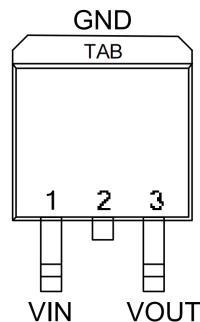


3-Terminal 1 A Positive Voltage Regulator

Description

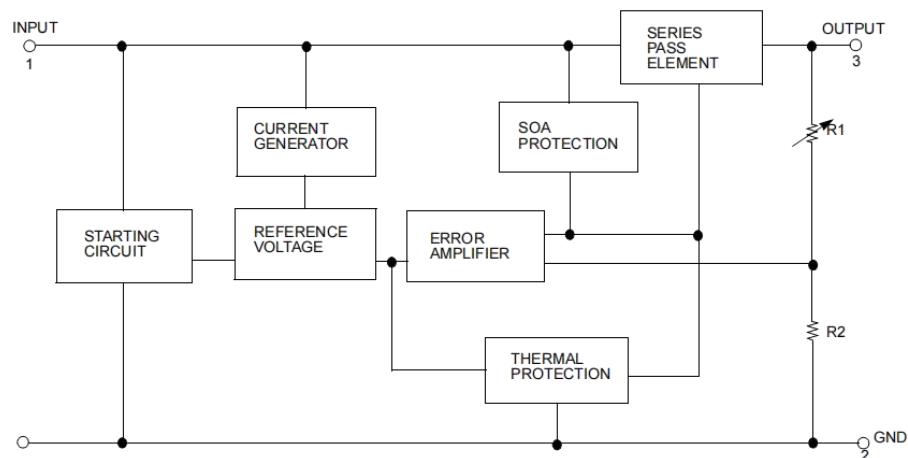
The LM78MxxA series of three-terminal positive regulators are available in the TO-252-2 package with several fixed output voltages making it useful in a wide range of applications.

TO-252-2


Features

- Output Current up to 1A
- Output Voltages of 5, 6, 8, 9, 12, 15, 18, 24V
- Thermal Overload Protection
- Short Circuit Protection
- Output Transistor Safe Operating Area (SOA)Protection

Ordering Information


DEVICE	PACKAGE TYPE	MARKING	PACKING	PACKING QTY
LM78M05ACKTPRG	TO-252-2	78M05A	REEL	2500pcs/reel
LM78M06ACKTPRG	TO-252-2	78M06A	REEL	2500pcs/reel
LM78M08ACKTPRG	TO-252-2	78M08A	REEL	2500pcs/reel
LM78M09ACKTPRG	TO-252-2	78M09A	REEL	2500pcs/reel
LM78M12ACKTPRG	TO-252-2	78M12A	REEL	2500pcs/reel
LM78M15ACKTPRG	TO-252-2	78M15A	REEL	2500pcs/reel
LM78M18ACKTPRG	TO-252-2	78M18A	REEL	2500pcs/reel
LM78M24ACKTPRG	TO-252-2	78M24A	REEL	2500pcs/reel

Pin Configuration

TO-252-2

Internal Block Diagram

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Input Voltage (for $V_O = 5V$ to $18V$) (for $V_O = 24V$)	V_I	35	V
	V_I	40	V
Thermal Resistance Junction-Case TO-252-2 ($T_c = +25^\circ C$)	$R_{\theta JC}$	2.5	$^\circ C/W$
Thermal Resistance Junction-Air TO-252-2 ($T_a = +25^\circ C$)	$R_{\theta JA}$	92	$^\circ C/W$
Operating Junction Temperature Range	$TOPR$	$0 \sim +125$	$^\circ C$
Storage Temperature Range	T_{STG}	$-65 \sim +150$	$^\circ C$
Lead Temperature (Soldering, 10 seconds)	T_L	260	$^\circ C$

Note: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not ensured.

