

TWSC eMMC

TEMCG105T10-A8S5**Datasheet**

Version 1.1

Sales@twsc.com.cn
Support@twsc.com.cn**Version History**

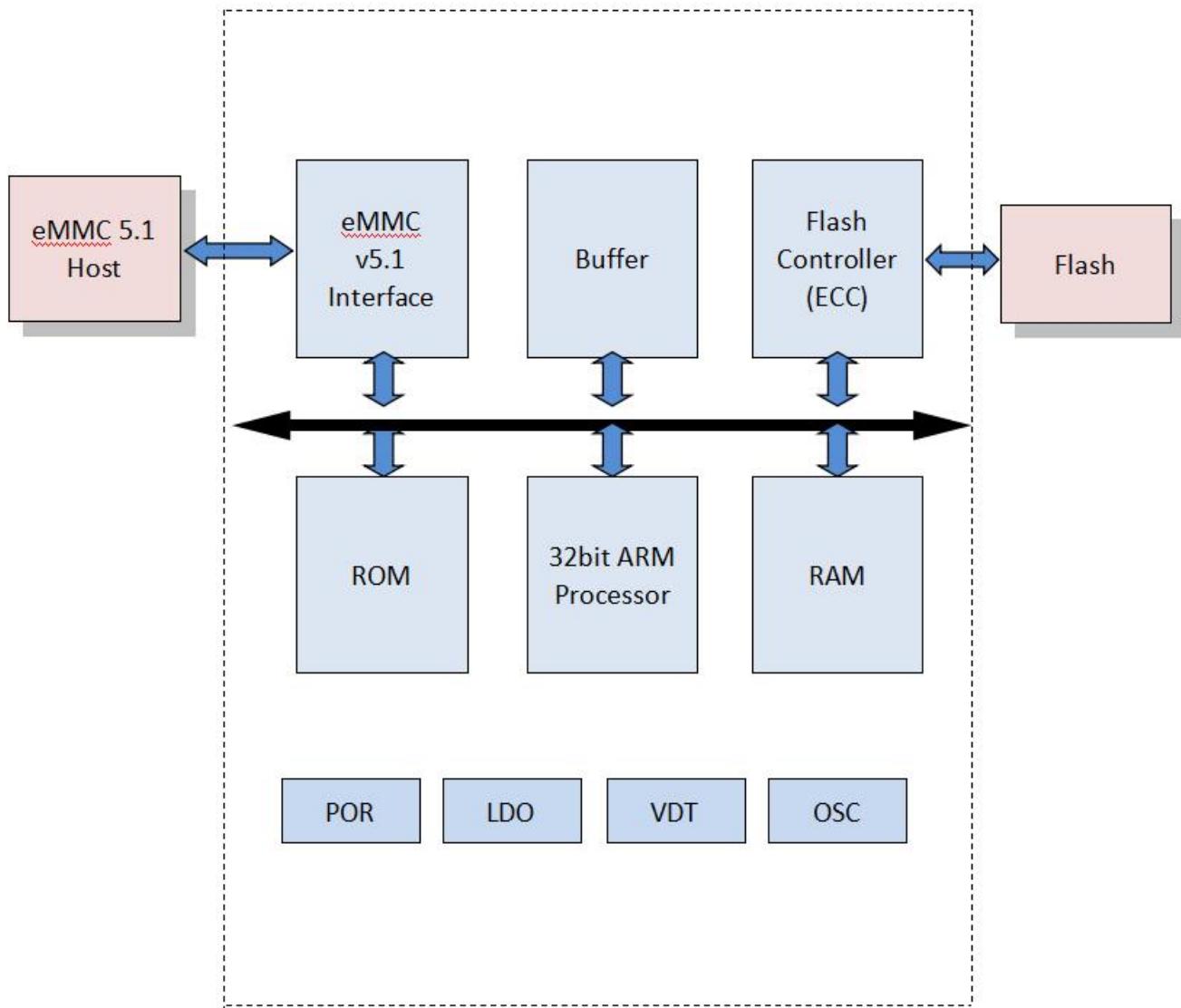
Version Number	Description	Release Date
1.0	Initial release	2024.09
1.1	Update size information	2025.01

Table of contents

1. General Description	1
2. Package Dimension	3
3. Product Specifications	4
3.1 Product Introduction	4
3.2 Performance	4
3.3 Power Consumption	5
4. eMMC 153 Ball Pin Assignment	6
4.1 eMMC Pin Assignments and Definition	7
5. eMMC Device and System	8
5.1 eMMC System Overview	8
5.2 eMMC Device Overview	8
6. Partition Management	9
6.1 Boot Operation	10
7. Electrical Characteristics	11
7.1 General Operating Conditions	11
7.2 Device Power Diagram	11
7.3 Power Supply Voltage	12
7.4 Bus Signal Line Loading	12
7.5 Bus Signal Level	12
7.6 Bus Timing for eMMC In Backward-Compatible Device and High Speed Mode	13
7.7 Bus Timing for eMMC in DDR Mode	15
7.8 Bus Timing for eMMC in HS200 Mode	17
7.9 Bus Timing for eMMC in HS400 Mode	18
8. eMMC Register Description	20
8.1 Operation Conditions Register (OCR) Register	20
8.2 Card Identification Register (CID)	21
8.3 Driver Stage Register (DSR)	21
8.4 Relative Card Address Register (RCA)	21
8.5 Card Specific Data Register (CSD)	21
9. Connection Guide	30
9.1 Schematic Diagram	30

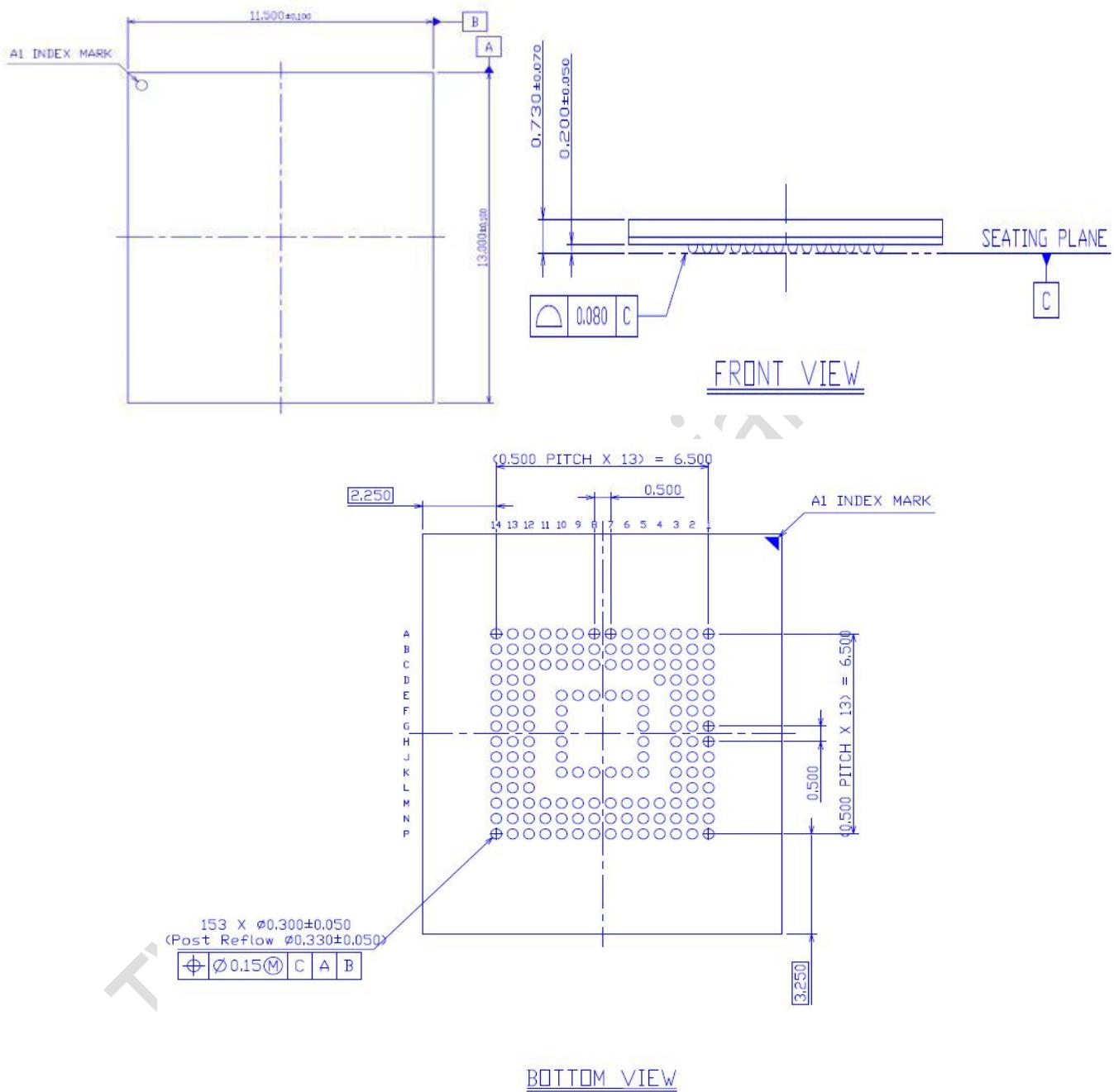
10. Order Information	31
-----------------------------	----

TWSC Confidential Only


1. General Description

The TWSC eMMC is an embedded, non-volatile memory module with controller and NAND flash memory in one package. This controller have LDPC ECC engine, NAND flash with LDPC engine will have better endurance. With clear specifications defined by JEDEC and simplified interface, eMMC saves time of developers for handling memory management.

This document describes the specifications of TWSC eMMC. Advantages such as low power consumption, compact package size, and ability of environmental resistance, makes TWSC eMMC popular in consumer electronics devices and multiple industrial applications.


