landing
5	Y	Driver in-phase output terminal
6	Z	Driver inverting output
7	B	Receiver inverting input
8	A	Receiver in-phase input

Additional description

Introduction

The 488/489 is a full-duplex high-speed transceiver for RS-485/RS-42 communication, containing a driver and a receiver. It has fail-safe, overvoltage protection, and overcurrent protection. The 488/489 achieves error-free transmission up to 250Kbps.

fail-safe

The 488/489 guarantees a logic high receiver output if the receiver input is short-circuited or open-circuited, or drivers connected to the terminated transmission line are disabled (idle). This is achieved by setting the receiver input thresholds to -10mV and -20mV, respectively. RO is logic high if the differential receiver input voltage $(A-B) \geq -10mV$, and RO is logic low if the voltage $(A-B) \leq -200mV$. Logic high with a minimum noise margin of 50mV can be realized depending on the receiver thresholds. The -10mV to -200mV threshold voltage is in accordance with the EIA/TIA-485 of $\pm 200mV$.

32 transceivers on the bus

The input impedance of the standard RS485 receiver is 12k (1 unit load), and the standard driver can drive to 32 unit loads. The receiver of the 488/489 transceiver has an input impedance of 1/8 unit load (96k), allowing up to 32 transceivers to be connected in parallel on the same communication bus. These devices can be combined arbitrarily, or combined with other 485 transceivers, as long as the total load does not exceed 32 unit loads, they can be connected to the same bus.

Drive output protection

Protection against excessive output current and dissipation by fault or bus contention is provided by overcurrent and overvoltage protection mechanisms, with fast short-circuit throughout the common-mode voltage range (see Typical Operating Characteristics).

Extreme parameter

Parameter	Symbol	Unit	size
Continuous power consumption	SOP	mW	600
	DIP	mW	700
Power supply voltage	VCC	V	+7
working temperature range			-40~85
Storage temperature range			-60~150
Welding temperature range			300
Control port voltage	DI	V	-0.3~VCC+0.3
Bus side input voltage	A、B	V	-8~13
Receiver output voltage	RO	V	-0.3~VCC+0.3

The maximum limit parameters are values beyond which the device can be damaged in an irreversible manner. Operation of the device under these conditions is not intended to be normal and may affect the reliability of the device if operated continuously at the maximum rated limit. All voltages are referenced to ground.

ESD Protect

Parameter	symbol	Test condition	Minimum	Typical case	Maximum	Unit
A、B、Y、Z		Human bodymodel		±15		KV
Other ports		Human bodymodel		±6		KV

Receiver Switching Characteristics

Parameter	symbol	Test condition	Minimum	Typical case	Maximum	Unit
Acceptor	tRPLH	See Figure 7 and Figure 8	20	60	90	ns
Input to output propagation delay from low to high						
The propagation delay from receiver input to output is from high to low	tRPHL	V _{IN} 2.0V; rising and falling edge time ViD 15ns	20	60	90	ns
				7	10	ns
tRPLH-tRPHL	tsKEW2					
Enable low time out	tRPZL	CL=15pF See Figures 7 and 8		20	50	ns
Enable to output high time	tRPZH	CL=15pF See Figures 7 and 8		20	50	ns
Time from output low to disable	tpRLZ	CL=15pF See Figures 7 and 8		20	45	ns
Time from output high to disable	tpRHZ	CL=15pF See Figures 7 and 8		20	45	ns
Off stateEnable to output high time	tRPSH	CL=15pF See Figures 7 and 8		200	1400	ns
Off stateEnable low time out	tRPSL	CL=15pF See Figures 7 and 8		200	1400	ns
Time to turn off	tsHDN	NOTE2	80		300	ns

(If not otherwise, VCC=3V~5.5V, Temp = TMIN ~ TMAX, typical value at Temp = 25) NOTE 1: VO D and? VOC is the change in VOD and VOC amplitude caused when the DI state of the input signal changes, respectively.

DC electrical characteristics of the driver

Parameter	symbol	Test condition	Minimum	Typical case	Maximum	Unit
Driver differential output (non-loaded)	VoD ₁			4.5	VCC	V
Drive differential output	VoD ₂	graph 2,RL=27	1.5	2.3	VCC	V
		graph 2,RL=50	2	2.8	VCC	
Variation in the amplitude of the output voltage (NOTE1)	VoD	graph 2,RL=27			0.2	V
Output common mode voltage	V _{OC}	graph 2,RL=27			3	V
Amplitude Variation of Common Mode Output Voltage(NOTE1)	V _{OC}	graph 2,RL=27			0.2	V
High-level input	V _H	DI	2.0			V
Low level input	V	DI			0.8	V
Logic input current	I _{IN1}	DI	-2		2	uA
Output the current during a short circuit, with high short-circuit	I _{OSD₁}	Short circuit to OV~12V	35		250	mA
Output the current during a short circuit, down to low	I _{OSD₂}	Short circuit to 7V~0V	-250		-35	mA

(If not otherwise, VCC=3V~5.5V, Temp = TMIN ~ TMAX, typical value at Temp = 25) NOTE 1: ? VO D and ? VOC is the change in VOD and VOC amplitude caused when the DI state of the input signal changes, respectively.

