

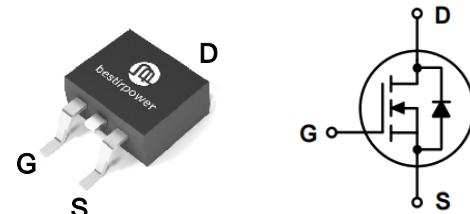
bestirpower

BMB65N046UE1

Super Junction Power MOSFET

650 V, 76 A, 46 mΩ

Description


BMB65N046UE1 is power MOSFET using bestirpower's advanced super junction technology that can realize very low on resistance and gate charge.

It will provide much high efficiency by using optimized charge coupling technology. These user friendly devices give an advantage of Low EMI to designers as well as low switching loss.

Features

BV _{DSS} @ T _{J,max}	I _D	R _{DS(on),max}	Q _{g,typ}
700 V	76 A	46 mΩ	138 nC

- Ultra-fast body diode
- Extremely low losses due to very low FOM Rdson*Qg and Eoss
- Very high commutation ruggedness

Applications

- PC power
- Server power supply
- Telecom
- Solar inverter
- Super charger for automobiles

Absolute Maximum Ratings (T_J = 25°C unless otherwise noted)

Symbol	Parameter		Value	Unit
V _{DSS}	Drain to Source Voltage ⁽¹⁾		650	V
V _{GSS}	Gate to Source Voltage		±30	V
I _D	Drain Current ⁽²⁾	V _{GS} = 10 V, (T _C = 25°C)	76	A
		V _{GS} = 10 V, (T _C = 100°C)	48	
I _{DM}	Drain Current	Pulsed	242	A
E _{AS}	Single Pulsed Avalanche Energy ⁽³⁾		375	mJ
dv/dt	MOSFET dv/dt		120	V/ns
	Peak Diode Recovery dv/dt		70	
P _D	Power Dissipation	(T _C = 25°C)	500	W
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to 150	°C
I _S	Continuous diode forward current		76	A
I _S Pulse	Diode pulse current ⁽²⁾		242	A

1) Limited by T_j max. Maximum duty cycle D=0.75.

2) Pulse width tp limited by T_{j,max}.

3) VDD=100V, RG=25Ω, Starting T_j=25°C.

Thermal Characteristics

Symbol	Parameter	Value	Unit
R _{θJC}	Thermal Resistance, Junction to Case.	0.25	°C/W
R _{θJA}		26	
T _{sold}	Soldering temperature, wave soldering only allowed at leads.	260	°C

Electrical Characteristics ($T_J = 25^\circ\text{C}$ unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
Off Characteristics						
BV_{DSS}	Drain to Source Breakdown Voltage	$\text{V}_{\text{GS}} = 0 \text{ V}$, $\text{I}_D = 1 \text{ mA}$	650			V
I_{BS}	Zero Gate Voltage Drain Current	$\text{V}_{\text{DS}} = 650 \text{ V}$, $\text{V}_{\text{GS}} = 0 \text{ V}$, $T_J = 25^\circ\text{C}$			10	μA
I_{GS}	Gate-Source Leakage Current	$\text{V}_{\text{GS}} = \pm 30 \text{ V}$, $\text{V}_{\text{DS}} = 0 \text{ V}$			± 100	nA

On Characteristics

$\text{V}_{(\text{GS})\text{th}}$	Gate Threshold Voltage	$\text{V}_{\text{GS}} = \text{V}_{\text{DS}}$, $\text{I}_D = 0.25 \text{ mA}$	2.0	3.0	4.0	V
$\text{R}_{\text{DS(on)}}$	Static Drain to Source On Resistance	$\text{V}_{\text{GS}} = 10 \text{ V}$, $\text{I}_D = 15 \text{ A}$		41	46	$\text{m}\Omega$