- Capacity
 - 64GB
- Protocol specifications
 - eMMC standard specification 5.1
 - Backward compatible to eMMC4.41/4.5/5.0
- Form Factor
 - BGA 153 ball
- BUS mode
 - Data bus width: 1 bit, 4 bits and 8 bits
 - Bus speed mode: Supports HS400
 - Clock frequency: 0~200MHz
- Temperature range
 - Operating: -25°C to 85°C
 - Storage: -40°C to 85°C
- eMMC operating voltage range
 - VCCQ(Controller): 1.70V~1.95V / 2.7V~3.6V
 - VCC(NAND): 2.7V~3.6V
- Supported Features
 - LDPC ECC Engine
 - HS400、HS200
 - RPMB
 - Secure Erase、Secure Trim、Trim、erase、discard
 - Command Queuing
 - High Priority interrupt (HPI)
 - FFU(Field Firmware Update)
 - Background operation
 - Enhanced Reliable write
 - Device Health Report

•eMMC Functional Block Diagram

[Figure 1-1] eMMC Functional Block Diagram

2. Package Dimension

11.5mmx13mmx0.8mm package Dimension

3. Product Specifications

3.1 Product Introduction

Product Part Number			
Product Part Number	NAND capacity	Package	Operating voltage
TEMCG105T10-A8S5	64GB	BGA153	VCC=3.3V,VCCQ=3.3V/1.8V

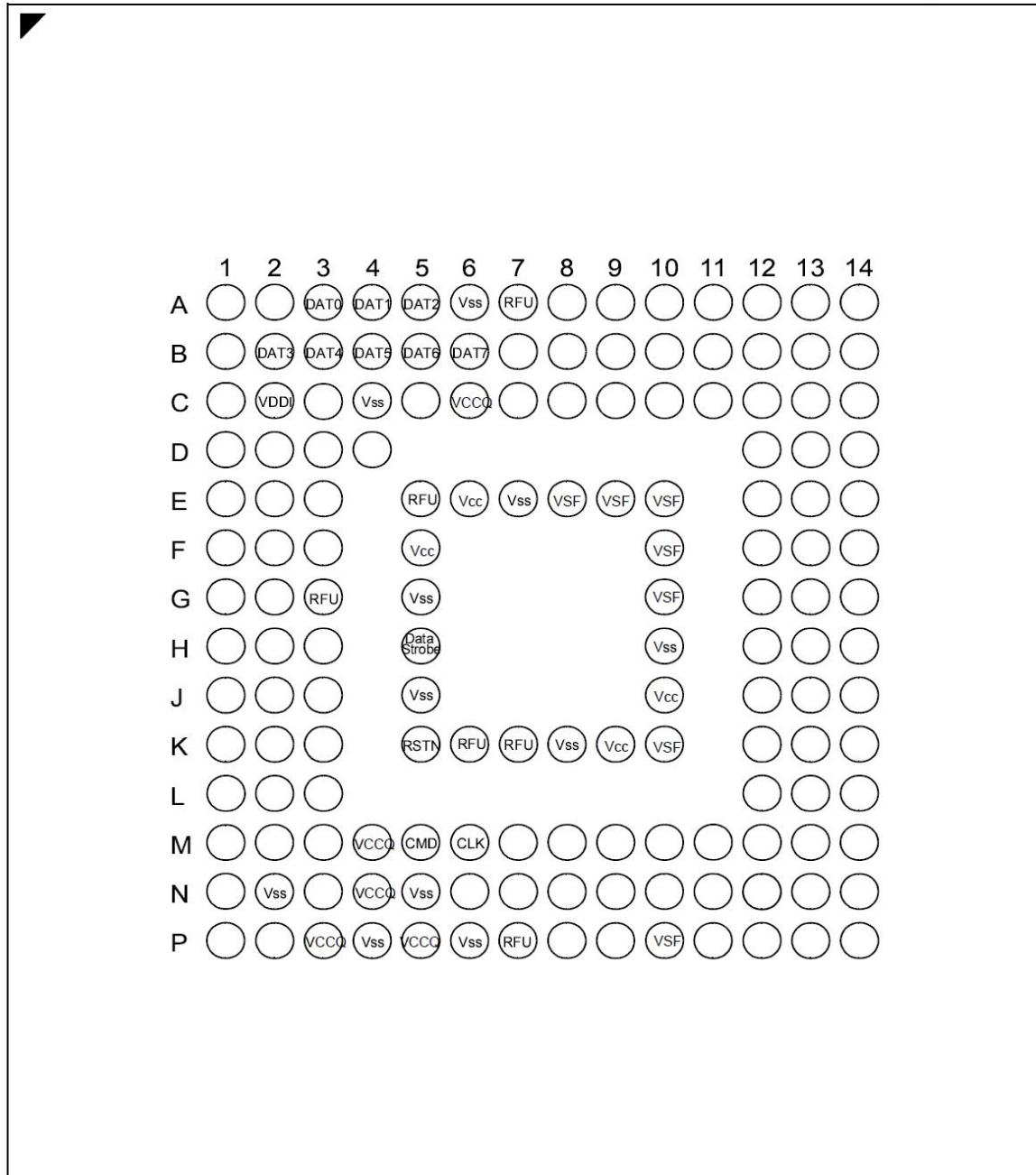
[Table 3-1] eMMC Product Introduction

3.2 Performance

Product Part Number	Read Sequential (MB/s) Max	Write Sequential (MB/s) Max
TEMCG105T10-A8S5	320	250

[Table 3-2] eMMC Performance

* Note 1. Performance measured using 8-bit bus width , HS400 512KB data transfer W/O File system overhead , measured on TWSC's Internal test board.


3.3 Power Consumption

Product	Read(mA)		Write(mA)		Standby(uA)	
	Vcc	VccQ	Vcc	VccQ	Vcc	VccQ
TEMCG105T10-A8S5	80	109	73	77	44	76

[Table 3-3] eMMC Power Consumption

* Note: Value measured using 8-bit bus width, HS400, 512KB data transfer, W/O File system overhead, measure on TWSC's Internal test board.

4. eMMC 153 Ball Pin Assignment

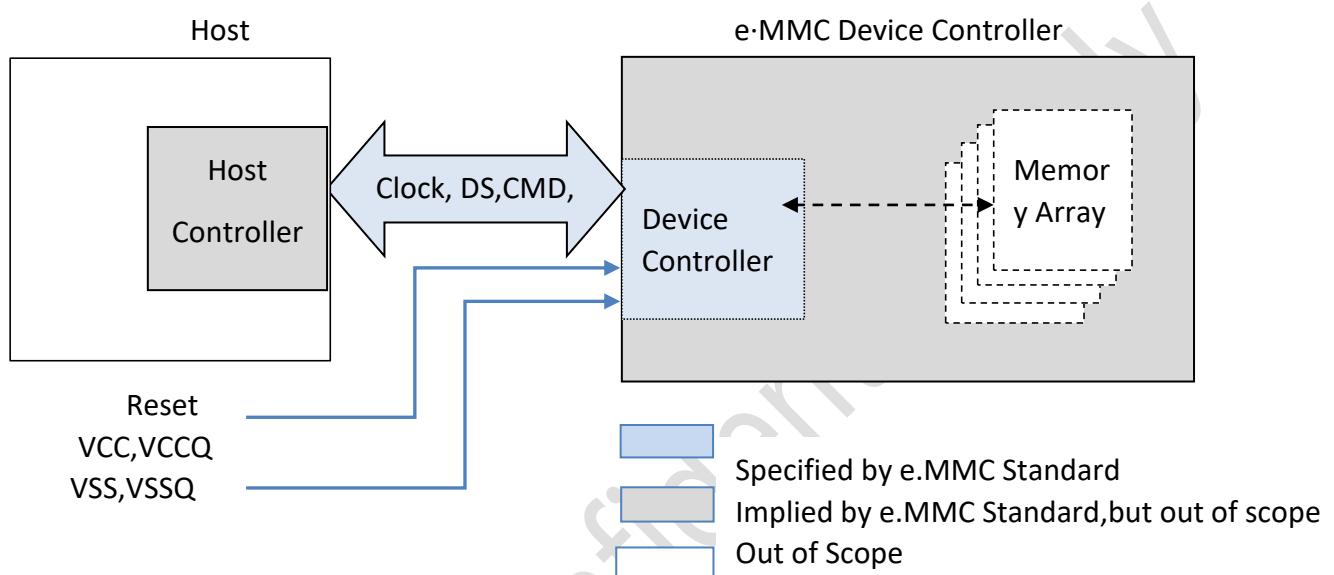
Ball-side down view → NC

4.1 eMMC Pin Assignments and Definition

Pin Name	Direction	Description	Pin Number
CLK	I	eMMC clock input	M6
CMD	I/O	eMMC command line	M5
DAT0	I/O	eMMC data line	A3
DAT1			A4
DAT2			A5
DAT3			B2
DAT4			B3
DAT5			B4
DAT6			B5
DAT7			B6
RSTN	I	eMMC reset input	K5
Data Strobe	O	eMMC data store output	H5
VDDI	Power out	Power supply for core	C2
VCCQ	Power in	Power supply for controller and IO pad	C6, M4, N4, P3, P5
VSS	Ground	Ground for controller and IO pad	C4, N2, N5, P4, P6
VCC	Power in	Power supply for NAND flash device	E6, F5, J10, K9
VSS	Ground	Ground for NAND flash device	A6, E7, G5, H10, J5, K8

NC: No Connect, shall be connected to ground or left floating.

RFU: Reserved for Future Use, shall be left floating for future use.


VSF: Vendor Specific Function, shall be left floating.

