

Description

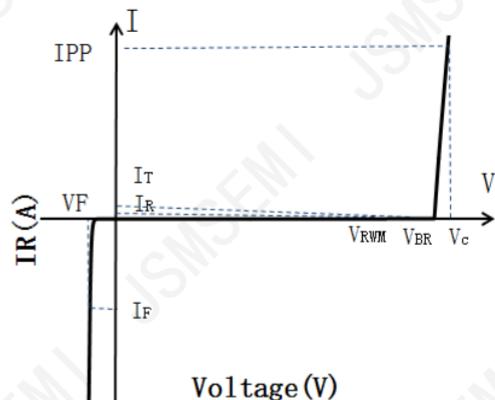
PESD5V0U1UA,115-JSM is an ultra-low capacitance ESD protection diode designed to safeguard high-speed data lines. It complies with RoHS standards and features a Pb-Free matte tin lead finish, offering reliable ESD protection in a compact SOD-323 package.

SOD-323

Features

- 80W (8/20μs) peak pulse power
- Ultra-low junction capacitance (typ 0.5pF)
- SOD-323 compact package
- RoHS compliant, Pb-Free matte tin lead finish
- Protects one high-speed data line
- Meets IEC61000-4-2 Level 4 standards

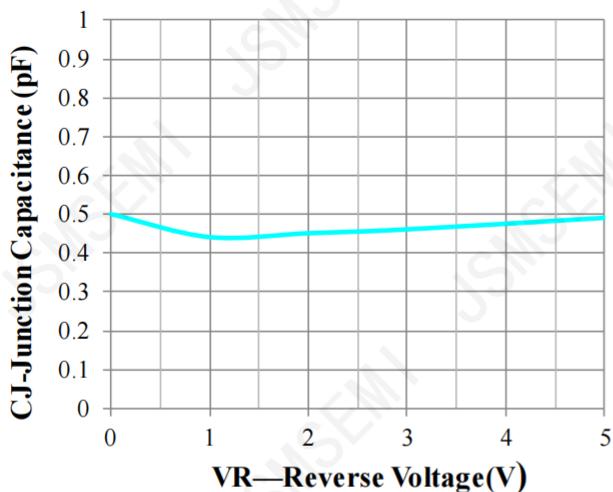
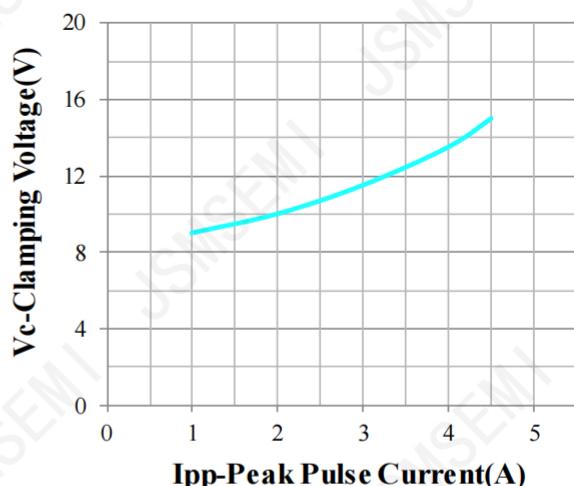
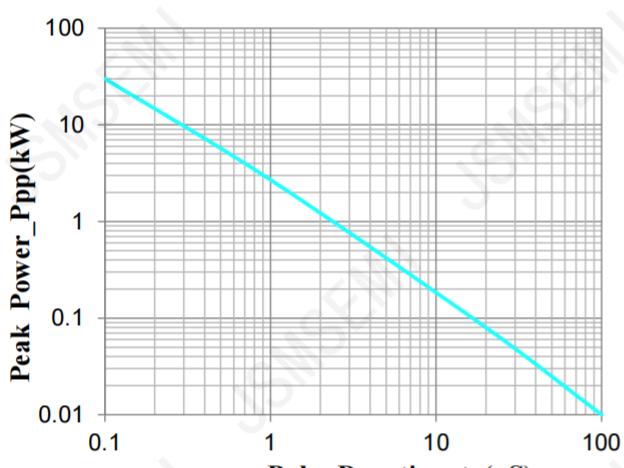
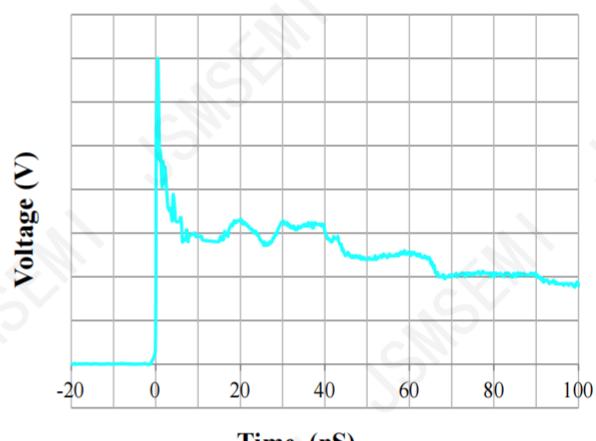
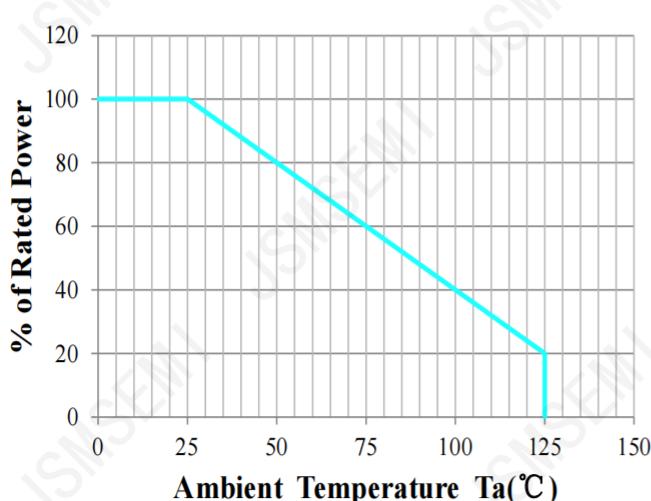
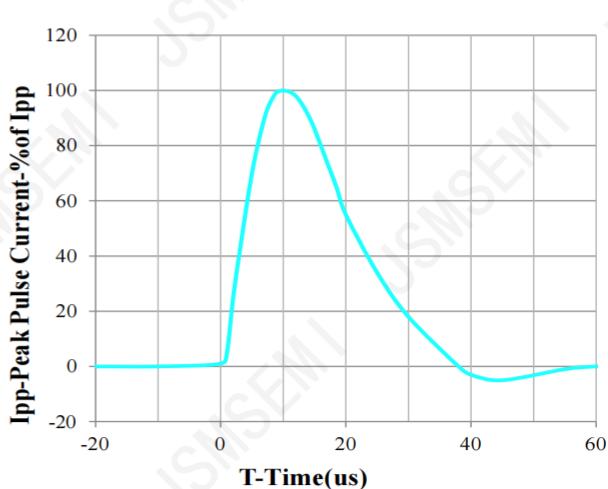
Applications

