

## Voltage Transducer CV 3-2000

For the electronic measurement of voltages: DC, AC, pulsed..., with galvanic separation between the primary circuit and the secondary circuit.

$V_{PN} = 1400 \text{ V}$



RoHS

### Electrical data

|          |                                      |                  |            |
|----------|--------------------------------------|------------------|------------|
| $V_{PN}$ | Primary nominal rms voltage          | 1400             | V          |
| $V_{PM}$ | Primary voltage, measuring range     | 0 ... $\pm 2000$ | V          |
| $V_s$    | Secondary voltage @ $V_{P_{max}}$    | 10               | V          |
| $K_N$    | Conversion ratio                     | 2000 V : 10 V    |            |
| $R_L$    | Load resistance                      | $\geq 1$         | k $\Omega$ |
| $C_L$    | Capacitive loading                   | $\leq 5$         | nF         |
| $U_C$    | Supply voltage ( $\pm 5 \text{ %}$ ) | $\pm 15$         | V          |
| $I_c$    | Current consumption                  | $32 + V_s / R_L$ | mA         |

### Accuracy - Dynamic performance data

|         |                                                                                                           |            |            |
|---------|-----------------------------------------------------------------------------------------------------------|------------|------------|
| $X_G$   | Overall accuracy @ $V_{PN}$ , $T_A = 25 \text{ }^\circ\text{C}$<br>$-40 \dots +85 \text{ }^\circ\text{C}$ | Max        | %          |
|         |                                                                                                           | $\pm 0.2$  |            |
| $V_O$   | Offset voltage @ $V_p = 0$ , $T_A = 25 \text{ }^\circ\text{C}$<br>$-40 \dots +85 \text{ }^\circ\text{C}$  | $\pm 0.6$  | mV         |
|         |                                                                                                           | $\pm 5$    |            |
| $t_r$   | Step response time <sup>1)</sup> to 90 % of $V_{PN}$                                                      | $\pm 13$   | mV         |
|         |                                                                                                           | 0.4        |            |
| $dv/dt$ | dv/dt accurately followed                                                                                 | 900        | V/ $\mu$ s |
|         |                                                                                                           | DC ... 300 |            |
| $BW$    | Frequency bandwidth (-1 dB) @ 25 % of $V_{PN}$                                                            | kHz        | kHz        |
|         |                                                                                                           |            |            |

### General data

|       |                               |                |                  |
|-------|-------------------------------|----------------|------------------|
| $T_A$ | Ambient operating temperature | -40 ... +85    | $^\circ\text{C}$ |
| $T_s$ | Ambient storage temperature   | -45 ... +90    | $^\circ\text{C}$ |
| $P_p$ | Total primary power loss      | 3.1            | W                |
| $R_1$ | Primary resistance            | 640            | k $\Omega$       |
| $m$   | Mass                          | 560            | g                |
|       | Standard                      | EN 50155: 1995 |                  |

Note: <sup>1)</sup> With a dv/dt of 900 V/ $\mu$ s.

### Features

- Closed loop (compensated) voltage transducer using the Hall effect
- Insulating plastic case recognized according to UL 94-V0
- Patent pending.

### Advantages

- Excellent accuracy
- Very good linearity
- Low thermal drift
- Low response time
- High bandwidth
- High immunity to external interference
- Low disturbance in common mode.

### Applications

- Single or three phase inverters
- Propulsion and braking choppers
- Propulsion converters
- Auxiliary converters
- Battery chargers.

### Application Domain

- Traction.

## Voltage Transducer CV 3-2000

### Insulation characteristic

|          |                                                  |      |    |
|----------|--------------------------------------------------|------|----|
| $U_d$    | Rms voltage for AC insulation test, 50 Hz, 1 min | 6    | kV |
| $U_e$    | Partial discharge extinction rms voltage @ 10 pC | 2    | kV |
|          |                                                  | Min  |    |
| $d_{Cp}$ | Creepage distance                                | 83.8 | mm |
| $d_{Cl}$ | Clearance                                        | 76.4 | mm |
| $CTI$    | Comparative Tracking Index (group I)             | 600  |    |