Dynamic Characteristics

C_{iss}	Input Capacitance	$\text{V}_{\text{GS}} = 0 \text{ V}$, $\text{V}_{\text{DS}} = 100 \text{ V}$, $f = 1 \text{ MHz}$	5233			pF
C_{oss}	Output Capacitance		112			pF
C_{rss}	Reverse transfer capacitance		3.2			pF
$\text{Q}_{\text{g(tot)}}$	Total Gate Charge at 10 V		138			nC
Q_{gs}	Gate to Source Charge	$\text{V}_{\text{DD}} = 480 \text{ V}$, $\text{I}_D = 15 \text{ A}$, $\text{V}_{\text{GS}} = 0 \text{ to } 10 \text{ V}$	33.7			nC
Q_{gd}	Gate to Drain "Miller" Charge		52.3			nC
R_{G}	Gate Resistance	$\text{V}_{\text{DD}} = 0 \text{ V}$, $\text{V}_{\text{GS}} = 0 \text{ V}$, $f = 1 \text{ MHz}$	3.9			Ω
$\text{t}_{\text{d(on)}}$	Turn-On Delay Time		152			ns
t_r	Turn-On Rise Time	$\text{V}_{\text{DD}} = 300 \text{ V}$, $\text{I}_D = 15 \text{ A}$, $\text{V}_{\text{GS}} = 10 \text{ V}$	6			ns
$\text{t}_{\text{d(off)}}$	Turn-Off Delay Time		483			ns
t_f	Turn-Off Fall Time		25			ns

Source-Drain Diode Characteristics

V_{SD}	Diode Forward Voltage	$\text{V}_{\text{GS}} = 0 \text{ V}$, $\text{I}_F = 15 \text{ A}$, $T_J = 25^\circ\text{C}$		0.97		V
t_{rr}	Reverse Recovery Time			163		ns
Q_{rr}	Reverse Recovery Charge	$\text{V}_R = 50 \text{ V}$, $\text{I}_F = 15 \text{ A}$, $\text{dI}/\text{dt} = 100 \text{ A}/\mu\text{s}$		0.9		μC
I_{rrm}	Peak reverse recovery current			8.6		A