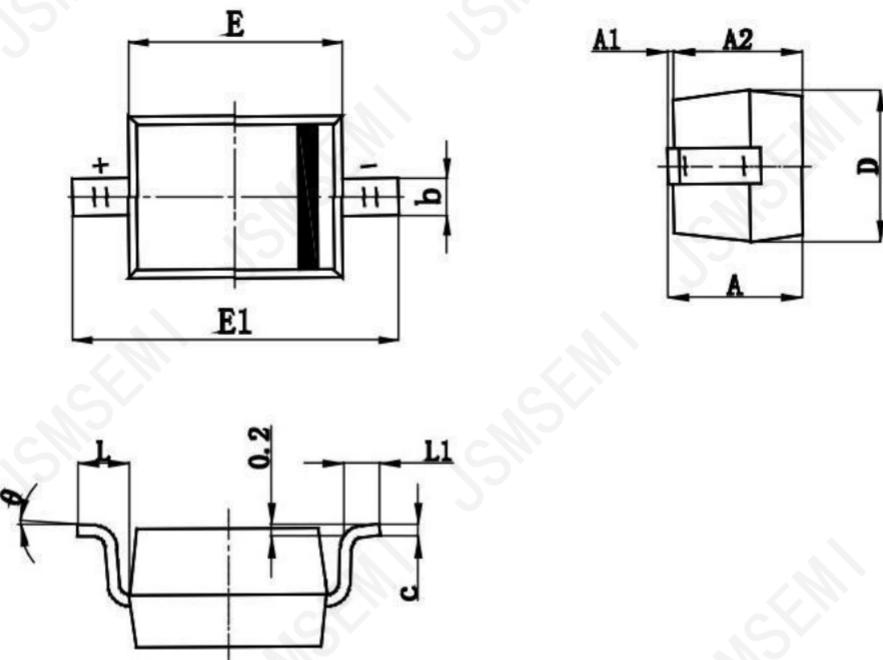

- Serial ATA
- USB Ports
- MDDI Ports
- Display Port
- PCI Express
- Digital Visual Interface (DVI)
- Cellular Handsets and Accessories