Electrical Characteristics (LM78M05A)

(Refer to the test circuits, $-40 < TJ < +85^\circ\text{C}$, $IO=1\text{A}$, $VI=10\text{V}$, unless otherwise specified, $CI = 0.33\mu\text{F}$, $CO=0.1\mu\text{F}$)

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
Output Voltage	VO	TJ = $+25^\circ\text{C}$	4.8	5	5.2	V
		IO=5mA to 1A VI=7V to 20V	4.75	5	5.25	
Line Regulation (Note3)	ΔVO	IO = 200mA	VI = 7V to 25V	-	-	100
		TJ = $+25^\circ\text{C}$	VI = 8V to 25V	-	-	50
Load Regulation (Note3)	ΔVO	IO = 5mA to 0.5A, TJ = $+25^\circ\text{C}$	-	-	100	mV
		IO = 5mA to 200mA, TJ = $+25^\circ\text{C}$	-	-	50	
Quiescent Current	IQ	TJ = $+25^\circ\text{C}$	-	4.0	6.0	mA
Quiescent Current Change	ΔIQ	IO = 5mA to 350mA	-	-	0.5	mA
		IO = 200mA VI = 8V to 25V	-	-	0.8	
Output Voltage Drift	$\Delta V/\Delta T$	IO = 5mA TJ = -40 to $+85^\circ\text{C}$	-	-0.5	-	$\text{mV}/^\circ\text{C}$
Output Noise Voltage	VN	f = 10Hz to 100kHz	-	40	-	$\mu\text{V}/\text{Vo}$
Ripple Rejection	RR	f = 120Hz, IO = 300mA VI = 8V to 18V, TJ = $+25^\circ\text{C}$	-	80	-	dB
Dropout Voltage	VD	TJ = $+25^\circ\text{C}$, IO = 500mA	-	2	-	V
Short Circuit Current	ISC	TJ = $+25^\circ\text{C}$, VI = 35V	-	300	-	mA
Peak Current	IPK	TJ = $+25^\circ\text{C}$	-	700	-	mA

Note:

Load and line regulation are specified at constant junction temperature. Change in Vo due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (LM78M06A) (Continued)

(Refer to the test circuits, $-40 < TJ < +85^\circ\text{C}$, $IO=1\text{A}$, $VI=11\text{V}$, unless otherwise specified, $CI=0.33\mu\text{F}$, $CO=0.1\mu\text{F}$)

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
Output Voltage	VO	TJ = $+25^\circ\text{C}$	5.75	6	6.25	V
		IO = 5mA to 1A VI = 8V to 21V	5.7	6	6.3	
Line Regulation (Note1)	ΔVO	IO = 200mA	VI = 8V to 25V	-	-	100
		TJ = $+25^\circ\text{C}$	VI = 9V to 25V	-	-	50
Load Regulation (Note1)	ΔVO	IO = 5mA to 0.5A, TJ = $+25^\circ\text{C}$	-	-	120	mV
		IO = 5mA to 200mA, TJ = $+25^\circ\text{C}$	-	-	60	
Quiescent Current	IQ	TJ = $+25^\circ\text{C}$	-	4.0	6.0	mA
Quiescent Current Change	ΔIQ	IO = 5mA to 350mA	-	-	0.5	mA
		IO = 200mA VI = 9V to 25V	-	-	0.8	
Output Voltage Drift	$\Delta V/\Delta T$	IO = 5mA TJ = -40 to $+85^\circ\text{C}$	-	-0.5	-	$\text{mV}/^\circ\text{C}$
Output Noise Voltage	VN	f = 10Hz to 100kHz	-	45	-	$\mu\text{V}/\text{Vo}$
Ripple Rejection	RR	f = 120Hz, IO = 300mA VI = 9V to 19V, TJ = $+25^\circ\text{C}$	-	80	-	dB
Dropout Voltage	VD	TJ = $+25^\circ\text{C}$, IO = 500mA	-	2	-	V
Short Circuit Current	ISC	TJ = $+25^\circ\text{C}$, VI = 35V	-	300	-	mA
Peak Current	IPK	TJ = $+25^\circ\text{C}$	-	700	-	mA

Note:

1. Load and line regulation are specified at constant junction temperature. Change in Vo due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (LM78M08A) (Continued)

(Refer to the test circuits, $-40 < TJ < +85^\circ\text{C}$, $IO=1\text{A}$, $VI=14\text{V}$, unless otherwise specified, $Cl = 0.33\mu\text{F}$, $Co=0.1\mu\text{F}$)