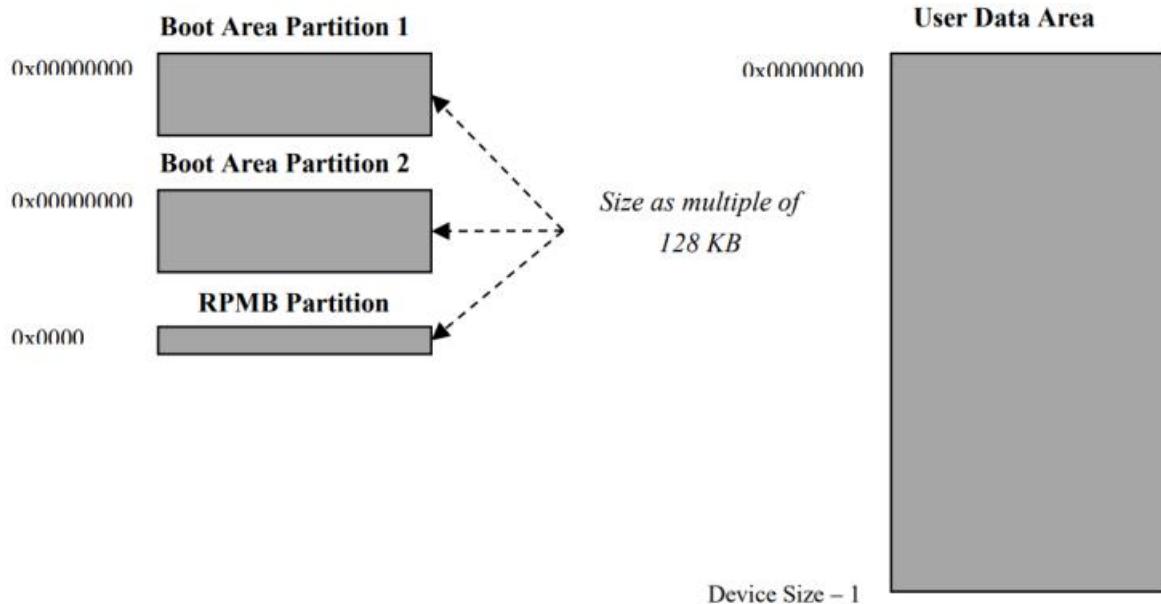
[Table 4-1] eMMC Pin Assignment

5. eMMC Device and System

5.1 eMMC System Overview

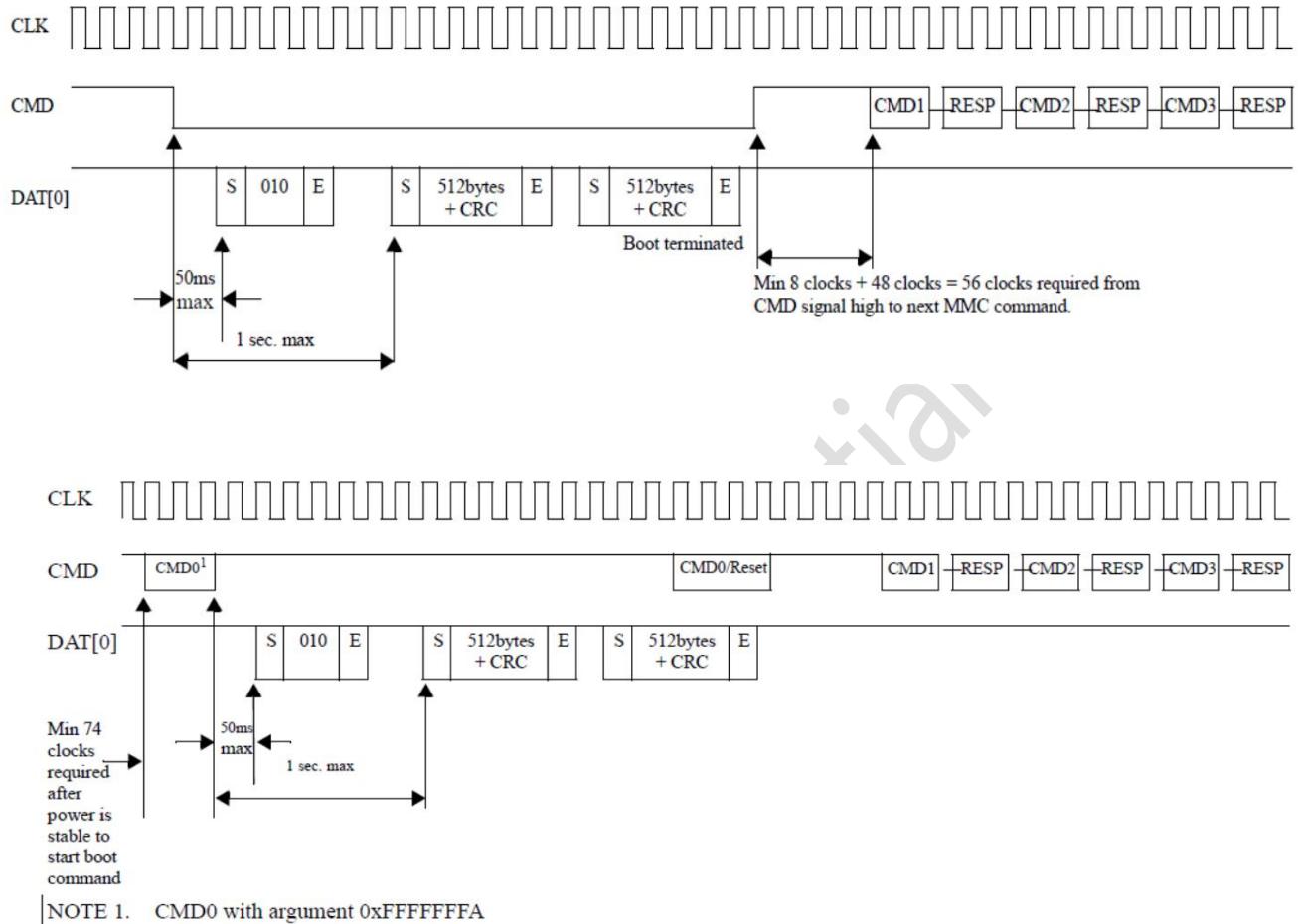
The eMMC specification covers the behavior of the interface and the device controller include LDPC based ECC. As part of this specification the existence of a host controller include LDPC based ECC and a memory storage array are implied but the operation of these pieces is not fully specified.

[Figure 5-1] eMMC System Overview


5.2 eMMC Device Overview

The eMMC bus has the following communication and power lines:

- CLK : Clock Input
- DS : Data strobe used for output in HS400 mode.
- CMD : Command is a bidirectional signal. The CMD signal has 2 operation modes: open-drain for initialization, and push-pull for command transfer. DAT0~DAT7 : Data lines are bidirectional signal. Host and eMMC operate in push-pull mode.
- RST_n : Hardware Reset Input
- VCC : VCC is the power supply for core and flash IO.
- VCCQ : VCCQ is the power supply line for host interface
- VSS, VSSQ : Ground lines.

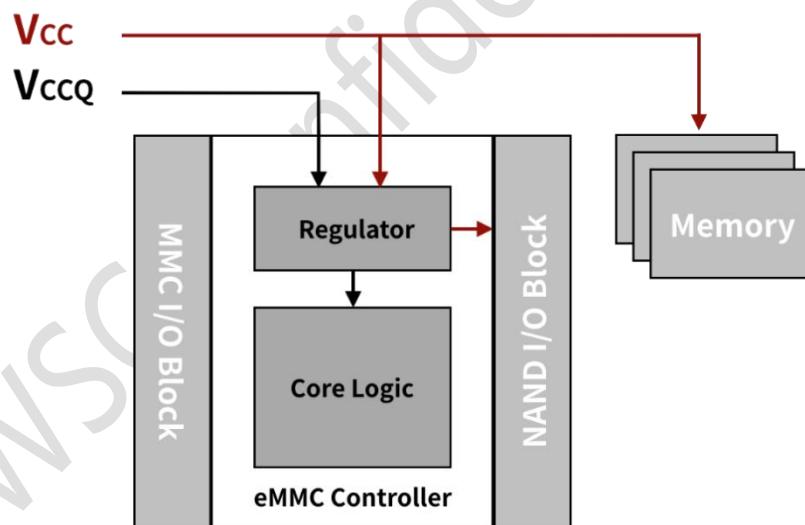

6. Partition Management

The default area of the memory device consists of a User Data Area to store data, two possible boot area partitions for booting and the Reply Protected Memory Block Area Partition to manage data in an authenticated and replay protected manner. The memory configuration initially consists (before any partitioning operation) of the User Data Area and RPMB Area Partitions and Boot Area Partitions.

6.1 Boot Operation

Device supports not only original boot mode but also alternative boot mode. Device supports high speed timing and dual data rate during boot.

7. Electrical Characteristics


The eMMC is used to provide an interface between on-chip bus and external (off-chip) memory devices.