drive switch characteristics

Parameter	symbol	Test condition	Minimum	Typical case	Maximum	Unit
Input to output propagation delay (low to high)	tDPLH	RDIFF=54 ,CL ₁ =CL ₂ =100pF(see Figure 3 and Figure 4)		12	35	ns
Input to output propagation delay (high to low)	tDPHL			12	35	ns
tDPLH-tDPHL	tsKEW1			6	10	ns
Rise time /fall time	tDR,tDF			9	25	ns
Enable to high output	tpZH	R=110 (see Figure 5 and 6)		20	90	ns
Enable to output low	tpZL			20	90	ns
Input low to disable	tpLZ	R=110 (see Figure 5 and 6)		20	80	ns
Enable high input	tpHZ			20	80	ns
Enable high output under off condition	tDSH	R=110 (see Figure 5 and 6)		500	900	ns
Enable low output under shutdown conditions	tDSL	RL=110 (see Figure 5 and 6)		500	900	ns

Supply Current

Parameter	symbol	Test condition	Minimum	Typical case	Maximum	Unit
Supply current	I _{CC1}	/RE=0V,DE=0V		220	400	uA
	I _{CC2}	/RE=VCC, DE=VCC		240	400	uA
Turn-off current	I _{SHDN}	/RE=VCC,DE=0V		0.5	10	uA

DC Electrical Characteristics of the Receiver

Parameter	symbol	Test condition	Minimum	Typical case	Maximum	Unit
Input current(A,B)	IN2	VCC=0 or 3.3V VIn=12V			125	uA
		VCC=0 or 3.3V VIn=-7V	-100			uA
Forward input threshold voltage	VIT+	-7V Vcm 12V			-10/-50	mV
Reverse input threshold voltage	VIT-	-7V Vcm 12V	-200			mV
Input hysteresis voltage	Vhys	-7V Vcm 12V	10	30		mV
High level output voltage	VoH	IoUT=-4mA, VID=+200 mV	VCC-1.5			V
Low level output voltage	VoL	IoUT=+4mA, VID=-200 mV			0.4	V
Three state input leakage current	IoZR	0.4V<Vo<2.4V			±1	uA
Input resistance of receiver	RIN	-7V Vcm 12V	96			k
Receiver short circuit current	IosR	0V Vo VCC	±7		±95	mA

Drive switch characteristics

Parameter	symbol	Test condition	Minimum	Typical case	Maximum	Unit
Input to output propagation delay (low to high)	tDPLH			12	35	ns
Input to output propagation delay (high to low)	tDPHL	RDIF=54 Q, CL1=CL2 =100pF (see Figure 10 and Figure 11)		12	35	ns
tDPLH-tDPHLI	tsKEW1			7	10	ns
Rise time/fall time	tDR,tDF			10	25	ns

Receiver switch characteristic

Parameter	symbol	Test condition	Minimum	Typical case	Maximum	Unit
Propagation delay from receiver input to	tRPLH		20	60	90	ns
The propagation delay from receiver	tRPHL	See Figure 12 and Figure 13 VD 2.0V; rising and falling edge time Vm 15ns	20	60	90	ns
tRPLH-tRPHL	tsKEW2			7	10	ns