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
Output Voltage	VO	TJ = $+25^\circ\text{C}$	7.7	8	8.3	V
		IO = 5mA to 1A VI = 10.5V to 23V	7.6	8	8.4	
Line Regulation (Note1)	ΔVO	IO = 200mA	VI = 10.5V to 25V	-	100	mV
		TJ = $+25^\circ\text{C}$			50	
Load Regulation (Note1)	ΔVO	IO = 5mA to 0.5A, TJ = $+25^\circ\text{C}$	-	-	160	mV
		IO = 5mA to 200mA, TJ = $+25^\circ\text{C}$			80	
Quiescent Current	IQ	TJ = $+25^\circ\text{C}$	-	4.0	6.0	mA
Quiescent Current Change	ΔIQ	IO = 5mA to 350mA	-	-	0.5	mA
		IO = 200mA VI = 10.5V to 25V			0.8	
Output Voltage Drift	RR	IO = 5mA TJ = -40 to $+85^\circ\text{C}$	-	-0.5	-	mV/ $^\circ\text{C}$
Output Noise Voltage	VN	f = 10Hz to 100kHz	-	52	-	$\mu\text{V}/\text{V}_0$
Ripple Rejection	RR	f = 120Hz, IO = 300mA VI = 11.5V to 21.5V, TJ = $+25^\circ\text{C}$	-	80	-	dB
Dropout Voltage	VD	TJ = $+25^\circ\text{C}$, IO = 500mA	-	2	-	V
Short Circuit Current	ISC	TJ = $+25^\circ\text{C}$, VI = 35V	-	300	-	mA
Peak Current	IPK	TJ = $+25^\circ\text{C}$	-	700	-	mA

Note:

1. Load and line regulation are specified at constant junction temperature. Change in VO due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (LM78M09A) (Continued)

(Refer to the test circuits, $-40 < TJ < +85^\circ\text{C}$, $IO=1\text{A}$, $VI=15\text{V}$, unless otherwise specified, $Cl = 0.33\mu\text{F}$, $Co=0.1\mu\text{F}$)

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
Output Voltage	VO	TJ = $+25^\circ\text{C}$	8.65	9	9.35	V
		IO = 5mA to 1A VI = 11.5V to 25V	8.55	9	9.45	
Line Regulation (Note1)	ΔVO	IO = 200mA	VI = 11.5V to 25V	-	100	mV
		TJ = $+25^\circ\text{C}$			50	
Load Regulation (Note1)	ΔVO	IO = 5mA to 0.5A, TJ = $+25^\circ\text{C}$	-	-	180	mV
		IO = 5mA to 200mA, TJ = $+25^\circ\text{C}$			90	
Quiescent Current	IQ	TJ = $+25^\circ\text{C}$	-	4.6	6.0	mA
Quiescent Current Change	ΔIQ	IO = 5mA to 350mA	-	-	0.5	mA
		IO = 200mA VI = 11.5V to 25V			0.8	
Output Voltage Drift	RR	IO = 5mA TJ = -40 to $+85^\circ\text{C}$	-	-0.8	-	mV/ $^\circ\text{C}$
Output Noise Voltage	VN	f = 10Hz to 100kHz	-	60	-	$\mu\text{V}/\text{V}_0$
Ripple Rejection	RR	f = 120Hz, IO = 300mA VI = 11.5V to 21.5V, TJ = $+25^\circ\text{C}$	-	80	-	dB
Dropout Voltage	VD	TJ = $+25^\circ\text{C}$, IO = 500mA	-	2	-	V
Short Circuit Current	ISC	TJ = $+25^\circ\text{C}$, VI = 35V	-	300	-	mA
Peak Current	IPK	TJ = $+25^\circ\text{C}$	-	700	-	mA

Note:

1. Load and line regulation are specified at constant junction temperature. Change in VO due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (LM78M12A) (Continued)

(Refer to the test circuits, $-40 < TJ < +85^\circ\text{C}$, $IO=1\text{A}$, $VI=19\text{V}$, unless otherwise specified, $Cl = 0.33\mu\text{F}$, $CO=0.1\mu\text{F}$)

