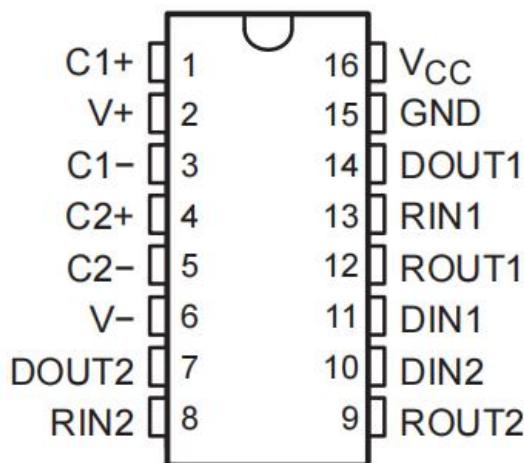


5V DUAL RS-232 LINE DRIVER/RECEIVER WITH $\pm 15\text{-kV}$ ESD PROTECTION

Features

- ESD Protection for RS-232 Bus Pins $\pm 15\text{kV}$ -Human-Body Model
- Meets or Exceeds the Requirements of TIA/EIA-232-F and ITU v.28 Standards
- Operates at 5V VCC Supply
- Operates Up To 120 kbit/s
- External Capacitors ... $4 \times 0.1 \mu\text{F}$
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- Applications
Battery-Powered Systems, PDAs, Notebooks, Laptops, Palmtop PCs, and Hand-Held Equipment


Ordering Information

DEVICE	PACKAGE TYPE	MARKING	PACKING	PACKING QTY
SP202EIN	DIP-16	SP202EI	TUBE	1000pcs/Box
SP202EIM/TR	SOP-16	SP202EI	REEL	2500pcs/Reel
SP202EIMT/TR	TSSOP-16	SP202EI	REEL	2500pcs/Reel
SP202ECN	DIP-16	SP202EC	TUBE	1000pcs/Box
SP202ECM/TR	SOP-16	SP202EC	REEL	2500pcs/Reel
SP202ECMT/TR	TSSOP-16	SP202EC	REEL	2500pcs/Reel

General Description

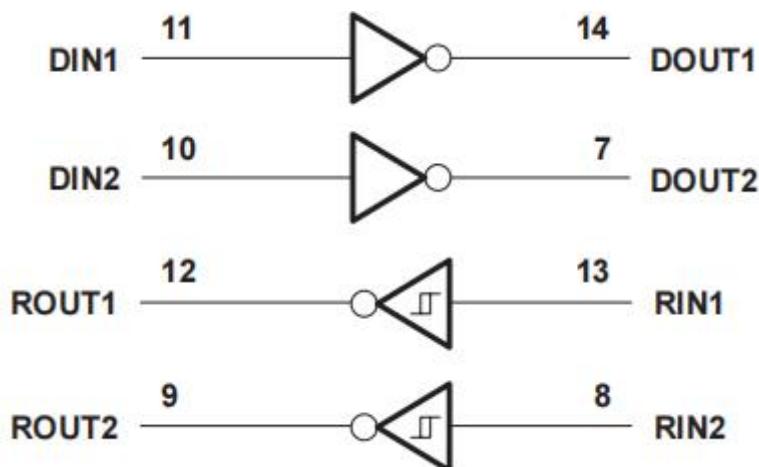
The SP202 device consists of two line drivers, two line receivers, and a dual charge-pump circuit with $\pm 15\text{-kV}$ ESD protection pin to pin (serial-port connection pins, including GND). The device meets the requirements of TIA/EIA-232-F and provides the electrical interface between an asynchronous communication controller and the serial-port connector. The charge pump and four small external capacitors allow operation from a single 5-V supply. The device operates at data signaling rates up to 120 kbit/s and a maximum of 30-V/ μs driver output slew rate.