Typical Performance Characteristics

Figure 1. Typ.output characteristics

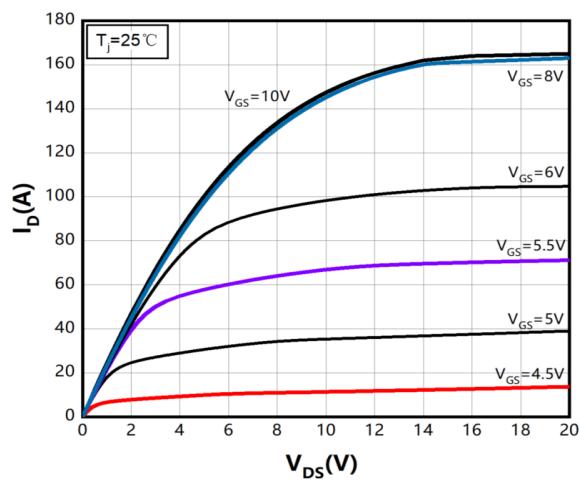


Figure 2. Typ.output characteristics

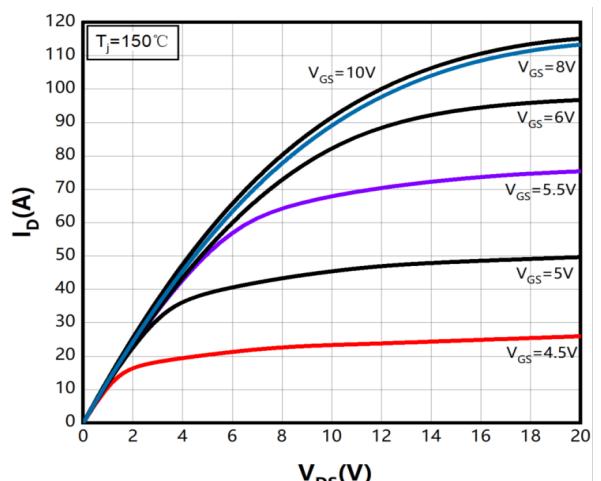


Figure 3. Typ.transfer characteristics

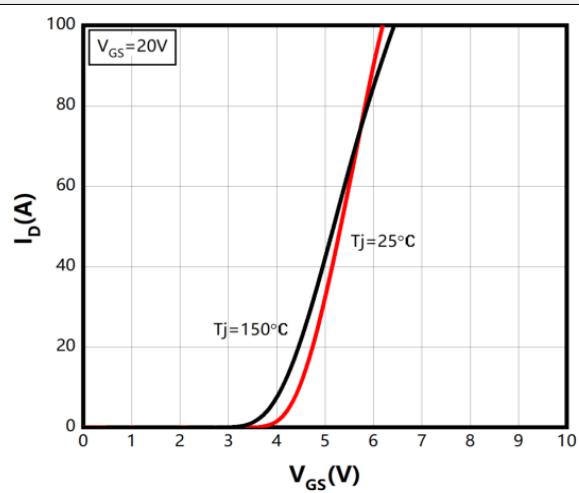


Figure 4. Typ. drain-source on-state resistance

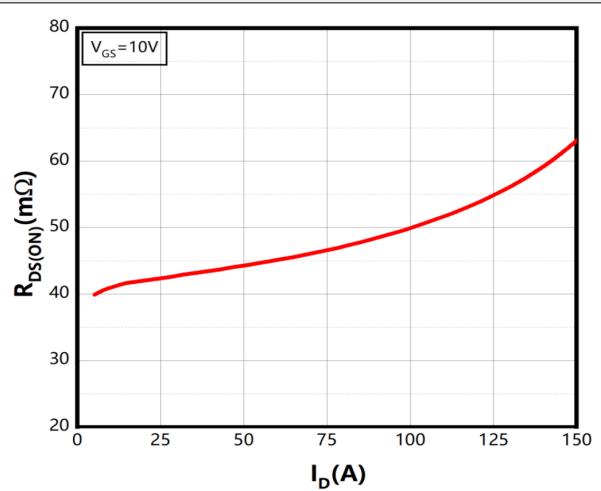


Figure 5. Drain-source on-state resistance

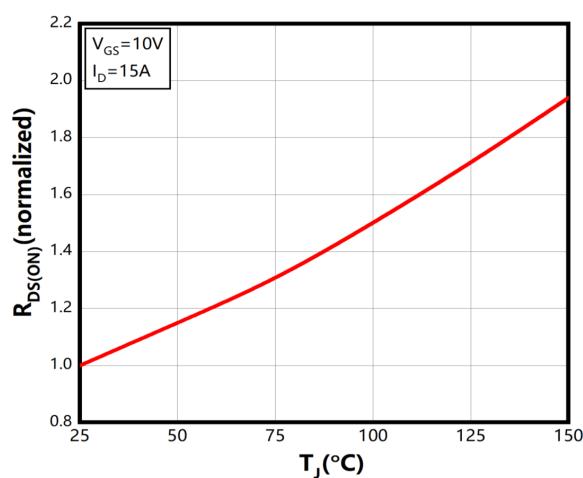
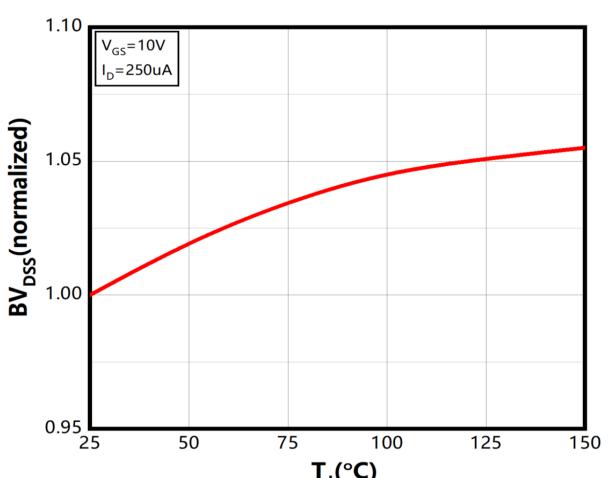