Parameter	Symbol	Conditions		Min.	Typ.	Max.	Unit
Output Voltage	VO	$TJ = +25^\circ\text{C}$		11.5	12	12.5	V
		$IO = 5\text{mA to } 1\text{A}$ $VI = 14.5\text{V to } 27\text{V}$		11.4	12	12.6	
Line Regulation (Note1)	ΔVO	$IO = 200\text{mA}$ $TJ = +25^\circ\text{C}$		-	-	100	mV
		$VI = 14.5\text{V to } 30\text{V}$		-	-	50	
Load Regulation (Note1)	ΔVO	$IO = 5\text{mA to } 0.5\text{A}$, $TJ = +25^\circ\text{C}$		-	-	240	mV
		$IO = 5\text{mA to } 200\text{mA}$, $TJ = +25^\circ\text{C}$		-	-	120	
Quiescent Current	IQ	$TJ = +25^\circ\text{C}$		-	4.1	6.0	mA
Quiescent Current Change	ΔIQ	$IO = 5\text{mA to } 350\text{mA}$		-	-	0.5	mA
		$IO = 200\text{mA}$ $VI = 14.5\text{V to } 30\text{V}$		-	-	0.8	
Output Voltage Drift	$\Delta V/\Delta T$	$IO = 5\text{mA}$ $TJ = -40 \text{ to } +85^\circ\text{C}$		-	-0.5	-	mV/°C
Output Noise Voltage	VN	$f = 10\text{Hz to } 100\text{kHz}$		-	75	-	µV/Vo
Ripple Rejection	RR	$f = 120\text{Hz}$, $IO = 300\text{mA}$ $VI = 15\text{V to } 25\text{V}$, $TJ = +25^\circ\text{C}$		-	80	-	dB
Dropout Voltage	VD	$TJ = +25^\circ\text{C}$, $IO = 500\text{mA}$		-	2	-	V
Short Circuit Current	ISC	$TJ = +25^\circ\text{C}$, $VI = 35\text{V}$		-	300	-	mA
Peak Current	IPK	$TJ = +25^\circ\text{C}$		-	700	-	mA

Note:

1. Load and line regulation are specified at constant junction temperature. Change in VO due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (LM78M15A) (Continued)

(Refer to the test circuits, $-40 < TJ < +85^\circ\text{C}$, $IO=1\text{A}$, $VI=23\text{V}$, unless otherwise specified, $Cl = 0.33\mu\text{F}$, $CO=0.1\mu\text{F}$)

Parameter	Symbol	Conditions		Min.	Typ.	Max.	Unit
Output Voltage	VO	$TJ = +25^\circ\text{C}$		14.4	15	15.6	V
		$IO = 5\text{mA to } 1\text{A}$ $VI = 17.5\text{V to } 30\text{V}$		14.25	15	15.75	
Line Regulation (Note1)	ΔVO	$IO = 200\text{mA}$ $VI = 17.5\text{V to } 30\text{V}$		-	-	100	mV
		$TJ = +25^\circ\text{C}$ $VI = 20\text{V to } 30\text{V}$		-	-	50	
Load Regulation (Note1)	ΔVO	$IO = 5\text{mA to } 0.5\text{A}$, $TJ = +25^\circ\text{C}$		-	-	300	mV
		$IO = 5\text{mA to } 200\text{mA}$, $TJ = +25^\circ\text{C}$		-	-	150	
Quiescent Current	IQ	$TJ = +25^\circ\text{C}$		-	4.1	6.0	mA
Quiescent Current Change	ΔIQ	$IO = 5\text{mA to } 350\text{mA}$		-	-	0.5	mA
		$IO = 200\text{mA}$ $VI = 17.5\text{V to } 30\text{V}$		-	-	0.8	
Output Voltage Drift	$\Delta V/\Delta T$	$IO = 5\text{mA}$ $TJ = -40 \text{ to } +85^\circ\text{C}$		-	-1	-	mV/°C
Output Noise Voltage	VN	$f = 10\text{Hz to } 100\text{kHz}$		-	100	-	µV/Vo
Ripple Rejection	RR	$f = 120\text{Hz}$, $IO = 300\text{mA}$ $VI = 18.5\text{V to } 28.5\text{V}$, $TJ = +25^\circ\text{C}$		-	70	-	dB
Dropout Voltage	VD	$TJ = +25^\circ\text{C}$, $IO = 500\text{mA}$		-	2	-	V
Short Circuit Current	ISC	$TJ = +25^\circ\text{C}$, $VI = 35\text{V}$		-	300	-	mA
Peak Current	IPK	$TJ = +25^\circ\text{C}$		-	700	-	mA