Maximum Ratings(TA=25°C)

Symbol	Parameter	Value	Unit
PPK	Peak Pulse Power	80	W
IPP	Peak Pulse Current	4	A
V _{ESD} (Contact)	Contact ESD Voltage per IEC61000-4-2	15	kV
V _{ESD} (Air)	Air ESD Voltage per IEC61000-4-2	20	kV
T _J	Junction Temperature	-55 to +125	°C
T _{TSG}	Storage Temperature	-55 to +150	°C

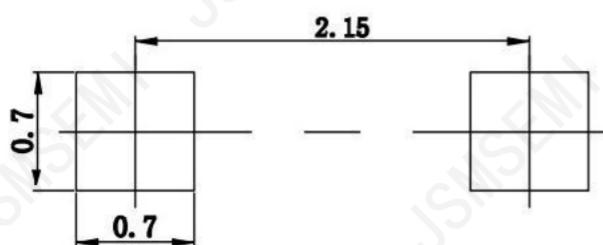
Partial Electronic Parameters







Symbol	Parameter
IT	Test Current
IPP	Maximum Reverse Peak Pulse Current
Vc	Clamping Voltage @Ic


Electrical Characteristics(TA=25°C)

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Reverse Working Voltage	VRWM				5.0	V
Breakdown Voltage	VBR	IT= 1mA	6.5	7.5	8.5	V
Reverse Leakage Current	I _R	VRWM= 5.0V			0.2	μA
Clamping Voltage	V _C	IPP= 1A (8 x 20μs pulse)			9.0	V
Clamping Voltage	V _C	IPP= 4A (8 x 20μs pulse)			20	V
Junction Capacitance	C _J	VR = 0V, f = 1MHz		0.5	0.7	pF

Typical Performance Characteristics(TA=25°C unless otherwise Specified)



Junction Capacitance vs. Reverse Voltage

Clamping Voltage vs. Peak Pulse Current

Peak Pulse Power vs. Pulse Time

IEC61000-4-2 Pulse Waveform

Power Derating Curve

8 X 20μs Pulse Waveform

Package Outline Dimensions

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min.	Max.	Min.	Max.
A		1.000		0.039
A1	0.000	0.100	0.000	0.004
A2	0.800	0.900	0.031	0.035
b	0.250	0.350	0.010	0.014
c	0.080	0.150	0.003	0.006
D	1.200	1.400	0.047	0.055
E	1.600	1.800	0.063	0.071
E1	2.550	2.750	0.100	0.108
L	0.475REF.		0.019REF.	
L1	0.250	0.400	0.010	0.016
θ	0°	8°	0°	8°

Suggested Pad Layout

Note:

1. Controlling dimension: in millimeters.
2. General tolerance: ± 0.05 mm.
3. The pad layout is for reference purposes only.

Revision History

Rev.	Change	Date
V1.0	Initial version	6/27/2021

Important Notice

JSMSEMI Semiconductor (JSMSEMI) PRODUCTS ARE NEITHER DESIGNED NOR INTENDED FOR USE IN MILITARY AND/OR AEROSPACE, AUTOMOTIVE OR MEDICAL DEVICES OR SYSTEMS UNLESS THE SPECIFIC JSMSEMI PRODUCTS ARE SPECIFICALLY DESIGNATED BY JSMSEMI FOR SUCH USE. BUYERS ACKNOWLEDGE AND AGREE THAT ANY SUCH USE OF JSMSEMI PRODUCTS WHICH JSMSEMI HAS NOT DESIGNATED FOR USE IN MILITARY AND/OR AEROSPACE, AUTOMOTIVE OR MEDICAL DEVICES OR SYSTEMS IS SOLELY AT THE BUYER'S RISK.

JSMSEMI assumes no liability for application assistance or customer product design. Customers are responsible for their products and applications using JSMSEMI products.

Resale of JSMSEMI products or services with statements different from or beyond the parameters stated by JSMSEMI for that product or service voids all express and any implied warranties for the associated JSMSEMI product or service. JSMSEMI is not responsible or liable for any such statements.

JSMSEMI All Rights Reserved. Information and data in this document are owned by JSMSEMI wholly and may not be edited, reproduced, or redistributed in any way without the express written consent from JSMSEMI.

Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the JSMSEMI product that you intend to use.

For additional information please contact Kevin@jsmsemi.com or visit www.jsmsemi.com