Pin symbols in package

Function Tables

EACH DRIVER

INPUTD _{IN}	OUTPUTD _{OUT}
L	H
H	L


H=high level, L=low level

EACH RECEIVER

INPUTR _{IN}	OUTPUTR _{OUT}
L	H
H	L
Open	H

H = high level, L = low level, Open = input disconnected or connected driver off

logic diagram (positive logic)

absolute maximum ratings

over operating free-air temperature range (unless otherwise noted)

Condition		Min	Max	UNITS
Supply voltage range, V_{CC} (see Note 1)		-0.3	6	V
Positive charge pump voltage range, V_+ (see Note 1)		$V_{CC}-0.3$	14	V
Negative charge pump voltage range, V_- (see Note 1)		-14	0.3	V
Input voltage range, V_I	Drivers	-0.3	$V_+ +0.3$	V
	Receivers	-30	+30	V
Output voltage range, V_O	Drivers	$V_- -0.3V$	$V_+ +0.3$	V
	Receivers	-0.3	$V_{CC} + 0.3$	V
Short-circuit duration: D_{OUT}		Continuous		
Package thermal impedance, θ_{JA} (see Notes 2 and 3):	SOP package		73	°C/W
	DIP package		67	°C/W
	TSSOP package		1.8	°C/W
Operating virtual junction temperature, T_J			150	°C
Storage temperature range, T_{STG}		-65	150	°C
Lead Temperature (Soldering, 10 seconds)		-	260	°C

Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not ensured.

NOTES:

1. All voltages are with respect to network GND.
2. Maximum power dissipation is a function of $T_J(max), \theta_{JA}$, and TA . The maximum allowable power dissipation at any allowable ambient temperature is $PD = (T_J(max) - TA)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.
3. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 4 and Figure 4)

PARAMETER			MIN	NOM	MAX	UNIT
Supply voltage			4.5	5	5.5	V
VIH	Driver high-level input voltage	D_{IN}	2			V
VIL	Driver low-level input voltage	D_{IN}			0.8	V
VI	Driver input voltage	D_{IN}	0		5.5	V
	Receiver input voltage		-30		30	
TA	Operating free-air temperature		SP202EC	0	70	°C
			SP202EI	-40	85	

NOTE 4: Test conditions are $C1-C4 = 0.1\mu F$ at $V_{CC} = 5V \pm 0.5 V$.

electrical characteristics

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 4 and Figure 4)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ICC	Supply current Supply current	No load, VCC = 5 V	8	15	mA

All typical values are at VCC = 5 V, and TA = 25°C.

NOTE 4: Test conditions are C1-C4 = 0.1μF at VCC = 5V ± 0.5 V.

DRIVER SECTION

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 4 and Figure 4)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
VOH	High-level output voltage D _{OUT} at RL = 3 kΩ to GND, D _{IN} = GND	5	9		V
VOL	Low-level output voltage D _{OUT} at RL = 3 kΩ to GND, D _{IN} = V _{CC}	-5	-9		V
IIH	High-level input current V _I = V _{CC}		15	200	μA
IIL	Low-level input current V _I at 0 V		-15	-200	μA
IOS‡	Short-circuit output current V _{CC} = 5.5 V, V _O = 0 V		±10	±60	mA
r _O	Output resistance V _{CC} , V ₊ , and V ₋ = 0 V, V _O = ±2 V	300			Ω

† All typical values are at VCC = 5 V, and TA = 25°C.

‡ Short-circuit durations should be controlled to prevent exceeding the device absolute power-dissipation ratings, and not more than one output should be shorted at a time.