Note:

1. Load and line regulation are specified at constant junction temperature. Change in VO due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (LM78M18A) (Continued)

(Refer to the test circuits, $-40 < TJ < +85^{\circ}\text{C}$, $IO=1\text{A}$, $VI=26\text{V}$, unless otherwise specified, $Cl = 0.33\mu\text{F}$, $CO = 0.1\mu\text{F}$)

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
Output Voltage	VO	$TJ = +25^{\circ}\text{C}$	17.3	18	18.7	V
		$IO = 5\text{mA to } 1\text{A} \quad VI = 20.5\text{V to } 33\text{V}$	17.1	18	18.9	
Line Regulation (Note1)	ΔVO	$IO = 200\text{mA} \quad VI = 21\text{V to } 33\text{V}$	-	-	100	mV
		$TJ = +25^{\circ}\text{C} \quad VI = 24\text{V to } 33\text{V}$	-	-	50	
Load Regulation (Note1)	ΔVO	$IO = 5\text{mA to } 0.5\text{A}, TJ = +25^{\circ}\text{C}$	-	-	360	mV
		$IO = 5\text{mA to } 200\text{mA}, TJ = +25^{\circ}\text{C}$	-	-	180	
Quiescent Current	IQ	$TJ = +25^{\circ}\text{C}$	-	4.2	6.0	mA
Quiescent Current Change	ΔIQ	$IO = 5\text{mA to } 350\text{mA}$	-	-	0.5	mA
		$IO = 200\text{mA} \quad VI = 21\text{V to } 33\text{V}$	-	-	0.8	
Output Voltage Drift	$\Delta V/\Delta T$	$IO = 5\text{mA} \quad TJ = -40 \text{ to } 85^{\circ}\text{C}$	-	-1.1	-	$\text{mV}/^{\circ}\text{C}$
Output Noise Voltage	VN	$f = 10\text{Hz to } 100\text{kHz}$	-	100	-	$\mu\text{V}/\text{V}_o$
Ripple Rejection	RR	$f = 120\text{Hz}, IO = 300\text{mA}, VI = 22\text{V to } 32\text{V} \quad TJ = +25^{\circ}\text{C}$	-	70	-	dB
Dropout Voltage	VD	$TJ = +25^{\circ}\text{C}, IO = 500\text{mA}$	-	2	-	V
Short Circuit Current	ISC	$TJ = +25^{\circ}\text{C}, VI = 35\text{V}$	-	300	-	mA
Peak Current	IPK	$TJ = +25^{\circ}\text{C}$	-	700	-	mA

Note:

1. Load and line regulation are specified at constant junction temperature. Change in VO due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (LM78M24A) (Continued)

(Refer to the test circuits, $-40 < TJ < +85^{\circ}\text{C}$, $IO=350\text{mA}$, $VI=33\text{V}$, unless otherwise specified, $Cl = 0.33\mu\text{F}$, $CO = 0.1\mu\text{F}$)