7.1 General Operating Conditions

Parameter	Symbol	Min.	Max.	Unit	Remark
Peak voltage on all lines	-	-0.5	$V_{ccQ} + 0.5$	V	
All Inputs					
Input leakage current (before initialization)	-	-100	100	μ A	
Input leakage current (after initialization)	-	-2	2	μ A	
All Outputs					
Output leakage current (before initialization)	-	-100	100	μ A	
Output leakage current (after initialization)	-	-2	2	μ A	

[Table 7-1] General Operating Conditions

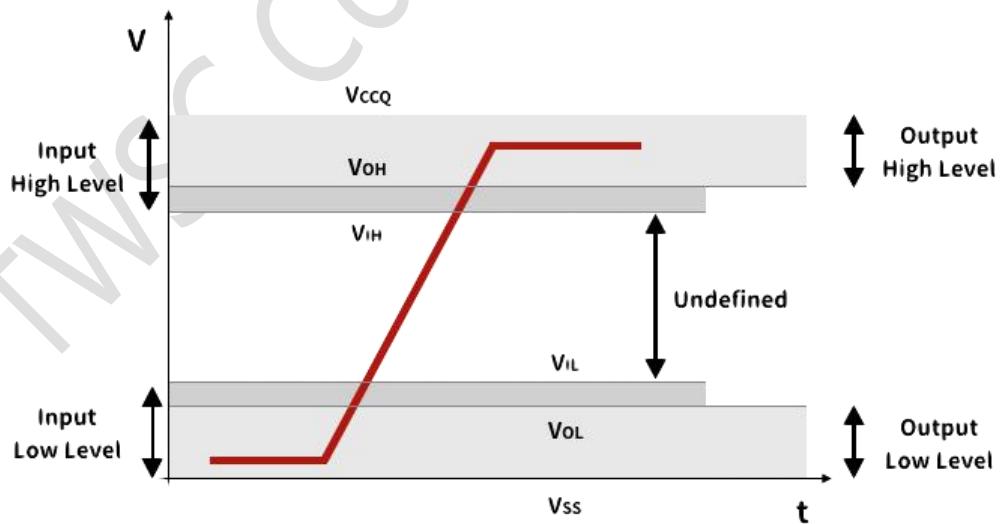
7.2 Device Power Diagram

[Figure 7-2] Device Power Diagram

7.3 Power Supply Voltage

Parameter	Symbol	Min.	Max.	Unit	Remark
Supply voltage (NAND)	V_{CC}	2.7	3.6	V	
Supply voltage (I/O)	V_{CCQ}	2.7	3.6		
		1.7	1.95		

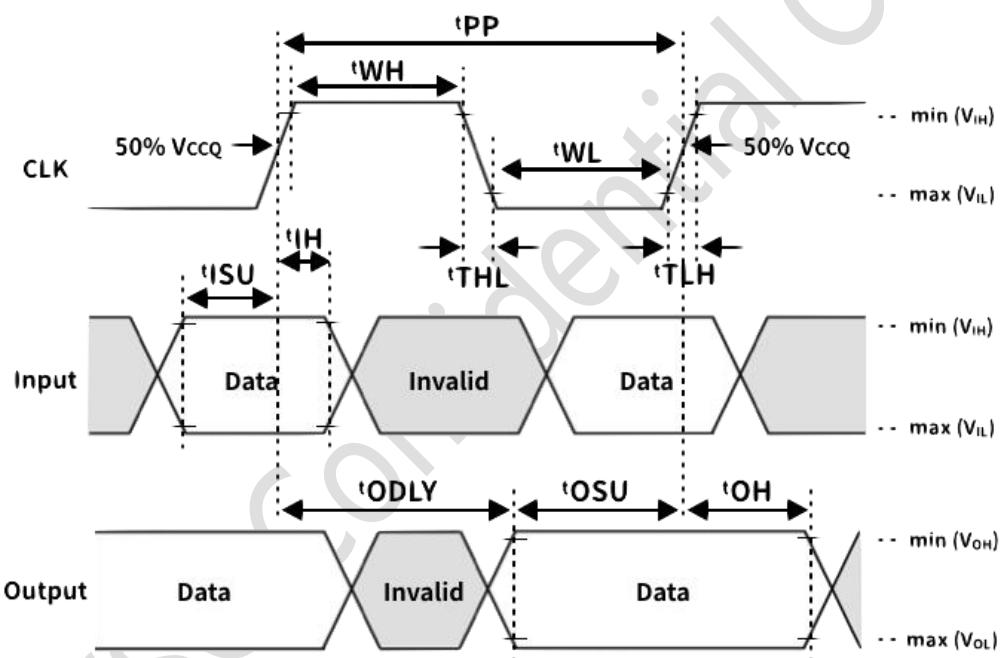
[Table 7-3] Power Supply Voltage


7.4 Bus Signal Line Loading

Parameter	Symbol	Min.	Max.	Unit	Remark
Pull up resistance for CMD	R_{CMD}	4.7	100 ⁽¹⁾	KΩ	
Pull up resistance for DATA0~DATA7	R_{DAT}	10	100 ⁽¹⁾	KΩ	
Internal pull up resistance for DAT1~DAT7	R_{int}	10	150	KΩ	
Bus signal line capacitance	C_L	-	30	pF	
Signal device capacitance	C_{Device}	-	6	pF	
Maximum signal line inductance	-	-	16	nH	

[Table 7-4] Bus Signal Line Loading

(1)Recommended maximum value is 50 KΩ for 1.8V interface supply voltage. A 3V part, may use the whole range up to 100 KΩ.


7.5 Bus Signal Level

[Figure 7-5] Bus Signal Level

Parameter	Symbol	Min.	Max.	Unit	Remark
Output HIGH voltage	V_{OH}	$0.75*V_{CCQ}$	-	V	$V_{CCQ}=3.3V$
Output LOW voltage	V_{OL}	-	$0.125*V_{CCQ}$	V	$V_{CCQ}=3.3V$
Input HIGH voltage	V_{IH}	$0.625*V_{CCQ}$	$V_{CCQ}+0.3$	V	$V_{CCQ}=3.3V$
Input LOW voltage	V_{IL}	$V_{SS}-0.3$	$0.25*V_{CCQ}$	V	$V_{CCQ}=3.3V$
Output HIGH voltage	V_{OH}	$V_{CCQ}-0.45$	-	V	$V_{CCQ}=1.8V$
Output LOW voltage	V_{OL}	-	0.45	V	$V_{CCQ}=1.8V$
Input HIGH voltage	V_{IH}	$0.65*V_{CCQ}$	$V_{CCQ}+0.3$	V	$V_{CCQ}=1.8V$
Input LOW voltage	V_{IL}	$V_{SS}-0.3$	$0.35*V_{CCQ}$	V	$V_{CCQ}=1.8V$

[Table 7-6] Bus Signal Level

7.6 Bus Timing for eMMC In Backward-Compatible Device and High Speed Mode

[Figure 7-7] Timing diagram data input/output referenced to clock (eMMC in backward-compatible device and high speed)

Parameter	Symbol	Min.	Max.	Unit	Remark
Input MMC_CLK					
Clock frequency data transfer mode	f_{pp}	0	26	MHz	$C_L < 30pF$
Clock frequency identification mode	f_{OD}	0	400	KHz	
Clock low time / Clock high time	t_{WL}/t_{WH}	10	-	ns	$C_L < 30pF$
Clock rise time / Clock fall time	t_{TLH}/t_{THL}	-	10	ns	$C_L < 30pF$

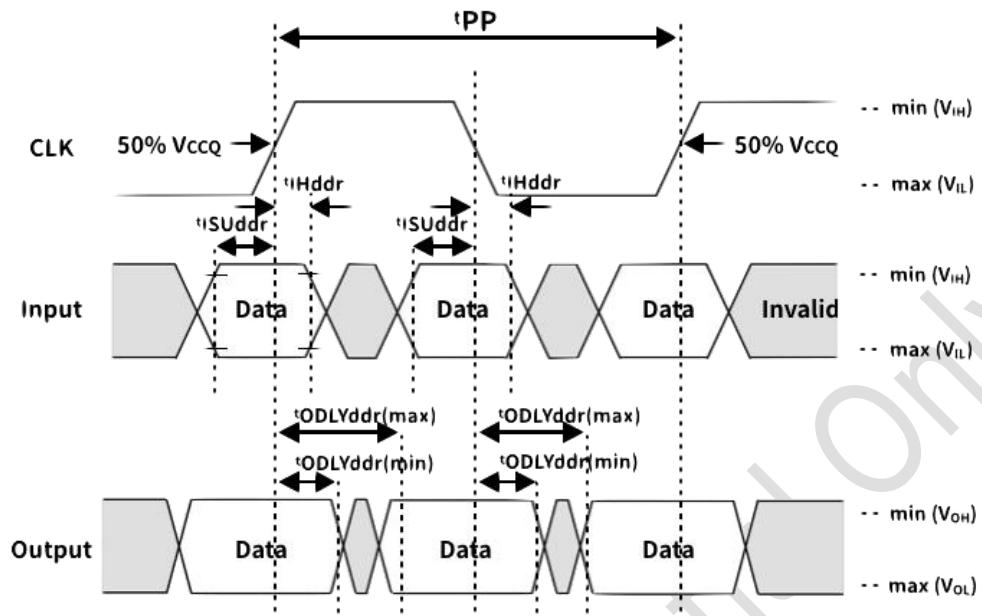
Parameter	Symbol	Min.	Max.	Unit	Remark
Input MMC_CMD, MMC_DAT (referenced to MMC_CLK)					
Input set-up time	t_{ISU}	3	-	ns	$C_L < 30\text{pF}$
Input hold time	t_{IH}	3	-	ns	$C_L < 30\text{pF}$
Output MMC_CMD, MMC_DAT (referenced to MMC_CLK)					
Output delay time	t_{OSU}	11.7	-	ns	$C_L < 30\text{pF}$
Output hold time	t_{OH}	8.3	-	ns	$C_L < 30\text{pF}$

[Table 7-8] Backward-compatible device mode timing for eMMC

(1) Clock timing is measured at 50% of V_{CCQ} .

(2) Clock rise and fall times are measured by min (V_{IH}) and max (V_{IL}).