Figure 6. Breakdown voltage

Typical Performance Characteristics

Figure 7. Threshold voltage

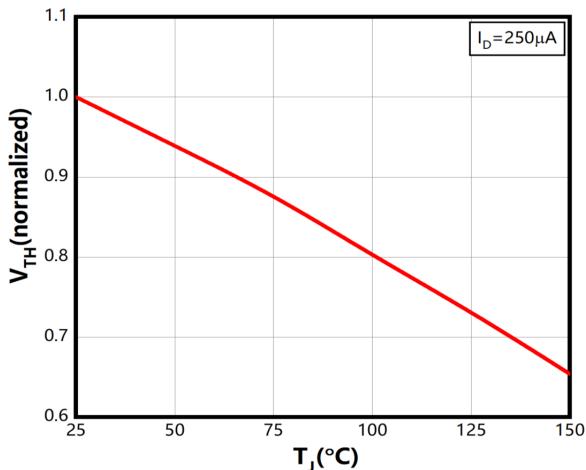


Figure 8. Typ. capacitances

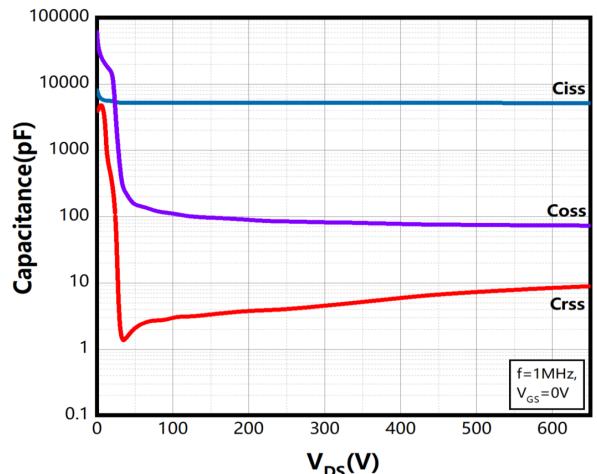


Figure 9. Typ.gate charge

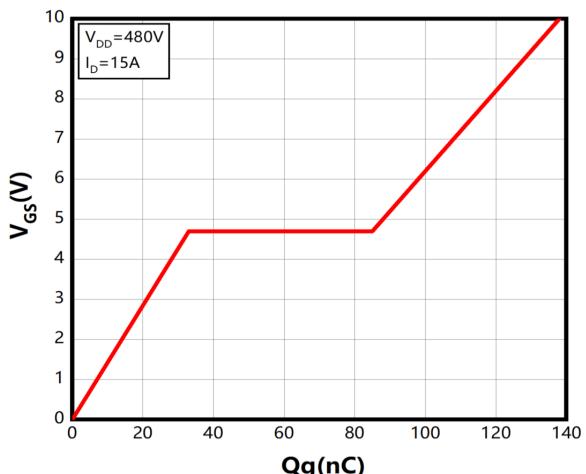