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
Output Voltage	VO	$TJ = +25^{\circ}\text{C}$	23	24	25	V
		$IO = 5\text{mA to } 1\text{A} \quad VI = 27\text{V to } 38\text{V}$	22.8	24	25.2	
Line Regulation (Note1)	ΔVO	$IO = 200\text{mA} \quad VI = 27\text{V to } 38\text{V}$	-	-	100	mV
		$TJ = +25^{\circ}\text{C} \quad VI = 28\text{V to } 38\text{V}$	-	-	50	
Load Regulation (Note1)	ΔVO	$IO = 5\text{mA to } 0.5\text{A}, TJ = +25^{\circ}\text{C}$	-	-	480	mV
		$IO = 5\text{mA to } 200\text{mA}, TJ = +25^{\circ}\text{C}$	-	-	240	
Quiescent Current	IQ	$TJ = +25^{\circ}\text{C}$	-	4.2	6.0	mA
Quiescent Current Change	ΔIQ	$IO = 5\text{mA to } 350\text{mA}$	-	-	0.5	mA
		$IO = 200\text{mA} \quad VI = 27\text{V to } 38\text{V}$	-	-	0.8	
Output Voltage Drift	$\Delta V/\Delta T$	$IO = 5\text{mA} \quad TJ = -40 \text{ to } +85^{\circ}\text{C}$	-	-1.2	-	$\text{mV}/^{\circ}\text{C}$
Output Noise Voltage	VN	$f = 10\text{Hz to } 100\text{kHz}$	-	170	-	$\mu\text{V}/\text{V}_o$
Ripple Rejection	RR	$f = 120\text{Hz}, IO = 300\text{mA} \quad VI = 28\text{V to } 38\text{V}, TJ = +25^{\circ}\text{C}$	-	70	-	dB
Dropout Voltage	VD	$TJ = +25^{\circ}\text{C}, IO = 500\text{mA}$	-	2	-	V
Short Circuit Current	ISC	$TJ = +25^{\circ}\text{C}, VI = 35\text{V}$	-	300	-	mA
Peak Current	IPK	$TJ = +25^{\circ}\text{C}$	-	700	-	mA

Note:

1. Load and line regulation are specified at constant junction temperature. Change in VO due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Typical Applications

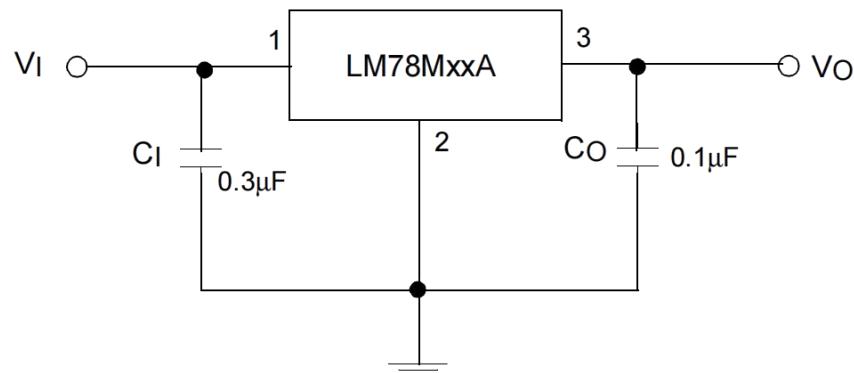


Figure 1. Fixed Output Regulator

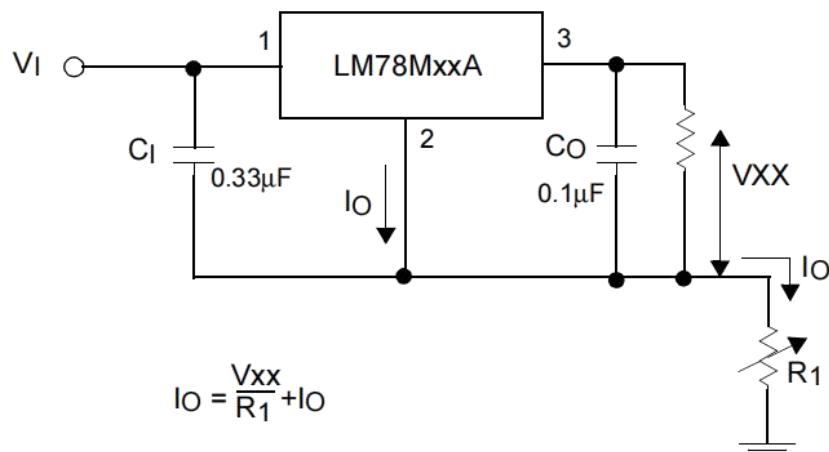


Figure 2. Constant Current Regulator

Notes:

1. To specify an output voltage, substitute voltage value for "XX"
2. Although no output capacitor is needed for stability, it does improve transient response.
3. CI is required if regulator is located an appreciable distance from power Supply filter