### Safety

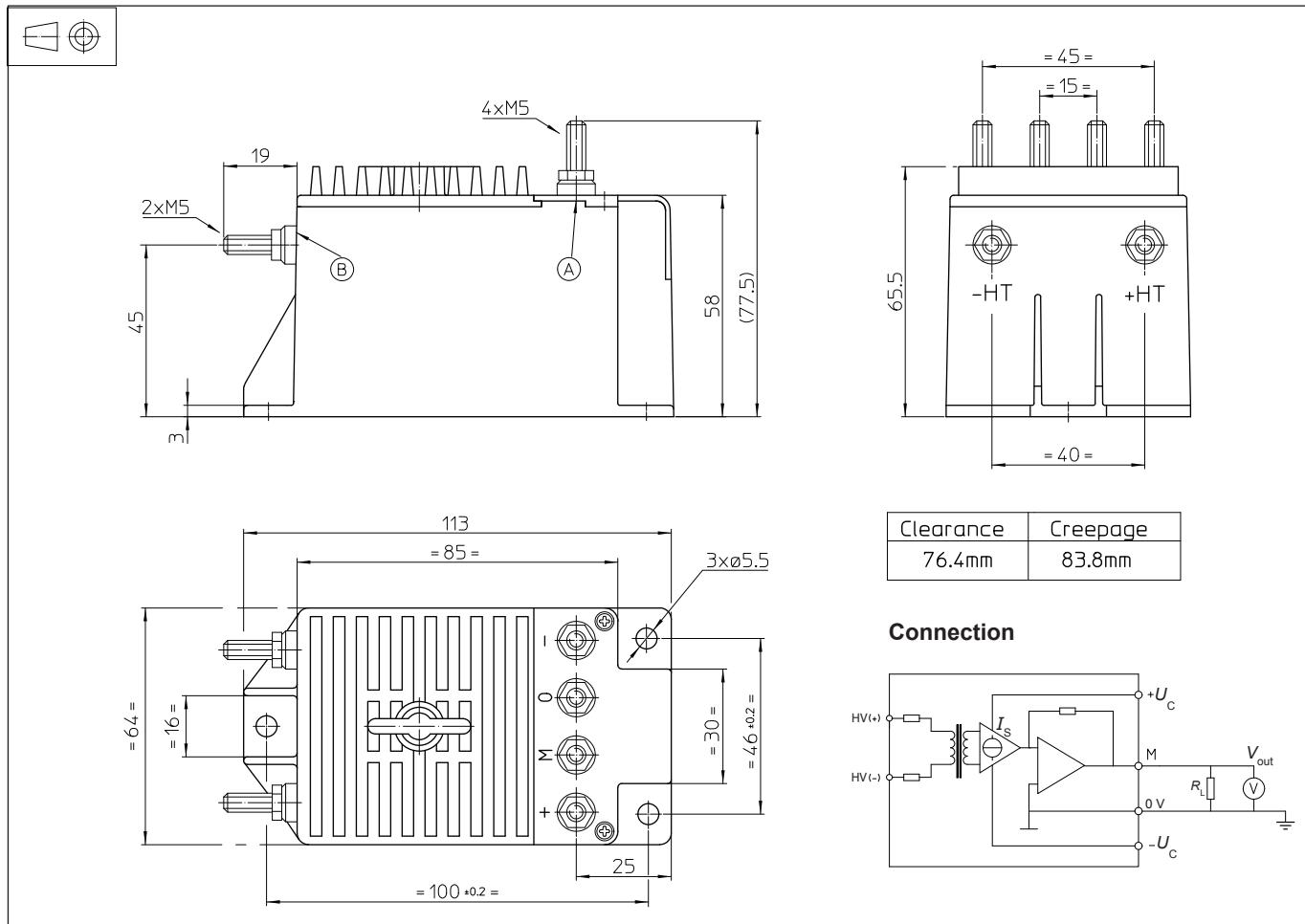
This transducer must be used in limited-energy secondary circuits according to IEC 61010-1.



This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.



Caution, risk of electrical shock


When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).

Ignoring this warning can lead to injury and/or cause serious damage.

This transducer is a build-in device, whose conducting parts must be inaccessible after installation.

A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

**Dimensions CV 3-2000 (in mm)**

**Mechanical characteristics**

- General tolerance  $\pm 0.3$  mm
- Transducer fastening 3 holes  $\varnothing 5.5$  mm
- 3 steel screws M5
- Recommended fastening torque 3.8 N·m
- Connection of primary 2 threaded studs M5
- Connection of secondary 4 threaded studs M5
- Recommended fastening torque 2.2 N·m

**Remarks**

- $V_S$  is positive when  $V_p$  is applied on terminal +HV.
- EMC tested with a shielded secondary cable, shield connected to 0 V at both ends, or disconnected.
- Installation of the transducer must be done unless otherwise specified on the datasheet, according to LEM Transducer Generic Mounting Rules. Please refer to LEM document N°ANE120504 available on our Web site: **Products/Product Documentation**.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.