Figure 10. Body-Diode Character

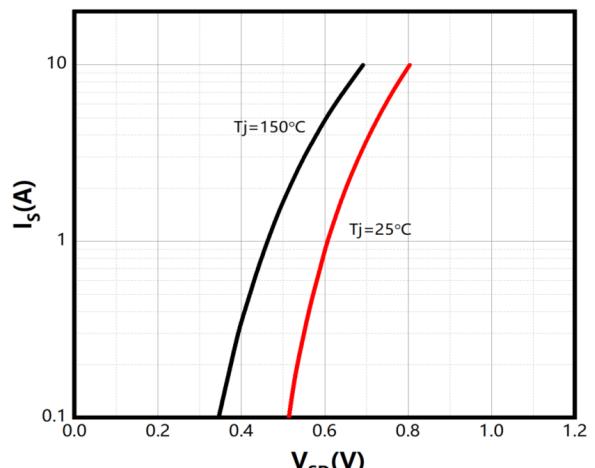


Figure 11. Power dissipation

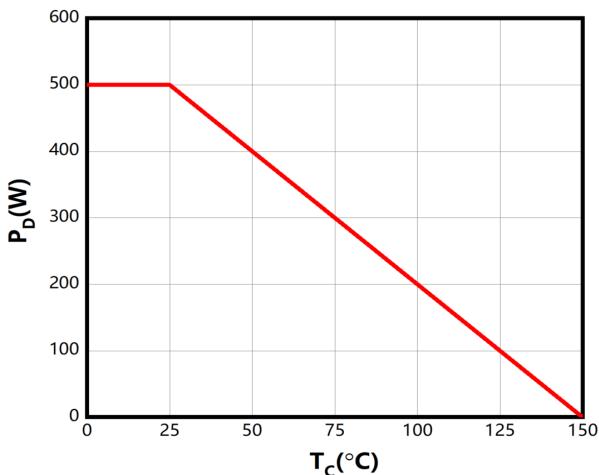
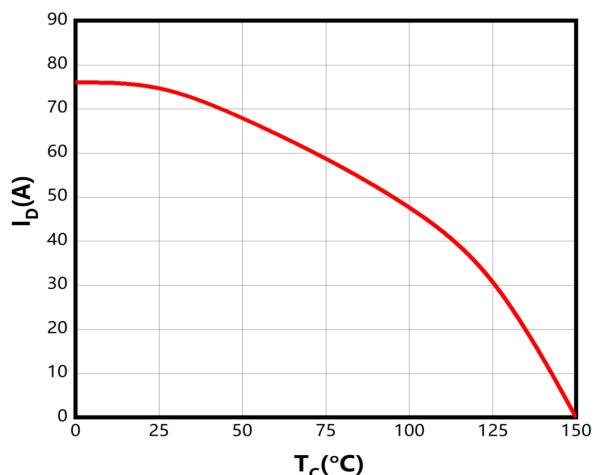
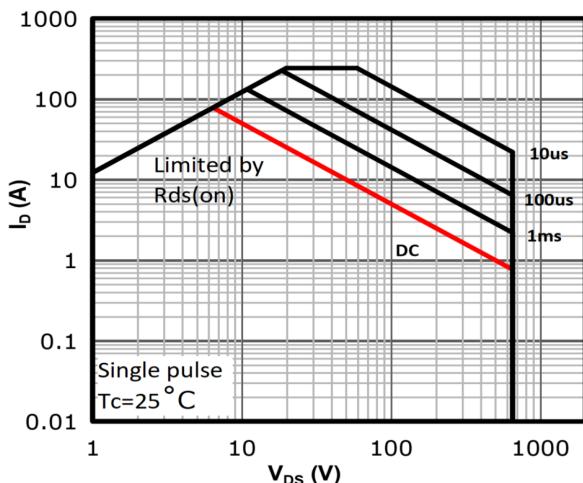
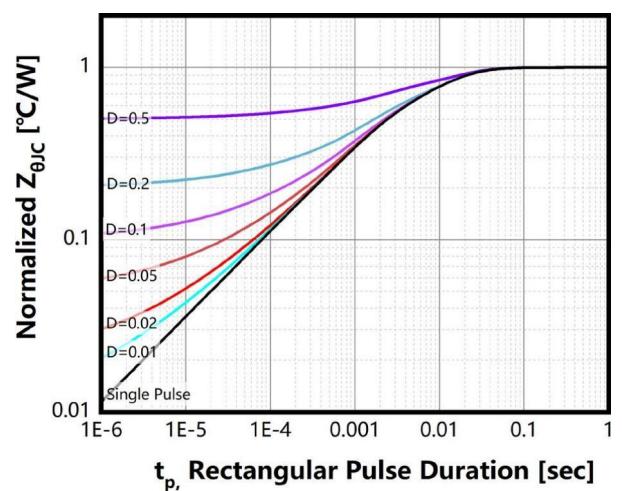