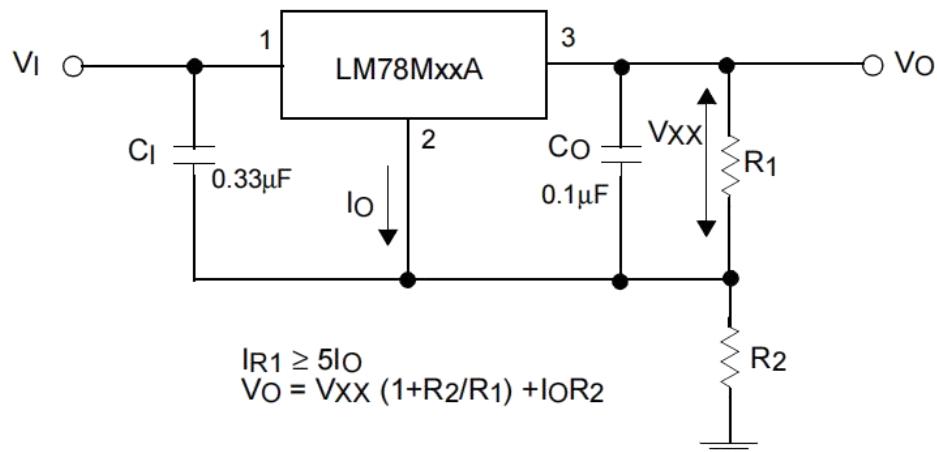


Figure 3. Circuit for Increasing Output Voltage

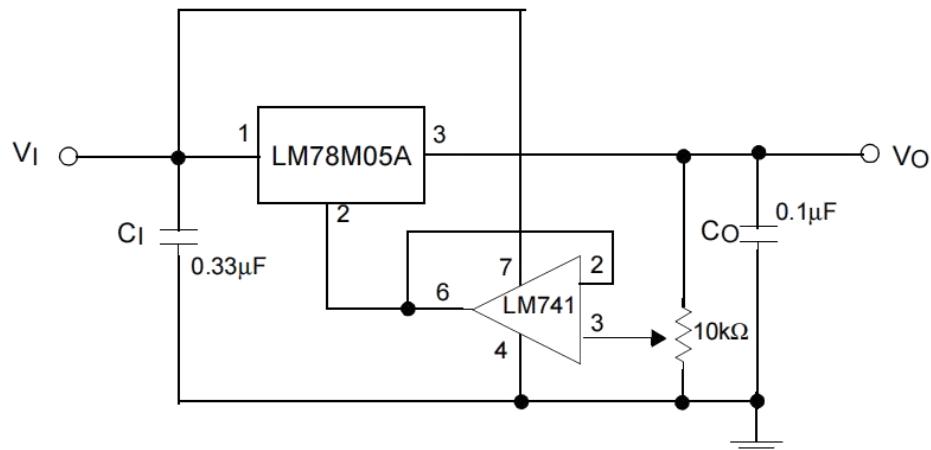


Figure 4. Adjustable Output Regulator (7 to 30V)

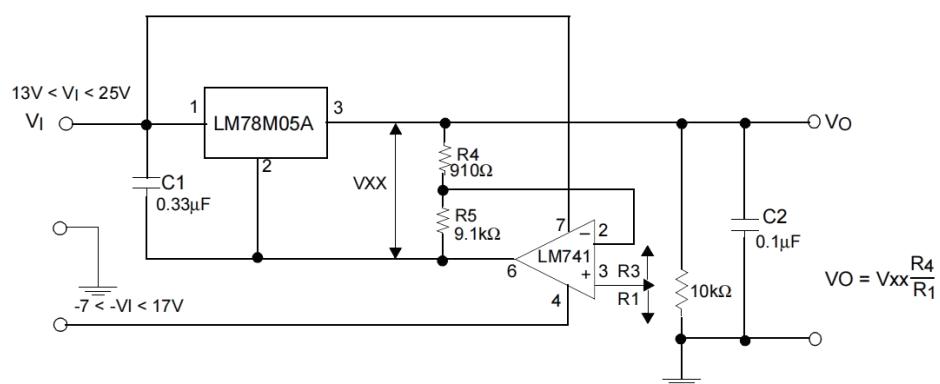
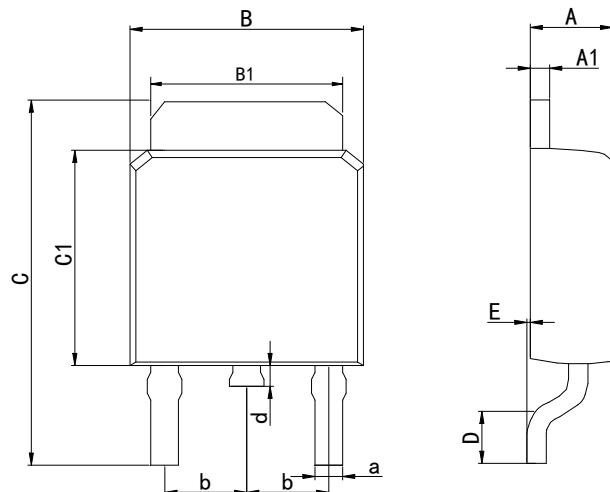