Parameter	Symbol	Min.	Max.	Unit	Remark
Input MMC_CLK					
Clock frequency data transfer mode	f_{pp}	0	52	MHz	$C_L < 30\text{pF}$
Clock frequency identification mode	f_{OD}	0	400	KHz	
Clock low time / Clock high time	t_{WL}/t_{WH}	6.5	-	ns	$C_L < 30\text{pF}$
Clock rise time / Clock fall time	t_{TLH}/t_{THL}	-	3	ns	$C_L < 30\text{pF}$
Input MMC_CMD, MMC_DAT (referenced to MMC_CLK)					
Input set-up time	t_{ISU}	3	-	ns	$C_L < 30\text{pF}$
Input hold time	t_{IH}	3	-	ns	$C_L < 30\text{pF}$
Output MMC_CMD, MMC_DAT (referenced to MMC_CLK)					
Output set-up time	t_{ODLY}	-	13.7	ns	$C_L < 30\text{pF}$
Output hold time	t_{OH}	2.5	-	ns	$C_L < 30\text{pF}$
Signal rise time	t_{RISE}	-	3	ns	$C_L < 30\text{pF}$
Signal fall time	t_{FALL}	-	3	ns	$C_L < 30\text{pF}$


[Table 7-9] High speed mode timing for eMMC

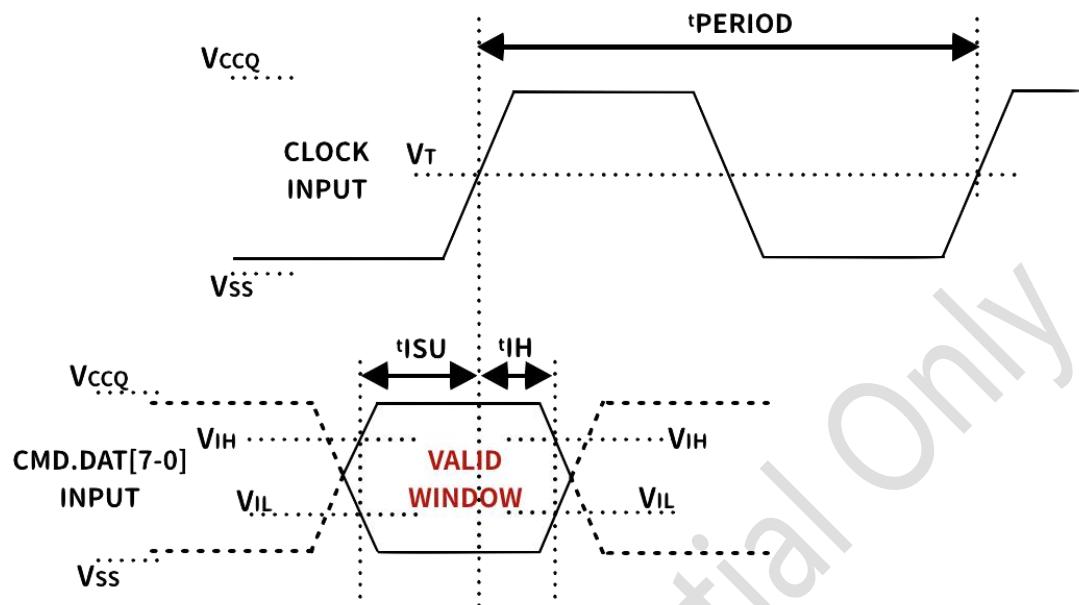
(1) Clock timing is measured at 50% of V_{CCQ} .

(2) Clock rise and fall times are measured by min (V_{IH}) and max (V_{IL}).

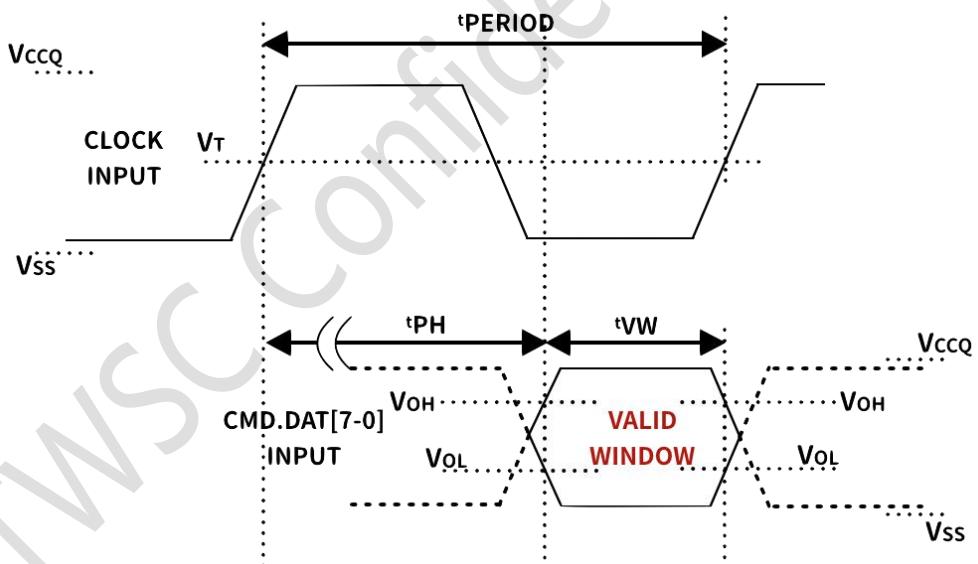
(3) Inputs CMD, DAT rise and fall times are measured by min (V_{IH}) and max (V_{IL}), and outputs CMD, DAT rise and fall times are measured by min (V_{OH}) and max (V_{OL}).

7.7 Bus Timing for eMMC in DDR Mode

[Figure 7-10] Timing diagram data input/output referenced to clock (DDR mode)


Parameter	Symbol	Min.	Max.	Unit	Remark
Input MMC_CLK					
Clock duty cycle	-	45	55	%	
Clock rise time / Clock fall time	t_{TLH}/t_{THL}	-	3	ns	$C_L < 30\text{pF}$
Input MMC_CMD (referenced to MMC_CLK)					
Input set-up time	t_{ISUddr}	3	-	ns	$C_L < 20\text{pF}$
Input hold time	t_{IHddr}	3	-	ns	$C_L < 20\text{pF}$
Output MMC_CMD (referenced to MMC_CLK)					
Output delay time during data transfer	t_{ODLY}	-	13.7	ns	$C_L < 20\text{pF}$
Output hold time	t_{OH}	2.5	-	ns	$C_L < 20\text{pF}$
Signal rise time	t_{RISE}	-	3	ns	$C_L < 20\text{pF}$
Signal fall time	t_{FALL}	-	3	ns	$C_L < 20\text{pF}$
Input MMC_DAT (referenced to MMC_CLK)					
Input set-up time	t_{ISUddr}	2.5	-	ns	$C_L < 20\text{pF}$
Input hold time	t_{IHddr}	2.5	-	ns	$C_L < 20\text{pF}$
Output MMC_DAT (referenced to MMC_CLK)					
Output delay time during data transfer	$t_{ODLYddr}$	1.5	7	ns	$C_L < 20\text{pF}$
Signal rise time	t_{RISE}	-	2	ns	$C_L < 20\text{pF}$
Signal fall time	t_{FALL}	-	2	ns	$C_L < 20\text{pF}$

[Table 7-11] DDR mode timing for eMMC

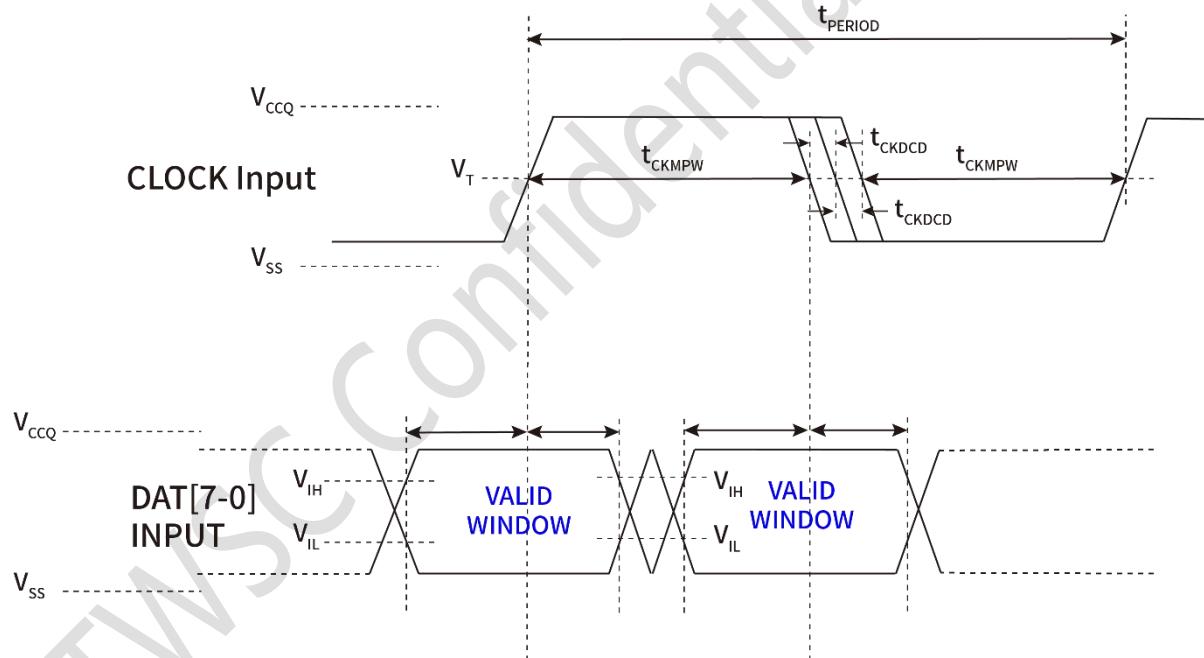

(1) Clock timing is measured at 50% of V_{CCQ} .

(2) Inputs DAT rise and fall times are measured by min (V_{IH}) and max (V_{IL}), and outputs DAT rise and fall times are measured by min (V_{OH}) and max (V_{OL}).