Figure 12. Drain Current

Typical Performance Characteristics**Figure 13. Safe operating area****Figure 14. Max transient thermal impedance**

Test Circuits

Figure 15. Diode Characteristics

Test circuit for diode characteristics and Diode recovery waveform

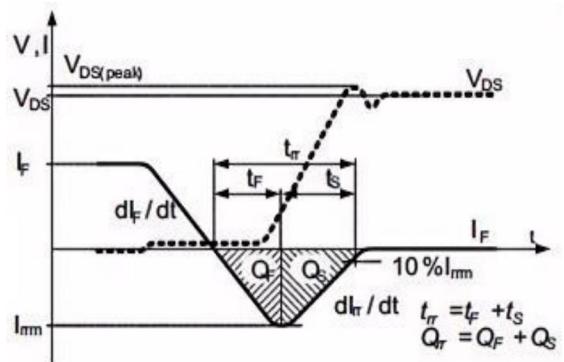
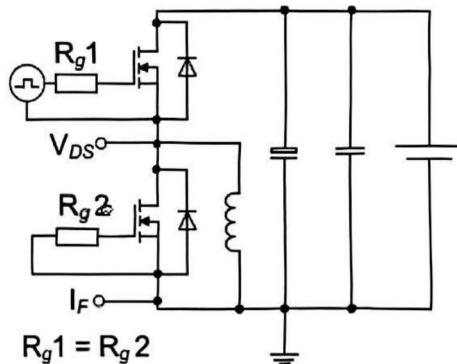
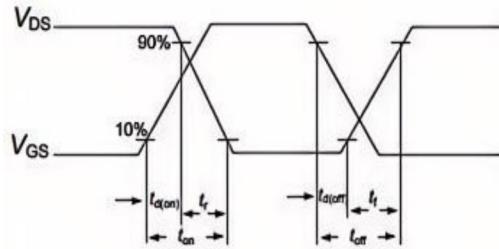
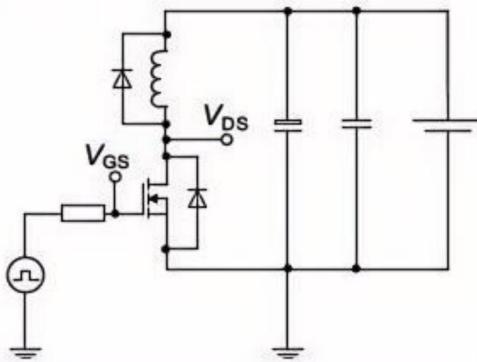
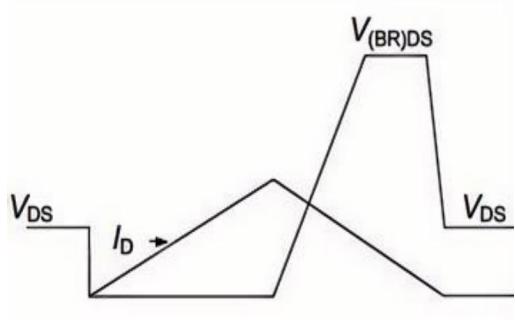
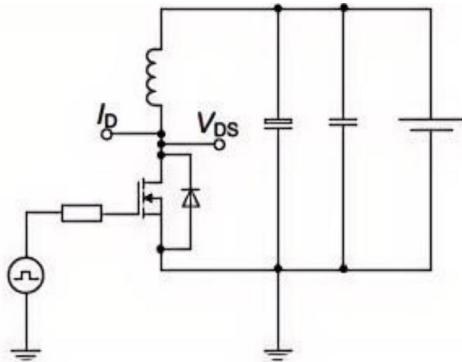
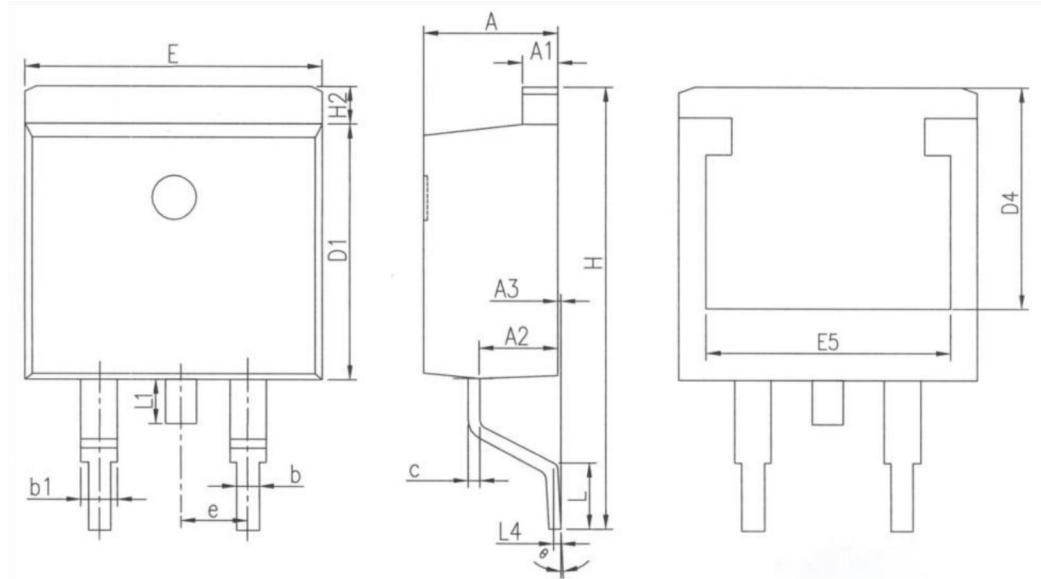