ADM489 Test circuit

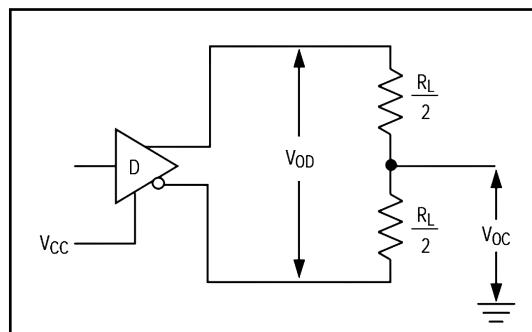


Figure 2: DC test load for the drive

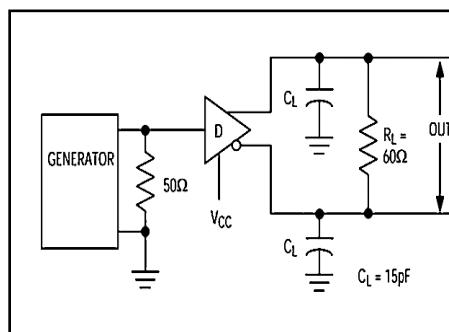


Figure 3 Drive-line Differential Delay and Transit Time

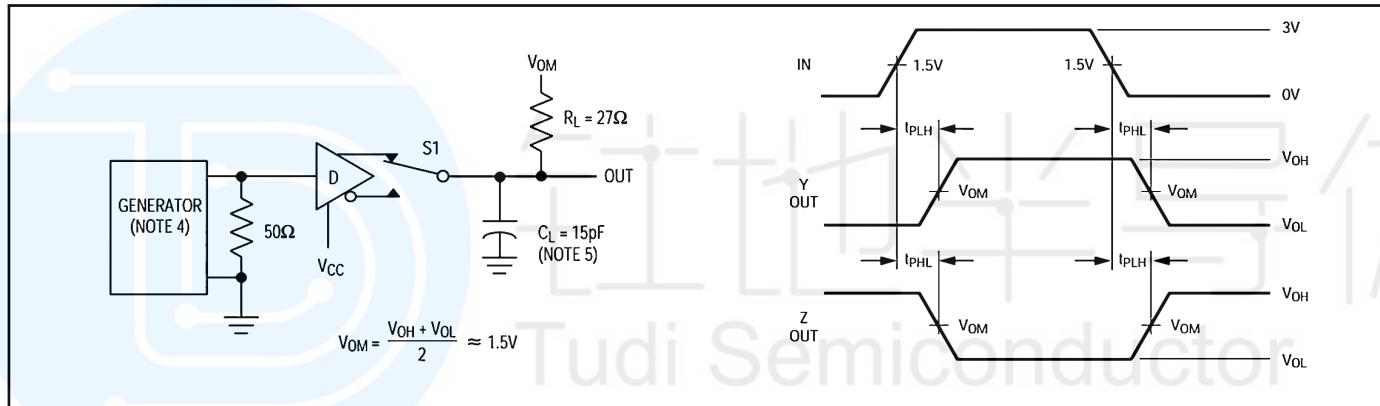


Figure 4 Drive propagation delay