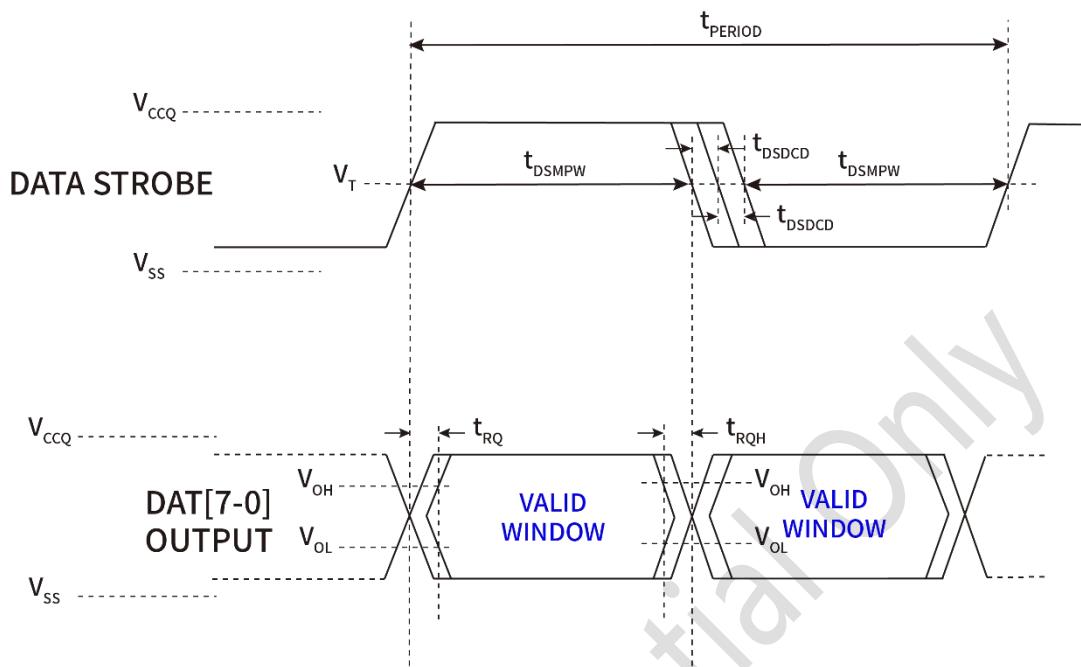
7.8 Bus Timing for eMMC in HS200 Mode

[Figure 7-12] Timing diagram data input referenced to clock (HS200 mode)

[Figure 7-13] Timing diagram data output referenced to clock (HS200 mode)


Parameter	Symbol	Min.	Max.	Unit	Remark
Input MMC_CLK					
Clock cycle time	t_{PERIOD}	5	-	ns	
Clock rise time / Clock fall time	t_{TLH}/t_{THL}	-	1	ns	$C_{Device}=6\text{pF}$
Clock duty cycle	-	30	70	%	

Parameter	Symbol	Min.	Max.	Unit	Remark
Input MMC_CMD, MMC_DAT (referenced to MMC_CLK)					
Input set-up time	t_{ISU}	1.4	-	ns	$C_{Device} \leq 6\text{pF}$
Input hold time	t_{IH}	0.8	-	ns	$C_{Device} \leq 6\text{pF}$
Output MMC_CMD, MMC_DAT (referenced to MMC_CLK)					
Output delay time during data transfer	t_{PH}	0	2	UI	
Delay variation due to temperature change after tuning	Δ_{TPH}	-350 ($\Delta T = -20^\circ\text{C}$)	+1550 ($\Delta T = 90^\circ\text{C}$)	ps	
Signal rise time	t_{VW}	0.575	-	UI	


[Table 7-14] HS200 mode timing for eMMC

(1) Unit Interval (UI) is one bit nominal time. For example, UI = 5ns at 200MHz.

7.9 Bus Timing for eMMC in HS400 Mode

[Figure 7-15] Timing diagram data input referenced to clock (H400 mode)

[Figure 7-16] Timing diagram data output referenced to clock (HS400 mode)

Parameter	Symbol	Min.	Max.	Unit	Remark
Input MMC_CLK					
Clock cycle time	t_{PERIOD}	5	-	ns	
Slew rate	SR	1.125	-	V/ns	
Duty Cycle distortion	t_{CKDCD}	0	0.3	ns	
Minimum pulse width	t_{CKMPW}	2.2	-	ns	
Input MMC_DAT (referenced to MMC_CLK)					
Input set-up time	t_{ISUddr}	0.4	-	ns	$C_{Device} \leq 6pF$
Input hold time	t_{IHddr}	0.4	-	ns	$C_{Device} \leq 6pF$
Slew rate	SR	1.125		V/ns	
Output MMC_STRB					
Clock cycle time	t_{PERIOD}	5	-	ns	
Slew rate	SR	1.125	-	V/ns	
Duty Cycle distortion	t_{CKDCD}	0	0.2	ns	
Minimum pulse width	t_{CKMPW}	2	-	ns	
Read pre-amble	t_{RPRE}	0.4	-	t_{PERIOD}	
Read post-amble	t_{RPST}	0.4	-	t_{PERIOD}	
Output MMC_DAT/MMC_CMD (referenced to MMC_STRB)					
Output skew	t_{RQ}/t_{RQ_CMD}	-	0.4	ns	

Parameter	Symbol	Min.	Max.	Unit	Remark
Output hold skew	t_{RQH}/t_{RQH_CMD}	-	0.4	ns	
Slew rate	SR	1.125	-	V/ns	

[Table 7-17] HS400 mode timing for eMMC

8. eMMC Register Description

The design parameters are parameters that control the implementation of RTL design by Verilog parameter or VHDL generic. The purpose of parameters is to make the hardware design reusable on different conditions.

Software designers should refer to the particular implementation to do the programming. This section introduces the registers in eMMC. The following table is the register list of current specification. The detail functionality is not described here; please reference to latest eMMC specifications.

Register Name	eMMC 4.5	eMMC 5.01	eMMC 5.1
Operation Condition Register (OCR)	V	V	V
Card Identification Register (CID)	V	V	V
Driver Stage Register (DSR)	V	V	V
Relative Card Address Register (RCA)	V	V	V
Card Specific Data Register (CSD)	V	V	V
Extended Card Specific Data Register (EXT_CSD)	V	V	V

[Table 8-1] eMMC Register table

8.1 Operation Conditions Register (OCR) Register

The 32-bit operation conditions register (OCR) stores the voltage profile of the Device and the access mode indication. In addition, this register includes a status information bit. This status bit is set if the device power up procedure has been finished.

OCR bit	VCCQ voltage window	eMMC
[31]	Card power up status bit (busy) ⁽¹⁾	
[30:29]	Access Mode	00b (byte mode) 10b (sector mode)
[28:24]	Reserved	0 0000b
[23:15]	2.7V-3.6V	1 1111 1111b
[14:8]	2.0V-2.6V	000 0000b
[7]	1.7V-1.95V	1b
[6:0]	Reserved	000 0000b

[Table 8-2] OCR table

(1) This bit is set to LOW if the Device has not finished the power up routine.

8.2 Card Identification Register (CID)

The Device IDentification (CID) register is 128 bits wide. It contains the Device identification information used during the Device identification phase. Every type of eMMC Device shall have a unique identification number. The structure of the CID register is defined in the following table.

CID bit	width	Name	Field	Value	
[127:120]	8	Manufacture ID	MID	C4	-
[119:117]	6	Reserved	-	-	-
[113:112]	2	Device/BGA	CBX	01h	-
[111:104]	8	OEM/Application ID	OID	-	-
[103:56]	48	Product Name	PNM	TWSC	-
[55:48]	8	Product Revision	PRV	-	not fixed
[47:16]	32	Product Serial Number	PSN	Random by production	not fixed
[15:8]	8	Manufacturing Date	MDT	month year	not fixed
[7:1]	7	CRC7 check sum	CRC	CRC7 Generator	not fixed
[0]	1	No used, always "1"	-	1h	-

[Table 8-3] CID Table

8.3 Driver Stage Register (DSR)

The 16-bit driver stage register (DSR) is optionally used to improve the bus performance for extended operating conditions. The CSD register carries the information about the DSR register usage. The default value of the DSR register is 0x404.

8.4 Relative Card Address Register (RCA)

The writable 16-bit relative Device address (RCA) register carries the Device address assigned by the host during the Device identification. This address is used for the addressed host-Device communication after the Device identification procedure. The default value of the RCA register is 0x0001. The value 0x0000 is reserved to set all Devices into the Stand-by State with CMD7.

8.5 Card Specific Data Register (CSD)

The Device-Specific Data (CSD) register provides information on how to access the Device contents. The CSD defines the data format, error correction type, maximum data access time, data transfer speed, whether the DSR register can be used etc. The programmable part of the register (entries marked by W or E below) can be changed by CMD27.

CSD bit	width	Name	Field	Type	Value
[127:126]	2	CSD structure	CSD_STRUCTURE	R	3h
[125:122]	4	System specification version	SPEC_VERS	R	4h

CSD bit	width	Name	Field	Type	Value
[121:120]	2	Reserved	-	-	-
[119:112]	8	Data read access-time 1	TAAC	R	27h
[111:104]	8	Data read access-time 2	NSAC	R	01h
[103:96]	8	Max. data transfer rate	TRAN_SPEED	R	32h
[95:84]	12	Device command classes	CCC	R	0F5h
[83:80]	4	Max. read data block length	READ_BL_LEN	R	9h
[79]	1	Partial block read allowed	READ_BL_PARTIAL	R	0h
[78]	1	Write block misalignment	WRITE_BLK_MISALIGN	R	0h
[77]	1	Read block misalignment	READ_BLK_MISALIGN	R	0h
[76]	1	DSR implemented	DSR_IMP	R	0h
[75:74]	2	Reserved	-	-	-
[73:62]	12	Device size	C_SIZE	R	FFFh
[61:59]	3	Max. read current@VDD min	VDD_R_CURR_MIN	R	7h
[58:56]	3	Max. read current@VDD max	VDD_R_CURR_MAX	R	7h
[55:53]	3	Max. write current@VDD min	VDD_W_CURR_MIN	R	7h
[52:50]	3	Max. write current@VDD max	VDD_W_CURR_MAX	R	7h
[49:47]	3	Device size multiplier	C_SIZE_MULT	R	7h
[46:42]	5	Erase group size	ERASE_GRP_SIZE	R	1Fh
[41:37]	5	Erase group size multiplier	ERASE_GRP_MULT	R	1Fh
[36:32]	5	Write protect group size	WP_GRP_SIZE	R	0Fh
[31]	1	Write protect group enable	WP_GRP_ENABLEE	R	1h
[30:29]	2	Manufacturer default ECC	DEFAULT_ECC	R	0h
[28:26]	3	Write speed factor	R2W_FACTOR	R	2h
[25:22]	4	Max. write data block length	WRITE_BL_LEN	R	9h
[21]	1	Partial block write allowed	WRITE_BL_PARTIAL	R	0h
[20:17]	4	Reserved	-	-	-
[16]	1	Content protection application	CONTENT_PROT_APP	R	0h
[15]	1	File format group	FILE_FORMAT_GRP	R/W	0h
[14]	1	Copy flag (OTP)	COPY	R/W	0h
[13]	1	Permanent write protection	PERM_WRITE_PROTECT	R/W	0h
[12]	1	Temporary write protection	TMP_WRITE_PROTECT	R/W/E	0h
[11:10]	2	File format	FILE_FORMAT	R/W	0h
[9:8]	2	ECC code	ECC	R/W/E	0h
[7:1]	7	CRC	CRC	R/W/E	CRC7 Generator