Figure 16. Switching Times

Switching times test circuit for inductive load and Switching times waveform


Figure 17. Unclamped Inductive Load

Unclamped inductive load test circuit and Unclamped inductive waveform

Package Outlines

D²PAK

COMMON DIMENSIONS

SYMBOL	MM		
	MIN	NOM	MAX
A	4.37	4.57	4.77
A1	1.22	1.27	1.42
A2	2.49	2.69	2.89
A3	0.00	0.13	0.25
b	0.70	0.81	0.96
b1	1.17	1.27	1.47
c	0.30	0.38	0.53
D1	8.50	8.70	8.90
D4	6.60	-	-
E	9.86	10.16	10.36
E5	7.50	-	-
e	2.54BSC		
H	14.70	15.10	15.50
H2	1.07	1.27	1.47
L	2.00	2.30	2.60
L1	1.40	1.55	1.70
L4	0.25BSC		
θ	0°	5°	9°

* Dimensions in millimeters

Package Marking and Ordering Information

Part Number	Top Marking	Package	Packing Method	Quantity
BMB65N046UE1	BMB65N046UE1	D ² PAK	Tape & Reel	800 units

Disclaimer

Bestirpower reserve the right to make changes, corrections, enhancements, modifications, and improvements to Bestirpower products and/or to this document at any time without notice.

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. Bestirpower does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Products or technical information described in this document.

This document is the property of Bestirpower Co., LTD., and not allowed to copy or transformed to other format if not under the authority approval.

© 2025 bestirpower – All rights Reserved