NOTE 4: Test conditions are C1-C4 = 0.1μF at VCC = 5 V ± 0.5 V.

switching characteristics

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 4 and Figure 4)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Maximum data rate	CL = 50 to 1000 pF, RL = 3 kΩ to 7 kΩ, See One D _{OUT} switching, Figure 1	120			kbit/s
t _{PLH} (D)	Propagation delay time, low- to high-level output CL = 2500 pF, RL = 3 kΩ, All drivers loaded, See Figure 1		2		μs
t _{PHL} (D)	Propagation delay time, High-to low-level output CL = 2500 pF, RL = 3 kΩ, All drivers loaded, See Figure 1		2		μs
tsk(p)	Pulse skew§ CL = 150 pF to 2500 pF, RL = 3 kΩ to 7 kΩ, See Figure 2		300		ns
SR(tr)	Slew rate, transition region (see Figure 1) CL = 50 pF to 1000 pF, V _{CC} = 5V RL = 3 kΩ to 7 kΩ,	3	6	30	V/μs

All typical values are at VCC = 5 V, and TA = 25°C.

§ Pulse skew is defined as |t_{PLH} - t_{PHL}| of each channel of the same device.

NOTE 4: Test conditions are C1-C4 = 0.1μF at VCC = 5 V ± 0.5 V.

ESD protection

PIN	TEST CONDITIONS	TYP	UNIT
D _{OUT} , R _{IN}	Human-Body Model	±15	kV

RECEIVER SECTION

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 4 and Figure 4)

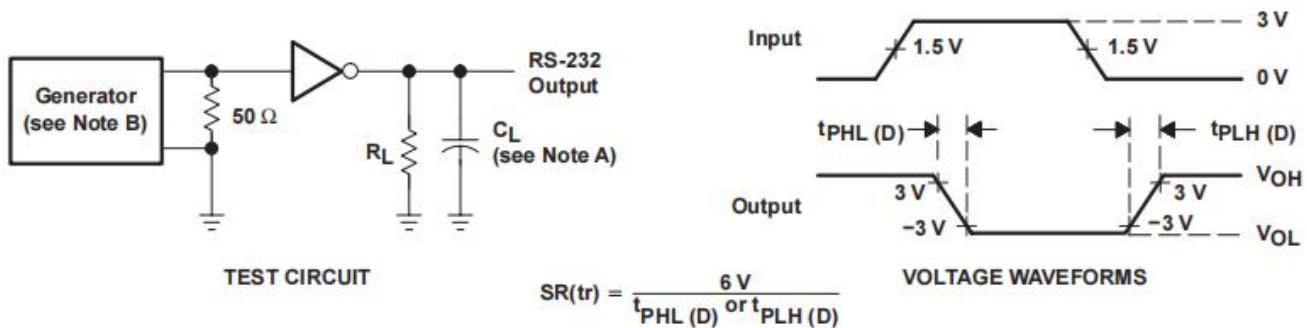
PARAMETER	TEST CONDITIONS	MIN	TYPT†	MAX	UNIT
VOH High-level output voltage	$I_{OH} = -1 \text{ mA}$	3.5V	$V_{CC}-0.4 \text{ V}$		V
VOL Low-level output voltage	$I_{OL} = 1.6 \text{ mA}$			0.4	V
VIT ₊ Positive-going input threshold voltage	$V_{CC} = 5 \text{ V}$, $T_A = 25^\circ\text{C}$		1.7	2.4	V
VIT ₋ Negative-going input threshold voltage	$V_{CC} = 5 \text{ V}$, $T_A = 25^\circ\text{C}$	0.8	1.2		V
V _{hys} Input hysteresis (VIT ₊ – VIT ₋)		0.2	0.5	1	V
r_i Input resistance	$V_I = \pm 3 \text{ V}$ to $\pm 25 \text{ V}$	3	5	7	$\text{k}\Omega$

All typical values are at $V_{CC} = 5 \text{ V}$, and $T_A = 25^\circ\text{C}$.