CSD bit	width	Name	Field	Type	Value
[0]	1	Not used, always "1"	-		1h

[Table 8-4] CSD Table

8.6 Extended CSD register

The Extended CSD register defines the Device properties and selected modes. It is 512 bytes long. The most significant 320 bytes are the Properties segment, that defines the Device capabilities and cannot be modified by the host. The lower 192 bytes are the Modes segment, that defines the configuration the Device is working in. These modes can be changed by the host by means of the SWITCH command.

Extend CSD bit	width	Name	Field	Type	Value
Properties Segment					
[511:506]	6	Reserved	-	-	-
[505]	1	Extend Security Command Error	EXT_SECURITAY	R	0h
[504]	1	Supported Command Sets	S_CMD_SET	R	1h
[503]	1	HPI features	HPI_FEATURES	R	1h
[502]	1	Background operations support	BKOPS_SUPPORT	R	1h
[501]	1	Max packed read commands	MAX_PACKED_READS	R	20h
[500]	1	Max packed write commands	MAX_PACKED_WRITES	R	20h
[499]	1	Data Tag Support	DATA_TAG_SUPPORT	R	1h
[498]	1	Tag Unit Size	TAG_UNIT_SIZE	R	0h
[497]	1	Tag Resources Size	TAG_RES_SIZE	R	0h
[496]	1	Context management capabilities	CONTEXT_CAPABILITIES	R	78h
[495]	1	Large Unit size	LARGE_UNIT_SIZE_MI	R	1h
[494]	1	Extended partitions attribute support	EXT_SUPPORT	R	3h
[493]	1	Supported modes	SUPPORTED_MODES	R	1h
[492]	1	FFU features	FFU_FEATURES	R	0h
[491]	1	Operation codes timeout	OPERATION_CODE_TIME_OUT	R	17h
[490:487]	4	FFU Argument	FFU_ARG	R	FFFAFFFOh
[486]	1	Barrier support	BARRIER_SUPPORT	R	1h
[485:309]	177	Reserved	-	-	-
[308]	1	CMD Queuing Support	CMDQ_SUPPORT	R	1h

Extend CSD bit	width	Name	Field	Type	Value
[307]	1	CMD Queuing Depth	CMDQ_DEPTH	R	1Fh
[306]	1	Reserved	-	-	-
[305:302]	4	Number of FW sectors correctly programmed	NUMBER_OF_FW_SECTOR S_CORRECTLY_PRPGRAM MED	R	0h
[301:270]	32	Vendor proprietary health report	VENDOR_PROPRIETARY_H EALTH_REPORT	R	TBD
[269]	1	Device life time estimation type B	DEVICE_LIFE_TIME_EST_TY P_B	R	1h
[268]	1	Device life time estimation type A	DEVICE_LIFE_TIME_EST_TY P_A	R	1h
[267]	1	Pre EOL information	PRE_EOL_INFO	R	1h
[266]	1	Optimal read size	OPTIMAL_READ_SIZE	R	10h
[265]	1	Optimal write size	OPTIMAL_WRITE_SIZE	R	10h
[264]	1	Optimal trim unit size	OPTIMAL_TRIM_UNIT_SIZE	R	0Fh
[263:262]	2	Device version	DEVICE_VERSION	R	Keep updating
[261:254]	8	Firmware version	FIRMWARE_VERSION	R	Keep updating
[253]	1	Power class for 200MHz, DDR at VCC=3.6V	PWR_CL_DDR_200_360	R	0h
[252:249]	4	Cache size	CACHE_SIZE	R	400h
[248]	1	Generic CMD6 timeout	GENERIC_CMD6_TIME	R	5h
[247]	1	Power off notification(long) timeout	POWER_OFF_LONG_TIME	R	64h
[246]	1	Background operations status	BKOPS_STATUS	R	0h
[245:242]	4	Number of correctly programmed sectors	CORRECTLY_PRG_SECTOR S_NUM	R	0h
[241]	1	Number of correctly programmed sectors	INI_TIMEOUT_AP	R	0Ah
[240]	1	Cache Flushing Policy	CACHE_FLUSH_POLICY	R	1h
[239]	1	Power class for 52MHz, DDR at VCC = 3.6V	PWR_CL_DDR_52_360	R	0h
[238]	1	Power class for 52MHz, DDR at VCC = 1.95V	PWR_CL_DDR_52_360	R	0h
[237]	1	Power class for 200MHz at VCCQ = 1.95V, VCC = 3.6V	PWR_CL_200_195	R	0h
[236]	1	Power class for 200MHz at	PWR_CL_200_130	R	0h

Extend CSD bit	width	Name	Field	Type	Value
		VCCQ = 1.3V, VCC = 3.6V			
[235]	1	Minimum Write Performance for 8bit at 52MHz in DDR mode	MIN_PERF_DDR_W_8_52	R	0h
[234]	1	Minimum Read Performance for 8bit at 52MHz in DDR mode	MIN_PERF_DDR_R_8_52	R	0h
[233]	1	Reserved	-	-	-
[232]	1	TRIM Multiplier	TRIM_MULT	R	2h
[231]	1	Secure Feature support	SEC_FEATURE_SUPPORT	R	55h
[230]	1	Secure Erase Multiplier	SEC_ERASE_MULT	R	32h
[229]	1	Secure TRIM Multiplier	SEC_TRIM_MULT	R	ah
[228]	1	Boot information	BOOT_INFO	R	7h
[227]	1	Reserved	-	-	-
[226]	1	Boot partition size	BOOT_SIZE_MULT	R	20h
[225]	1	Access size	ACC_SIZE	R	6h
[224]	1	High-capacity erase unit size	HC_ERASE_GRP_SIZE	R	1h
[223]	1	High-capacity erase timeout	ERASE_TIMEOUT_MULT	R	2h
[222]	1	Reliable write sector count	REL_WR_SEC_C	R	1h
[221]	1	High-capacity write protect group size	HC_WP_GRP_SIZE	R	10h
[220]	1	Sleep current (VCC)	S_C_VCC	R	7h
[219]	1	Sleep current (VCCQ)	S_C_VCCQ	R	7h
[218]	1	Production state awareness timeout	PRODUCTION_STATE_AWARENESS_TIMEOUT	R	17h
[217]	1	Sleep/awake timeout	S_A_TIMEOUT	R	12h
[216]	1	Sleep Notification Timeout	SLEEP_NOTIFICATION_TIMER	R	0Ch
[215:212]	4	Sector Count	SEC_COUNT	R	-
[211]	1	Secure Write Protect Information	SECURE_WP_INFO	R	1h
[210]	1	Minimum Write Performance for 8bit at 52 MHz	MIN_PERF_W_8_52	R	0h
[209]	1	Minimum Read Performance for 8bit at 52 MHz	MIN_PERF_R_8_52	R	0h
[208]	1	Minimum Write Performance for 8bit at 26 MHz, for 4bit at	MIN_PERF_W_8_26_4_52	R	0h

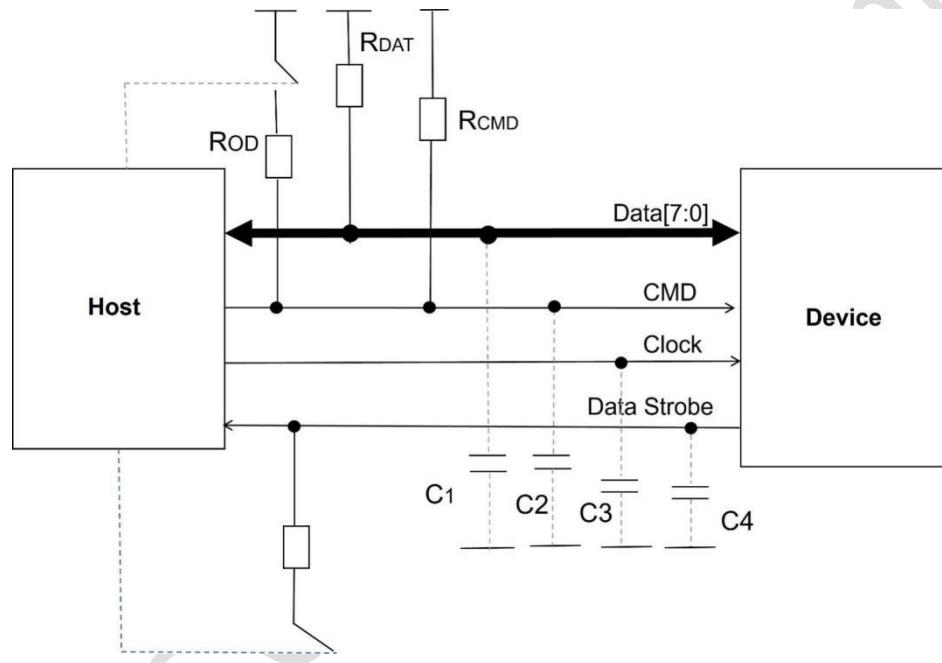
Extend CSD bit	width	Name	Field	Type	Value
		52MHz			
[207]	1	Minimum Read Performance for 8bit at 26 MHz, for 4bit at 52MHz	MIN_PERF_R_8_26_4_52	R	0h
[206]	1	Minimum Write Performance for 4bit at 26 MHz	MIN_PERF_W_4_26	R	0h
[205]	1	Minimum Read Performance for 4bit at 26 MHz	MIN_PERF_R_4_26	R	0h
[204]	1	Reserved	-	-	-
[203]	1	Power class for 26 MHz at 3.6V 1R	PWR_CL_26_360	R	0h
[202]	1	Power class for 52 MHz at 3.6V 1R	PWR_CL_52_360	R	0h
[201]	1	Power class for 26 MHz at 1.95V 1R	PWR_CL_26_360	R	0h
[200]	1	Power class for 52MHz at 1.95 V1R	PWR_CL_52_195	R	0h
[199]	1	Partition switching timing	PARTITION_SWITCH_TIME	R	4h
[198]	1	Out-of-interrupt busy timing	OUT_OF_INTERRUPT_TIME	R	ah
[197]	1	I/O Driver Strength	DRIVER_STRENGTH	R	1Fh
[196]	1	Device type	DEVICE_TYPE	R	57h
[195]	1	Reserved	-	-	-
[194]	1	CSD STRUCTURE	CSD_STRUCTURE	R	2h
[193]	1	Reserved	-	-	-
[192]	1	Extended CSD revision	EXT_CSD_REV	R	8h