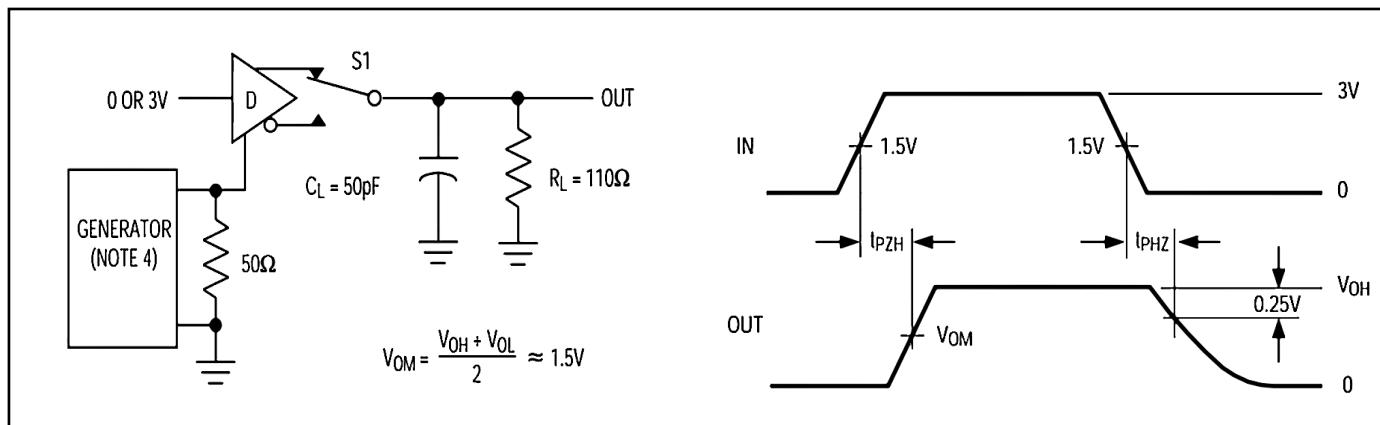


Figure 5 Drive enable and disable time

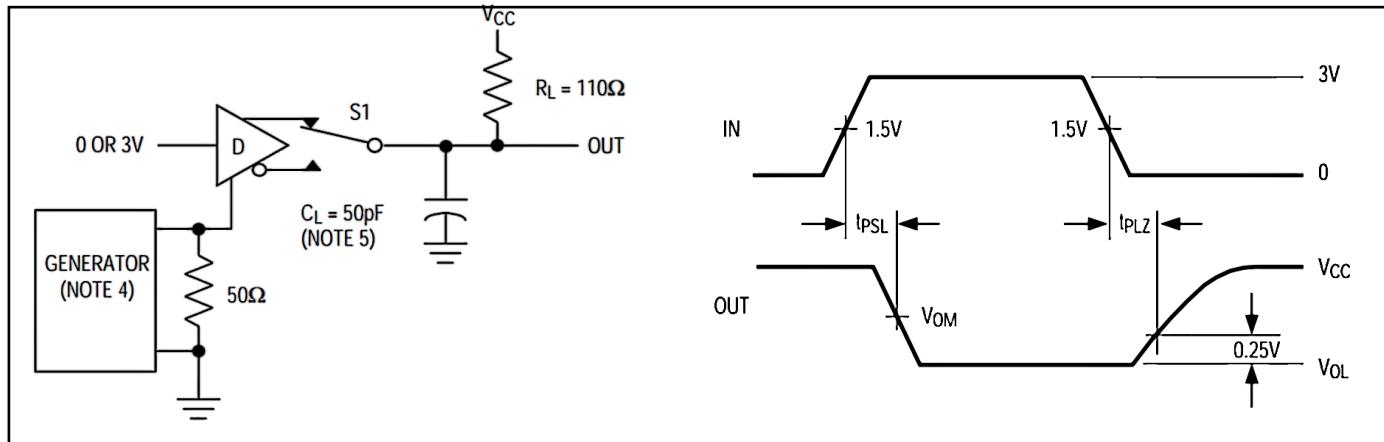


Figure 6 Drive enable and disable time

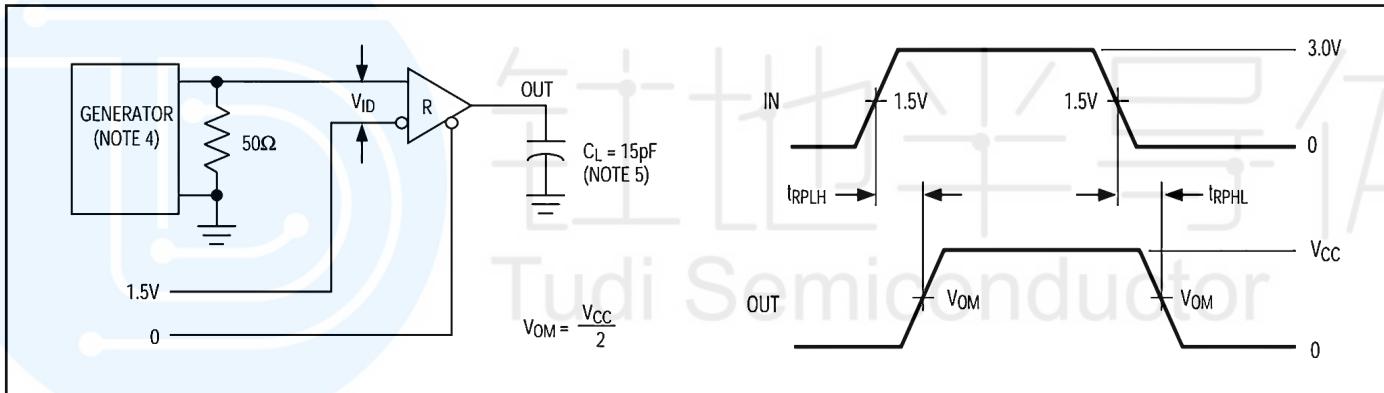
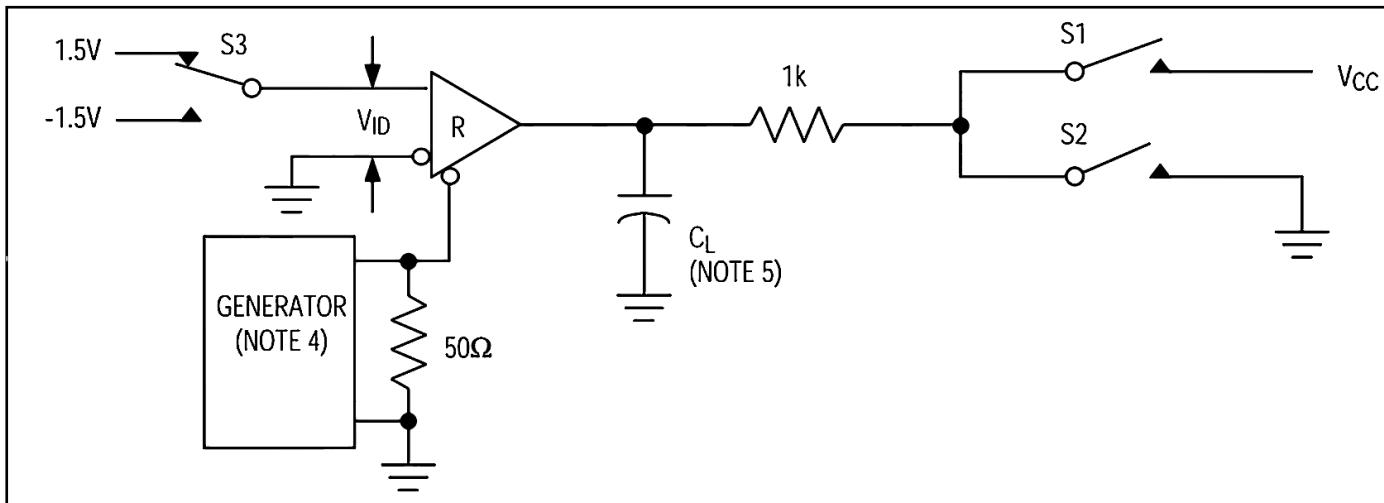