NOTE 4: Test conditions are $C1-C4 = 0.1\mu\text{F}$ at $V_{CC} = 5 \text{ V} \pm 0.5 \text{ V}$.

switching characteristics

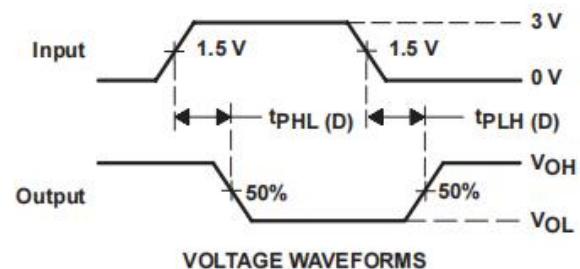
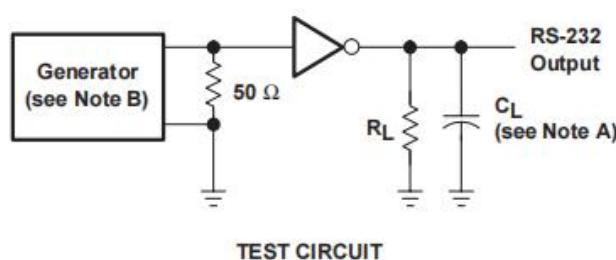
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 4 and Figure 3)


PARAMETER	TEST CONDITIONS	MIN	TYPT†	MAX	UNIT
t _{PLH} (R)	Propagation delay time, low- to high-level output	CL = 150 pF	0.5	10	μs
t _{PHL} (R)	Propagation delay time, high- to low-level output	CL = 150 pF	0.5	10	μs
tsk(p)	Pulse skew‡		300		ns

† All typical values are at $V_{CC} = 5 \text{ V}$, and $T_A = 25^\circ\text{C}$.

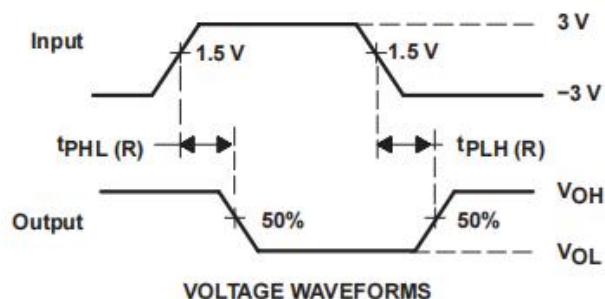
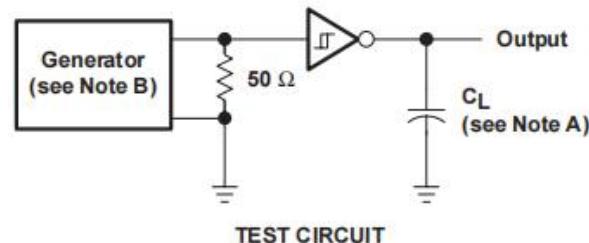
‡ Pulse skew is defined as $|t_{PLH} - t_{PHL}|$ of each channel of the same device.

NOTE 4: Test conditions are $C1-C4 = 0.1\mu\text{F}$, at $V_{CC} = 5 \text{ V} \pm 0.5 \text{ V}$.



PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

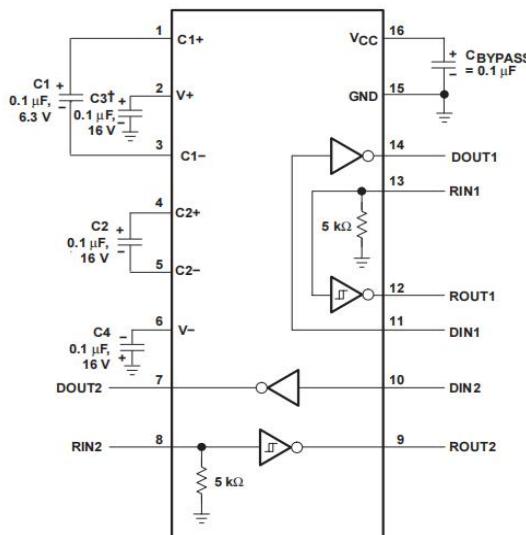
B. The pulse generator has the following characteristics: PRR = 120 kbit/s, ZO = 50 Ω, 50% duty cycle, $t_r \leq 10 \text{ ns}$, $t_f \leq 10 \text{ ns}$.