Modes Segment

[191]	1	Command set	CMD_SET	R/W/E_P	0h
[190]	1	Reserved	-	-	-
[189]	1	Command set revision	CMD_SET_REV	R	0h
[188]	1	Reserved	-	-	-
[187]	1	Power class	POWER_CLASS	R/W/E_P	0h
[186]	1	Reserved	-	-	-
[185]	1	High-speed interface timing	HS_TIMING	R/W/E_P	0h
[184]	1	Strobe Support	STROBE_SUPPORT	R	1h
[183]	1	Bus width mode	BUS_WIDTH	W/E_P	0h
[182]	1	Reserved	-	-	-
[181]	1	Erased memory content	ERASED_MEM_CONT	R	0h

Extend CSD bit	width	Name	Field	Type	Value
[180]	1	Reserved	-	-	-
[179]	1	Partition configuration	PARTITION_CONFIG	R/W/E & R/W/E_P	0h
[178]	1	Boot config protection	BOOT_CONFIG_PROT	R/W & R/W/C_P	0h
[177]	1	Boot bus Conditions	BOOT_BUS_CONDITIONS	R/W/E	0h
[176]	1	Reserved	-	-	-
[175]	1	High-density erase group definition	ERASE_GROUP_DEF	R/W/E_P	0h
[174]	1	Boot write protection status registers	BOOT_WP_STATUS	R	0h
[173]	1	Boot area write protection register	BOOT_WP	R/W & R/W/C_P	0h
[172]	1	Reserved	-	-	-
[171]	1	User area write protection register	USER_WP	R/W,R/W/C_P & R/W/E_P	0h
[170]	1	Reserved	-	-	-
[169]	1	FW configuration	FW_CONFIG	R/W	0h
[168]	1	RPMB Size	RPMB_SIZE_MUL	R	80h
[167]	1	Write reliability setting register	WR_REL_SET	R/W	1Fh
[166]	1	Write reliability parameter register	WR_REL_PARAM	R	15h
[165]	1	Start Sanitize operation	SANITIZE_START	W/E_P	0h
[164]	1	Manually start background operations	BKOPS_START	W/E_P	0h
[163]	1	Enable background operations handshake	BKOPS_EN	R/W & R/W/E	2h
[162]	1	H/W reset function	RST_n_FUNCTION	R/W	0h
[161]	1	HPI management	HPI_MGMT	R/W/E_P	0h
[160]	1	Partitioning Support	PARTITIONING_SUPPORT	R	7h
[159:157]	3	Max Enhanced Area Size	MAX_ENH_SIZE_MULT	R	9B5h
[156]	1	Partitions attribute	PARTITIONS_ATTRIBUTE	R/W	0h
[155]	1	Partitioning Setting	PARTITION_SETTING_COMPLETED	R/W	0h
[154:143]	12	General Purpose Partition Size	GP_SIZE_MULT	R/W	0h

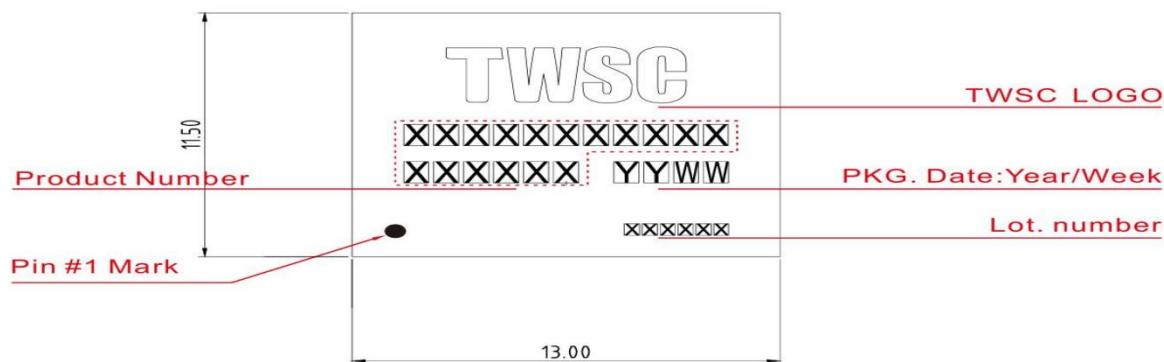
Extend CSD bit	width	Name	Field	Type	Value
[142:140]	3	Enhanced User Data Area Size	ENG_SIZE_MULT	R/W	0h
[139:136]	4	Enhanced User Data Start Address	ENH_START_ADDR	R/W	0h
[135]	1	Reserved	-	-	-
[134]	1	Bad Block Management mode	SEC_BAD_BLK_MGMT	R/W	0h
[133]	1	Production state awareness	PRODUCTION_STATE_AWARENESS	R/W/E	0h
[132]	1	Package Case Temperature is controlled	TCASE_SUPPORT	W/E_P	0h
[131]	1	Periodic Wake-up	PERIODIC_WAKEUP	R/W/E	0h
[130]	1	Program CID/CSD in DDR mode support	PROGRAM_CID_CSD_DDR_SUPPORT	R	1h
[129:128]	2	Reserved	-	-	-
[127:64]	64	Vendor Specific Fields	VENDOR_SPECIFIC_FIELD	R	14h
[63]	1	Native sector size	NATIVE_SECTOR_SIZE	R	1h
[62]	1	Sector size emulation	USE_NATIVE_SECTOR	R/W	0h
[61]	1	Sector size	DATA_SECTOR_SIZE	R	0h
[60]	1	1 st initialization after disabling sector size emulation	INI_TIMEOUT_EMU	R	0Ah
[59]	1	Class 6 commands control	CLASS_6_CTRL	R/W/E_P	0h
[58]	1	Number of addressed group to be Released	DYNCAP_NEEDED	R	0h
[57:56]	2	Exception events control	EXCEPTION_EVENTS_CTRL	R/W/E_P	0h
[55:54]	2	Exception events status	EXCEPTION_EVENTS_STATUS	R	0h
[53:52]	2	Extended Partitions Attribute	EXT_PARTITIONS_ATTRIBUTE	R/W	0h
[51:37]	15	Context configuration	CONTEXT_CONF	R/W/E_P	0h
[36]	1	Packed command status	PACKED_COMMAND_STATUS	R	0h
[35]	1	Packed command failure index	PACKED_FAILURE_INDEX	R	0h
[34]	1	Power Off Notification	POWER_OFF_NOTIFICATION	R/W/E_P	0h


Extend CSD bit	width	Name	Field	Type	Value
[33]	1	Control to turn the Cache ON/OFF	CACHE_CTRL	R/W/E_P	0h
[32]	1	Flushing of the cache	FLUSH_CACHE	W/E_P	0h
[31]	1	Control to turn the Barrier ON/OFF	BARRIER_CTRL	R/W	0h
[30]	1	Mode config	MODE_CONFIG	R/W/E_P	0h
[29]	1	Mode operation codes	MODE_OPERATION_CODE_S	W/E_P	0h
[28:27]	2	Reserved	-	-	-
[26]	1	FFU status	FFU_STATUS	R	0h
[25:22]	4	Pre loading data size	PRE_LOADING_DATA_SIZE	R/W/E_P	0h
[21:18]	4	Max pre loading data size	MAX_PRE_LOADING_DATA_SIZE	R	26D4000h
[17]	1	Product state awareness enablemen	PRODUCT_STATE_AWARENESS_ENABLEMENT	R/W/E & R	01h
[16]	1	Secure Removal Type	SECURE_REMOVAL_TYPE	R/W & R	3Bh
[15]	1	Command Queue Mode Enable	CMDQ_MODE_EN	R/W/E_P	0h
[14:0]	15	Reserved	-	-	-

[Table 8-5] Extend CSD Table

9. Connection Guide

9.1 Schematic Diagram


1. VDDI Capacitor is min 1UF
2. TWSC recommends to separate VCC and VCCQ power
3. TWSC recommends lay the VSS between the Clock & the Data lines
4. The resistance one the clock line is highly recommended (0Ω by default), 0Ω-100Ω is also available

10. Order Information

Part Number	Capacity	Description
TEMCG105T10-A8S5	64GB	eMMC 5.1/HS400

[Figure 10-1] eMMC 153 ball