Figure 7: Receiver Propagation Delay Test Circuit

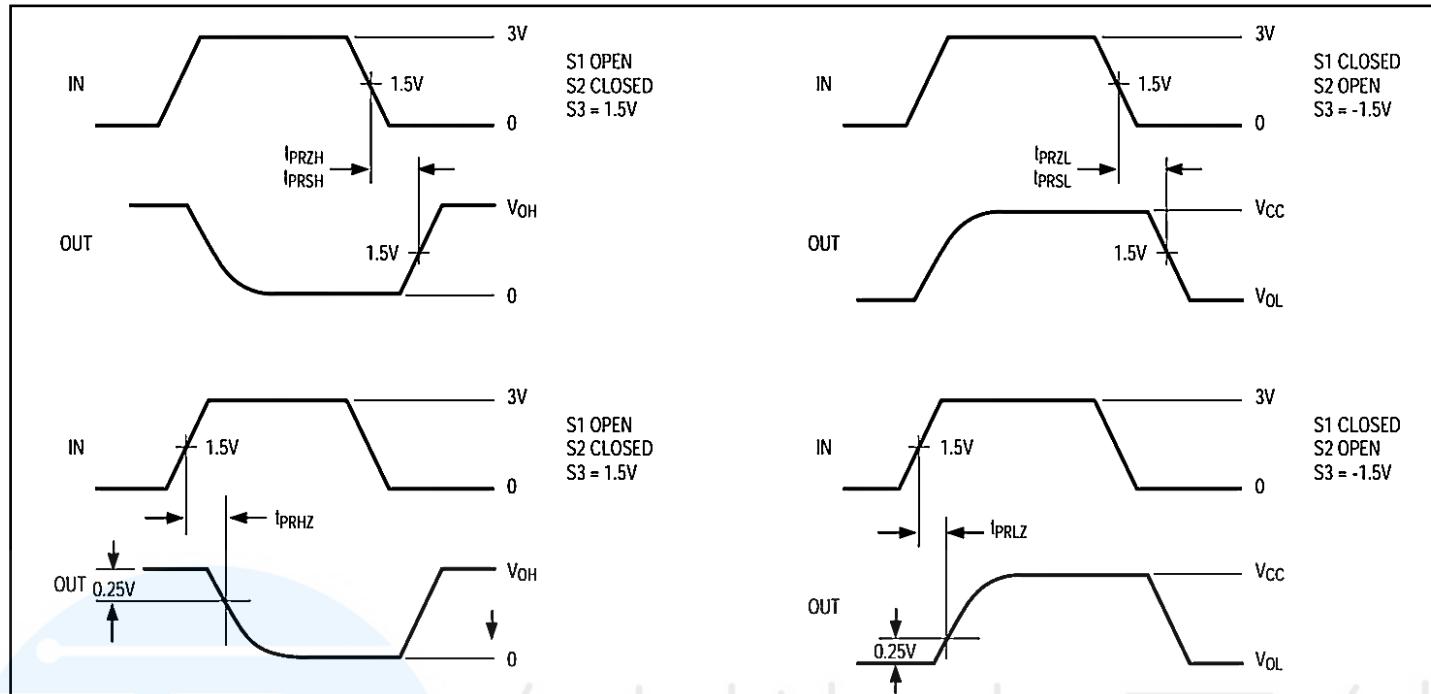


Figure 8 Receive enable and disable time

Order information

Order Number	Package	Package Quantity	Marking On The park	Temperature
ADM489ARZ-REEL-TUDI	SOP14	Tape,Reel,2500	489ARZ	- 40°C to 85°C
ADM489ANZ-TUDI	DIP14	Tube,25,A box of 1000	489ANZ	
ADM488ARZ-REEL-TUDI	SOP8	Tape,Reel,2500	ADM488ARZ	- 40°C to 85°C
ADM488ANZ-TUDI	DIP8	Tube,50,A box of 2000	ADM488ANZ	