Figure 5. 0.5 to 10V Regulator

Physical Dimensions

TO-252-2

Dimensions In Millimeters(TO-252-2)

Symbol:	A	A1	B	B1	C	C1	D	E	a	d	b
Min:	2.10	0.45	6.40	5.10	9.20	5.30	0.90	0	0.50	0.60	2.28
Max:	2.50	0.70	6.80	5.50	10.6	6.30	1.75	0.23	0.80	1.20	BSC

Revision History

REVISION NUMBER	DATE	REVISION	PAGE
V1.0	2014-8	New	1-11
V1.1	2018-9	Update encapsulation type、Add annotation for Maximum Ratings.	1、2
V1.2	2024-10	Update Lead Temperature	2
V1.3	2025-12	Update important statements	11

IMPORTANT STATEMENT:

hanschip Semiconductor reserves the right to change products and services offered without prior notice. Customers should obtain the latest relevant information before placing orders and verify that such information is current and complete. hanschip Semiconductor assumes no responsibility or liability for altered documents.

Customers are responsible for complying with safety standards and implementing safety measures when using hanschip Semiconductor products in system design and end-product manufacturing. You assume full responsibility for: selecting the appropriate hanschip Semiconductor products for your application; designing, validating, and testing your application; and ensuring that your application complies with applicable standards and all other safety, security, or other requirements. This is to prevent potential risks that may lead to personal injury or property damage.

hanschip Semiconductor products are not approved for use in life support, military, aerospace, or other high-risk applications. hanschip products are neither intended nor warranted for use in such systems or equipment. Any failure or malfunction may lead to personal injury or severe property damage. Such applications are deemed "Unsafe Use." Unsafe Use includes, but is not limited to: surgical and medical equipment, nuclear energy control equipment, aircraft or spacecraft instruments, control or operation of vehicle power, braking, or safety systems, traffic signal instruments, all types of safety devices, and any other applications intended to support or sustain life. hanschip Semiconductor shall not be liable for consequences resulting from Unsafe Use in these fields. Users must independently evaluate and assume all risks. Any issues, liabilities, or losses arising from the use of products beyond their approved applications shall be solely borne by the user. Users may not claim any compensation from hanschip Semiconductor based on these terms. If any third party claims against hanschip Semiconductor due to such Unsafe Use, the user shall compensate hanschip Semiconductor for all resulting damages and liabilities.

hanschip Semiconductor provides technical and reliability data (including datasheets), design resources (including reference designs), application or other design advice, web tools, safety information, and other resources for its semiconductor products. However, no guarantee is made that these resources are free from defects, and no express or implied warranties are provided. The use of testing and other quality control techniques is limited to hanschip Semiconductor's quality assurance scope. Not all parameters of each device are tested.

hanschip Semiconductor's documentation authorizes you to use these resources only for developing applications related to the products described herein. You are not granted rights to any other intellectual property of hanschip Semiconductor or any third party. Any other reproduction or display of these resources is strictly prohibited. You shall fully indemnify hanschip Semiconductor and its agents against any claims, damages, costs, losses, and liabilities arising from your use of these resources. hanschip Semiconductor shall not be held responsible.