Figure 1. Driver Slew Rate

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

C. The pulse generator has the following characteristics: PRR = 120 kbit/s, $Z_0 = 50 \Omega$, 50% duty cycle, $t_r \leq 10 \text{ ns}$, $t_f \leq 10 \text{ ns}$.


Figure 2. Driver Pulse Skew

NOTES: A. C_L includes probe and jig capacitance.

D. The pulse generator has the following characteristics: $Z_0 = 50 \Omega$, 50% duty cycle, $t_r \leq 10 \text{ ns}$, $t_f \leq 10 \text{ ns}$.

Figure 3. Receiver Propagation Delay Times

APPLICATION INFORMATION

† C3 can be connected to VCC or GND.

NOTES: A. Resistor values shown are nominal.

B. Nonpolarized ceramic capacitors are acceptable. If polarized tantalum or electrolytic capacitors are used, they should be connected as shown.

Figure 4. Typical Operating Circuit and Capacitor Values

APPLICATION INFORMATION

capacitor selection

The capacitor type used for C1–C4 is not critical for proper operation. The SP202 requires 0.1- μ F capacitors, although capacitors up to 10 μ F can be used without harm. Ceramic dielectrics are suggested for the 0.1- μ F capacitors. When using the minimum recommended capacitor values, make sure the capacitance value does not degrade excessively as the operating temperature varies. If in doubt, use capacitors with a larger (e.g., 2 \times) nominal value. The capacitors' effective series resistance (ESR), which usually rises at low temperatures, influences the amount of ripple on V+ and V-.

Use larger capacitors (up to 10 μ F) to reduce the output impedance at V+ and V-.

Bypass V_{CC} to ground with at least 0.1 μ F. In applications sensitive to power-supply noise generated by the charge pumps, decouple V_{CC} to ground with a capacitor the same size as (or larger than) the charge-pump capacitors (C1–C4).

ESD protection

SP202 devices have standard ESD protection structures incorporated on the pins to protect against electrostatic discharges encountered during assembly and handling. In addition, the RS232 bus pins (driver outputs and receiver inputs) of these devices have an extra level of ESD protection. Advanced ESD structures were designed to successfully protect these bus pins against ESD discharge of ± 15 -kV when powered down.

ESD test conditions

Stringent ESD testing is performed by TI, based on various conditions and procedures. Please contact TI for a reliability report that documents test setup, methodology, and results.

Human-Body Model (HBM)

The HBM of ESD testing is shown in Figure 5. Figure 6 shows the current waveform that is generated during a discharge into a low impedance. The model consists of a 100-pF capacitor, charged to the ESD voltage of concern, and subsequently discharged into the device under test (DUT) through a 1.5-k Ω resistor.