SP490 Test circuit

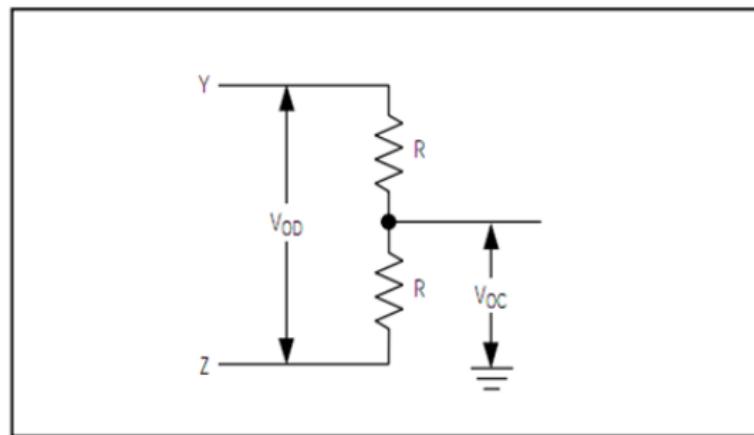


Figure9 DCTestLoadoftheDriver

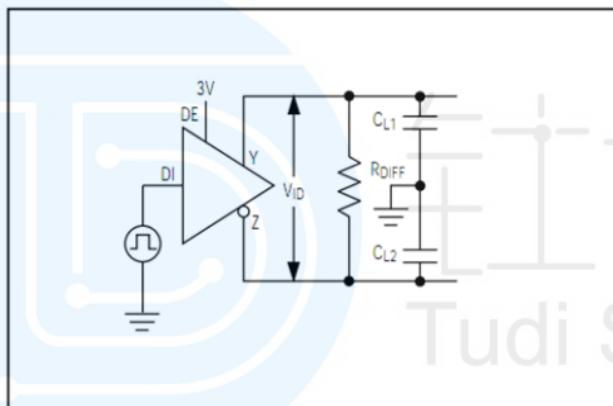


Figure10 DriverTimingTestCircuit

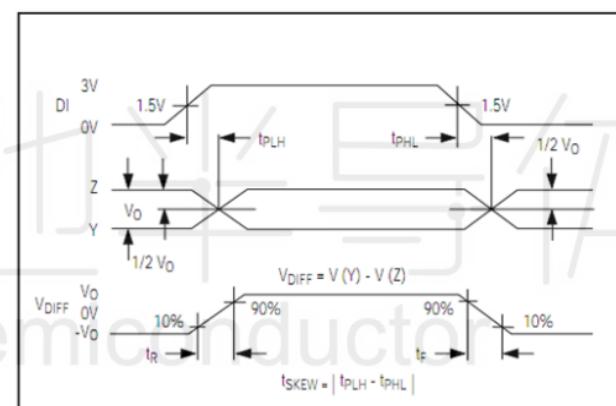


Figure11 PropagationDelayofDriver