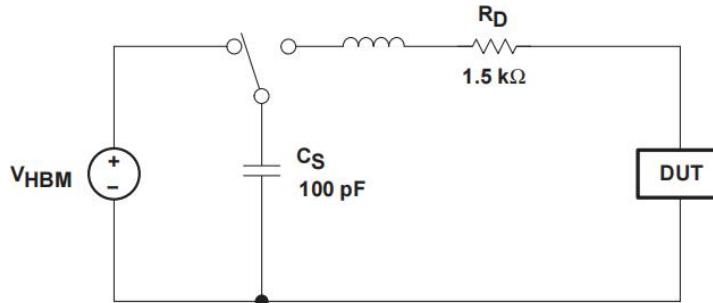
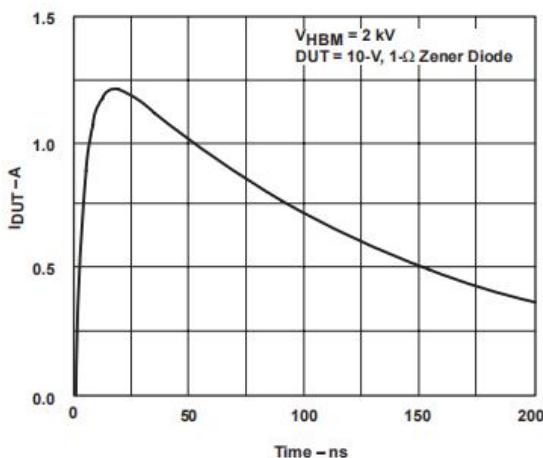
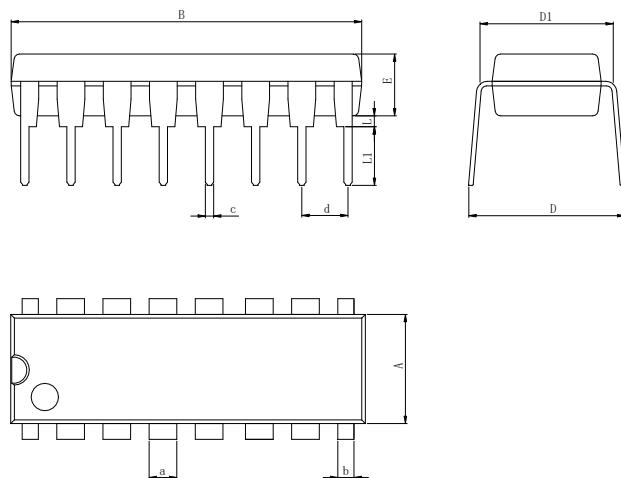


Figure 5. HBM ESD Test Circuit

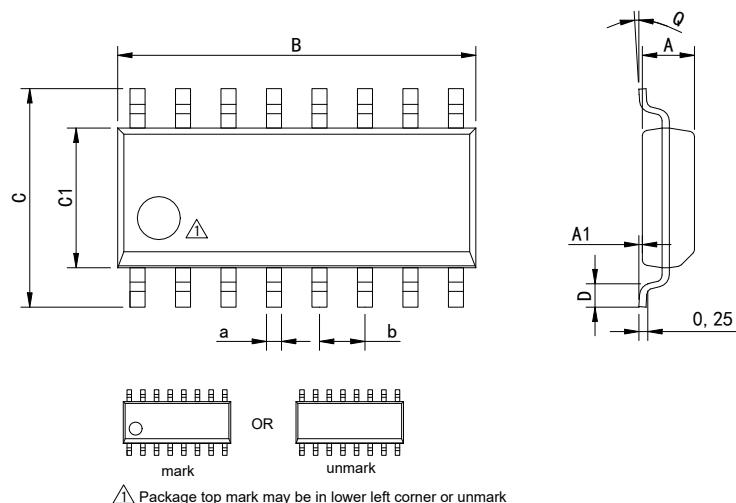
APPLICATION INFORMATION




Figure 6. Typical HBM Current Waveform

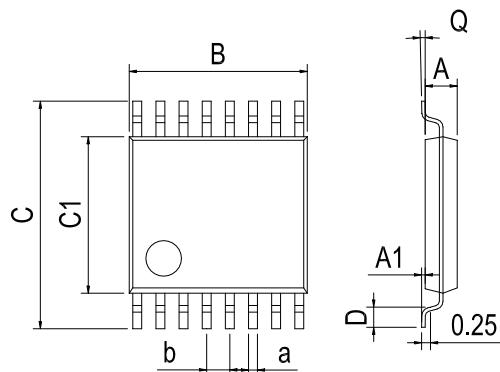
Machine Model (MM)

The MM ESD test applies to all pins using a 200-pF capacitor with no discharge resistance. The purpose of the MM test is to simulate possible ESD conditions that can occur during the handling and assembly processes of manufacturing. In this case, ESD protection is required for all pins, not just RS-232 pins. However, after PC board assembly, the MM test no longer is as pertinent to the RS-232 pins.


Physical Dimensions

DIP-16

Dimensions In Millimeters(DIP-16)											
Symbol:	A	B	D	D1	E	L	L1	a	b	c	d
Min:	6.10	18.94	8.10	7.42	3.10	0.50	3.00	1.50	0.85	0.40	2.54 BSC
Max:	6.68	19.56	10.9	7.82	3.55	0.70	3.60	1.55	0.90	0.50	


SOP-16

Dimensions In Millimeters(SOP-16)									
Symbol:	A	A1	B	C	C1	D	Q	a	b
Min:	1.35	0.05	9.80	5.80	3.80	0.40	0°	0.35	1.27 BSC
Max:	1.55	0.20	10.0	6.20	4.00	0.80	8°	0.45	

Physical Dimensions

TSSOP-16

Dimensions In Millimeters(TSSOP-16)										
Symbol:	A	A1	B	C	C1	D	Q	a	b	
Min:	0.85	0.05	4.90	6.20	4.30	0.40	0°	0.20	0.65 BSC	
Max:	0.95	0.20	5.10	6.60	4.50	0.80	8°	0.25		

Revision History

REVISION NUMBER	DATE	REVISION	PAGE
V1.0	2015-6	New	1-12
V1.1	2020-9	Modify the package dimension diagram TSSOP-16、Updated DIP-16 dimension	9、10
V1.2	2024-11	Update Lead Temperature、	3.
V1.3	2025-12	Update important statements、Update SOP-16 Dimension drawing	9、12

IMPORTANT STATEMENT:

Huaguan Semiconductor reserves the right to change products and services offered without prior notice. Customers should obtain the latest relevant information before placing orders and verify that such information is current and complete. Huaguan Semiconductor assumes no responsibility or liability for altered documents.

Customers are responsible for complying with safety standards and implementing safety measures when using Huaguan Semiconductor products in system design and end-product manufacturing. You assume full responsibility for: selecting the appropriate Huaguan Semiconductor products for your application; designing, validating, and testing your application; and ensuring that your application complies with applicable standards and all other safety, security, or other requirements. This is to prevent potential risks that may lead to personal injury or property damage.

Huaguan Semiconductor products are not approved for use in life support, military, aerospace, or other high-risk applications. Huaguan products are neither intended nor warranted for use in such systems or equipment. Any failure or malfunction may lead to personal injury or severe property damage. Such applications are deemed "Unsafe Use." Unsafe Use includes, but is not limited to: surgical and medical equipment, nuclear energy control equipment, aircraft or spacecraft instruments, control or operation of vehicle power, braking, or safety systems, traffic signal instruments, all types of safety devices, and any other applications intended to support or sustain life. Huaguan Semiconductor shall not be liable for consequences resulting from Unsafe Use in these fields. Users must independently evaluate and assume all risks. Any issues, liabilities, or losses arising from the use of products beyond their approved applications shall be solely borne by the user. Users may not claim any compensation from Huaguan Semiconductor based on these terms. If any third party claims against Huaguan Semiconductor due to such Unsafe Use, the user shall compensate Huaguan Semiconductor for all resulting damages and liabilities.

Huaguan Semiconductor provides technical and reliability data (including datasheets), design resources (including reference designs), application or other design advice, web tools, safety information, and other resources for its semiconductor products. However, no guarantee is made that these resources are free from defects, and no express or implied warranties are provided. The use of testing and other quality control techniques is limited to Huaguan Semiconductor's quality assurance scope. Not all parameters of each device are tested.

Huaguan Semiconductor's documentation authorizes you to use these resources only for developing applications related to the products described herein. You are not granted rights to any other intellectual property of Huaguan Semiconductor or any third party. Any other reproduction or display of these resources is strictly prohibited. You shall fully indemnify Huaguan Semiconductor and its agents against any claims, damages, costs, losses, and liabilities arising from your use of these resources. Huaguan Semiconductor shall not be held responsible.