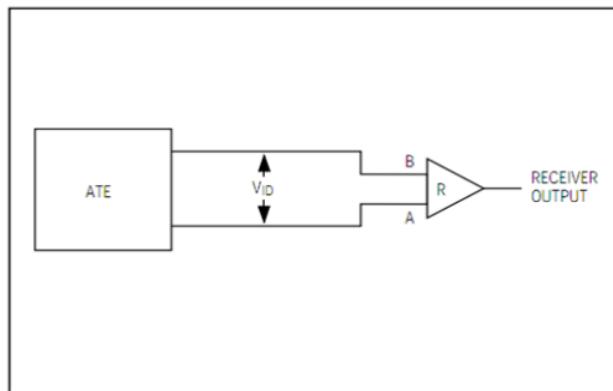


Figure12 ReceiverPropagationDelayTestCircuit

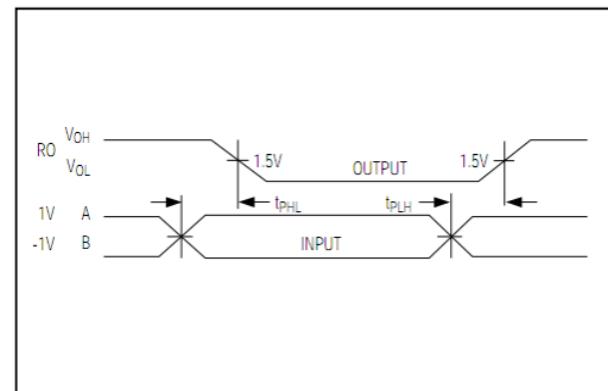
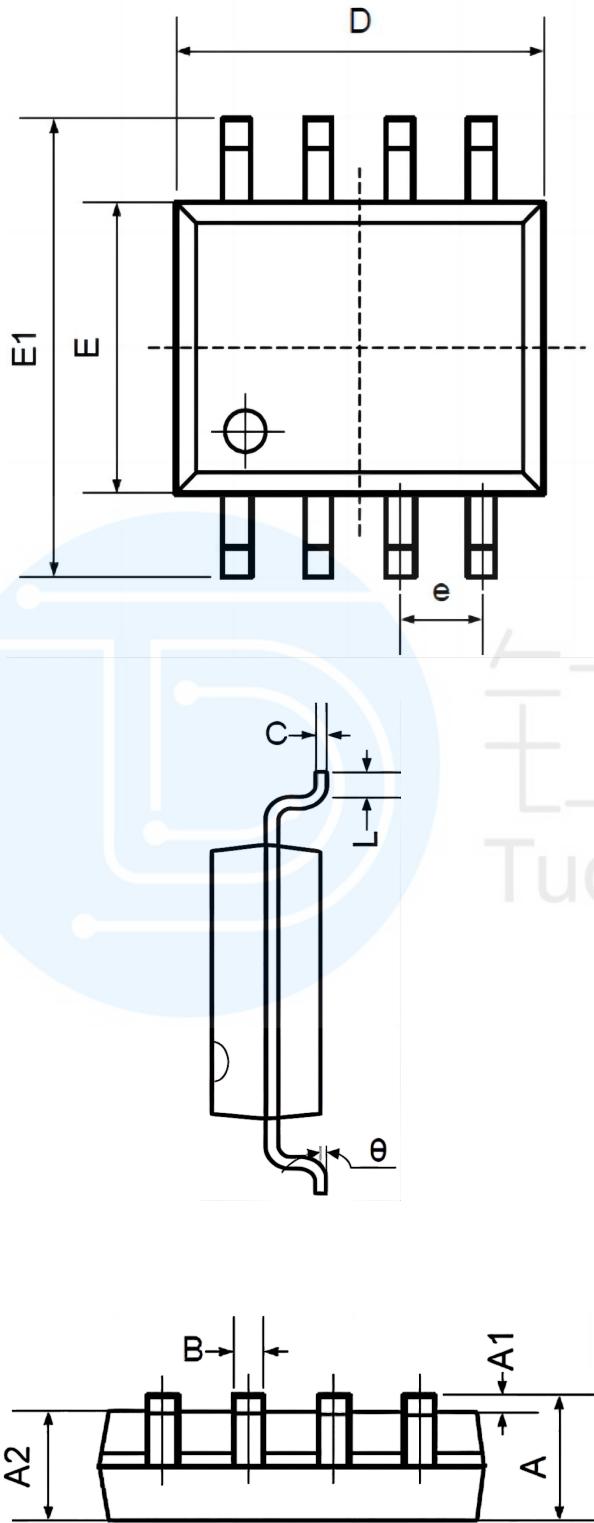
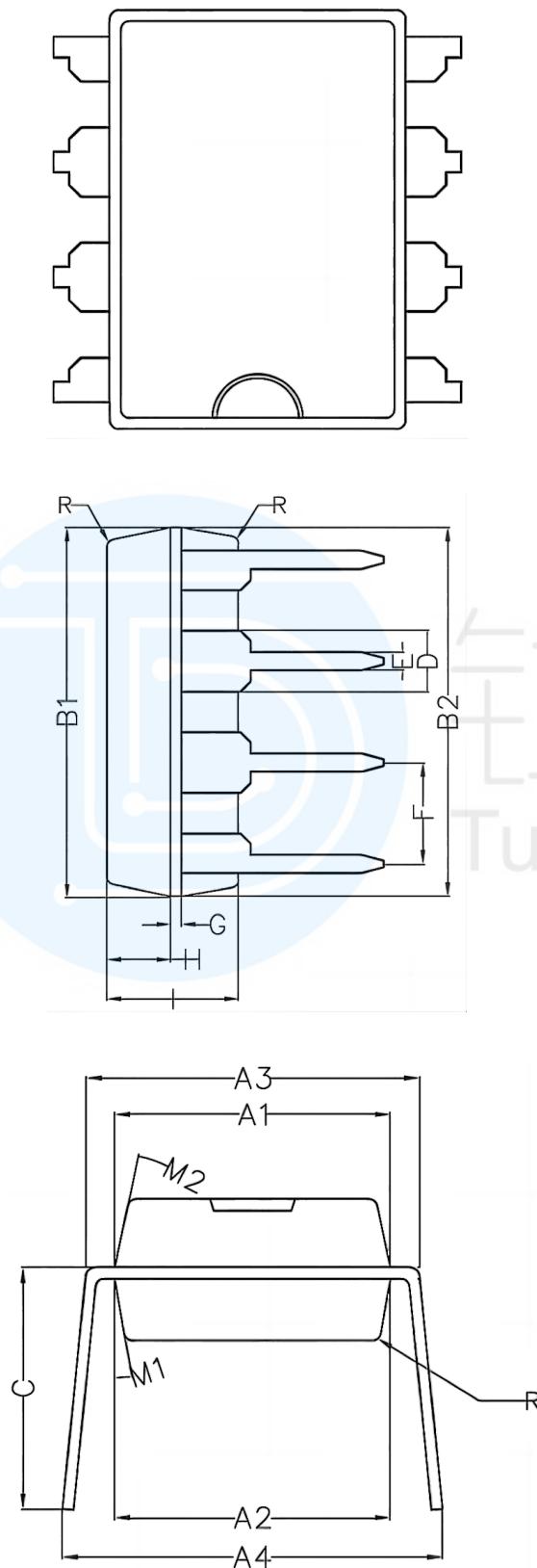
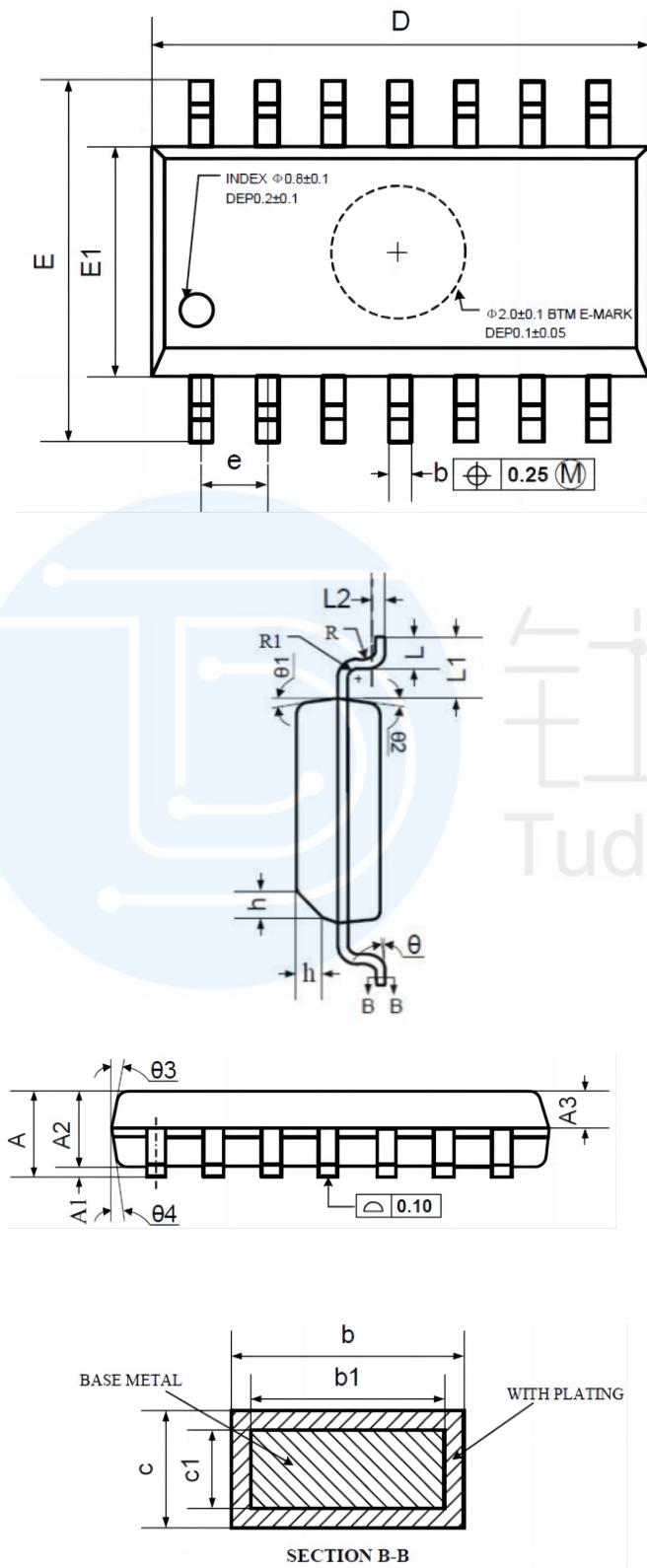



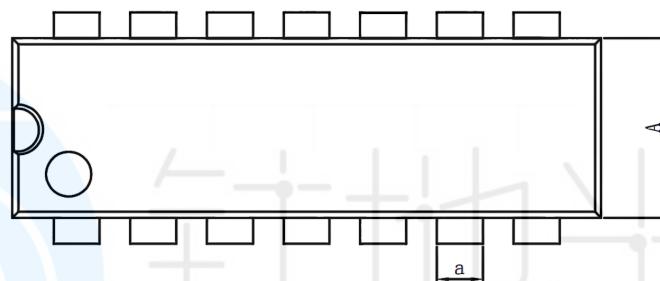
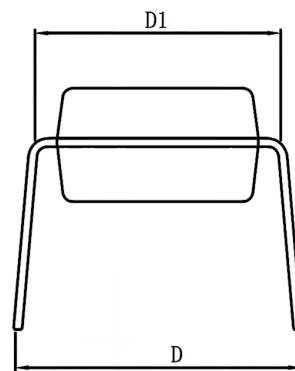
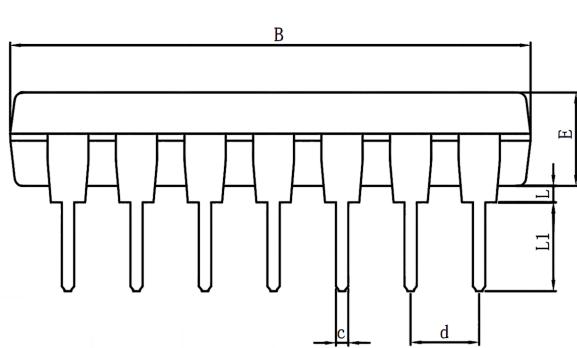
Figure13 ReceiverPropagationDelaySequence


Package SOP8

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
A	1.350	1.750	0.053	0.069
A1	0.100	0.250	0.004	0.010
A2	1.350	1.550	0.053	0.061
B	0.330	0.510	0.013	0.020
C	0.190	0.250	0.007	0.010
D	4.780	5.000	0.188	0.197
E	3.800	4.000	0.150	0.157
E1	5.800	6.300	0.228	0.248
e	1.270TYP		0.050TYP	
L	0.400	1.270	0.016	0.050
θ	0°	8°	0°	8°


Package DIP8

Symbol	Min	Non	Max
A1	6.28	6.33	6.38
A2	6.33	6.38	6.43
A3	7.52	7.62	7.72
A4	7.80	8.40	9.00
B1	9.15	9.20	9.25
B2	9.20	9.25	9.30
C		5.57	
D		1.52	
E	0.43	0.45	0.47
F		2.54	
G		0.25	
H	1.54	1.59	1.64
工	3.22	3.27	3.32
R		0.20	
M1	9°	10°	11°
M2	11°	12°	13°




Package SOP14

Symbol	Dimensions In Millimeters		
	MIN	NOM	MAX
A	1.35	1.60	1.75
A1	0.10	0.15	0.25
A2	1.25	1.45	1.65
A3	0.55	0.65	0.75
b	0.36		0.49
b1	0.35	0.40	0.45
C	0.16		0.25
c1	0.15	0.20	0.25
D	8.53	8.63	8.73
E	5.80	6.00	6.20
E1	3.80	3.90	4.00
e		1.27 BSC	
L	0.45	0.60	0.80
L1		1.04 REF	
L2		0.25 BSC	
R	0.07		
R1	0.07		
h	0.30	0.40	0.50
θ	0°		8°
θ1	6°	8°	10°
θ2	6°	8°	10°
θ3	5°	7°	9°
θ4	5°	7°	9°

Package DIP14

DIM.	MIN	TYP	MAX	DIM.	MIN	TYP	MAX
A	6.100	6.300	6.680	a	1.504	1.524	1.544
B	18.940	19.200	19.560	C	0.437	0.457	0.477
D	8.200	8.700	9.200	d	2.530	2.540	2.550
D1	7.42	7.62	7.82	L	0.500	—	0.800
E	3.100	3.300	3.550	L1	3.000	3.200	3.600

Important statement:

- TUDI Semiconductor reserves the right to modify the product manual without prior notice! Before placing an order, customers need to confirm whether the obtained information is the latest version and verify the completeness of the relevant information.
- Any semi-guide product is subject to failure or malfunction under specified conditions. It is the buyer's responsibility to comply with safety standards when using TUDI Semiconductor products for system design and whole machine manufacturing. And take the appropriate safety measures to avoid the potential risk of loss of personal injury or loss of property situation!
- TUDI Semiconductor products have not been licensed for life support, military, and aerospace applications, and therefore TUDI Semiconductor is not responsible for any consequences arising from the use of this product in these areas.
- If any or all TUDI Semiconductor products (including technical data, services) described or contained in this document are subject to any applicable local export control laws and regulations, they may not be exported without an export license from the relevant authorities in accordance with such laws.
- The specifications of any and all TUDI Semiconductor products described or contained in this document specify the performance, characteristics, and functionality of said products in their standalone state, but do not guarantee the performance, characteristics, and functionality of said products installed in Customer's products or equipment. In order to verify symptoms and conditions that cannot be evaluated in a standalone device, the Customer should ultimately evaluate and test the device installed in the Customer's product device.
- TUDI Semiconductor documentation is only allowed to be copied without any alteration of the content and with the relevant authorization. TUDI Semiconductor assumes no responsibility or liability for altered documents.
- TUDI Semiconductor is committed to becoming the preferred semiconductor brand for customers, and TUDI Semiconductor will strive to provide customers with better performance and better quality products.