

1. Features and Benefits

- IVT battery measurements:
 - Hall-effect based current sensor
 - Voltage measurement
 - Internal dividers for 12V or 24V/48V batteries
 - External divider required for HV batteries
 - Internal (PTAT) and optional external NTC temperature sensor
- 16-bit MCU with 32 KB Flash, 128 B Flash CS, 20 KB ROM, 2 KB RAM and 512 B EEPROM Memory
- LIN/UART communication interfaces
 - LIN2.2/SAE J2602 and ISO17987 compliant LIN slave
 - UART as CAN MCU bridge
 - Wake-up on LIN and UART or on internal timer
- Overcurrent detection functionality (<500µs)
- Magnetic range of 512mT
- Possible Automatic Gain Control (AGC) for higher dynamic range
- Low-level SW libraries available
- User programmable transfer characteristic
- Supply voltage: 4.5 to 18V (5V regulated supply or 12V battery supply capability)
- Low current consumption (<21mA), programmable duty cycled sleep mode (RAM content maintained at <100µA)
- Ambient temperature from -40°C to 125°C
- ASIL C compliant SEooC (Safety Element out of Context) according to ISO26262
- AEC-Q100 Grade 1 automotive qualified
- RoHS compliant package SOIC8 (DC)

2. Application Examples

- Battery Terminal Sensor 12V/ 24V
- Battery Management System 48V/ HV
 - Primary current measurement
 - Redundant current measurement (homogenous or heterogenous sensing technology)
 - Diagnosable Overcurrent Detection
- SoC/ SoH/ SoF + R_{int} (pre)calculations
- Smart Battery Disconnect Unit, Junction Box or Power Relay Assembly
- Smart Pyrofuses
- Smart HV relays or contactors
- HV DC FastCharge current sensor
- Zone controller

3. Description

The MLX91230 is the first Melexis smart Hall-based current sensor and is part of Gen3 portfolio. With a measurement capability of three physical quantities: Current, Voltage and Temperature, Overcurrent detection alongside a dedicated 32 KB Flash memory on a single IC, this ASIL-compliant chip is ideal for safety applications. With its diagnostics, the MLX91230 is removing an important part of the burden from the integrator in developing all the safety mechanisms. The MLX91230 comes with 0.5% accuracy over temperature for a 1% lifetime drift all-in, hence boosting the accuracy of Hall-effect DC current sensing. The IC's MCU enables automatic gain control to cover higher dynamic ranges, and its on-board flash memory supports custom software, extensive compensation of system imperfections and low power modes. Supplied with a regulated 5V or directly connected to the 12V battery, the MLX91230 outputs measurements and diagnostics either on LIN bus or via UART.

Table of Contents

1. Features and Benefits	1
2. Application Examples	1
3. Description.....	1
4. Ordering Information	3
5. Functional Diagram	4
6. Functional Safety.....	4
7. References	4
8. Glossary of Terms.....	5
9. Pin description, Pin Definitions and Pinout.....	6
9.1. Conventional Hall with Voltage Sense	6
9.2. Conventional Hall with Voltage Sense and External Temperature Sense	6
10. Absolute Maximum Ratings.....	7
11. Operating Ranges.....	9
12. General Timing Specification.....	11
13. Analog Front End.....	12
13.1. Linear current measurement	12
13.2. Automatic gain control	13
13.3. Overcurrent detection	14
13.3.1. PWM digital OCD on TX_OCD pin	16
13.3.2. PWM digital OCD on LIN_OCD pin	18
13.4. VSENSE voltage measurement	19
13.4.1. LVBAT (12V) measurement	19
13.4.2. HVBAT (24V/48V) measurement	20
13.4.3. Direct voltage (HV) measurement	21
13.5. Internal die Temperature measurement.....	21
13.6. VDD voltage measurement	22
13.7. NTC Measurement.....	22
14. Electrical specifications	23
14.1. LIN	23
14.2. UART	23
14.2.1. RX	23
14.2.2. TX	23
14.3. Supply system	24
14.4. Internal Clock Generation	24
15. Recommended Application Diagrams	25
15.1. Resistor and Capacitor Values for LIN and UART communications ...	25
15.2. OCD external circuit example (PWM)	27
16. Package, IC handling and assembly	29
16.1. Package information	29
16.2. Storage and handling of plastic encapsulated ICs	30
16.3. Assembly of encapsulated ICs	31
16.4. Environment and sustainability.....	31
17. Disclaimer	32

4. Ordering Information

Product Code	Package	Thermal accuracy	Sensing Technology	NTC input
MLX91230KDC – BBA – 000 – RE	SOIC8	Default	Conventional Hall [-512mT; 512mT]	No
MLX91230KDC – BBC – 000 – RE	SOIC8	Default	Conventional Hall [-512mT; 512mT]	No
MLX91230KDC – BBA – 100 – RE	SOIC8	High	Conventional Hall [-512mT; 512mT]	No
MLX91230KDC – BBC – 100 – RE	SOIC8	High	Conventional Hall [-512mT; 512mT]	No
MLX91230KDC – BBC – 200 – RE	SOIC8	High	Conventional Hall [-512mT; 512mT]	Yes

Table 1 - Ordering code

High accuracy versions MLX91230KDC-BBA-100-RE, MLX91230KDC-BBC-100-RE and MLX91230KDC-BBC-200-RE are currently pending for production release and only accessible upon request directly at Melexis and not through distribution yet, please contact your local Melexis representative for more information.

Legend:

Temperature Code	K: from -40°C to 125°C ambient temperature
Package Code	DC: for SOIC-8 package
Option Code	BBx-yyy BB: die version x: ASIL Level (A is for ASIL B and C is for ASIL C) yyy: 3 numerical digits indicating accuracy variant / version customization/ different programmed features (OCD, VBAT, ...)
Packing Form	RE: for Reel
Ordering Example	"MLX91230KDC-BBC-000-RE" For a Conventional Hall variant with default trimming in SOIC8 package and ASIL C compliant.

Table 2 – Legend

Melexis is continuously expanding its product portfolio by adding new option codes to better meet the needs of our customer's applications. This table is being updated frequently; please go to www.melexis.com/en/product/mlx91230/smart-ivt-conventional-hall-current-sensor to download the latest version of this datasheet.

5. Functional Diagram

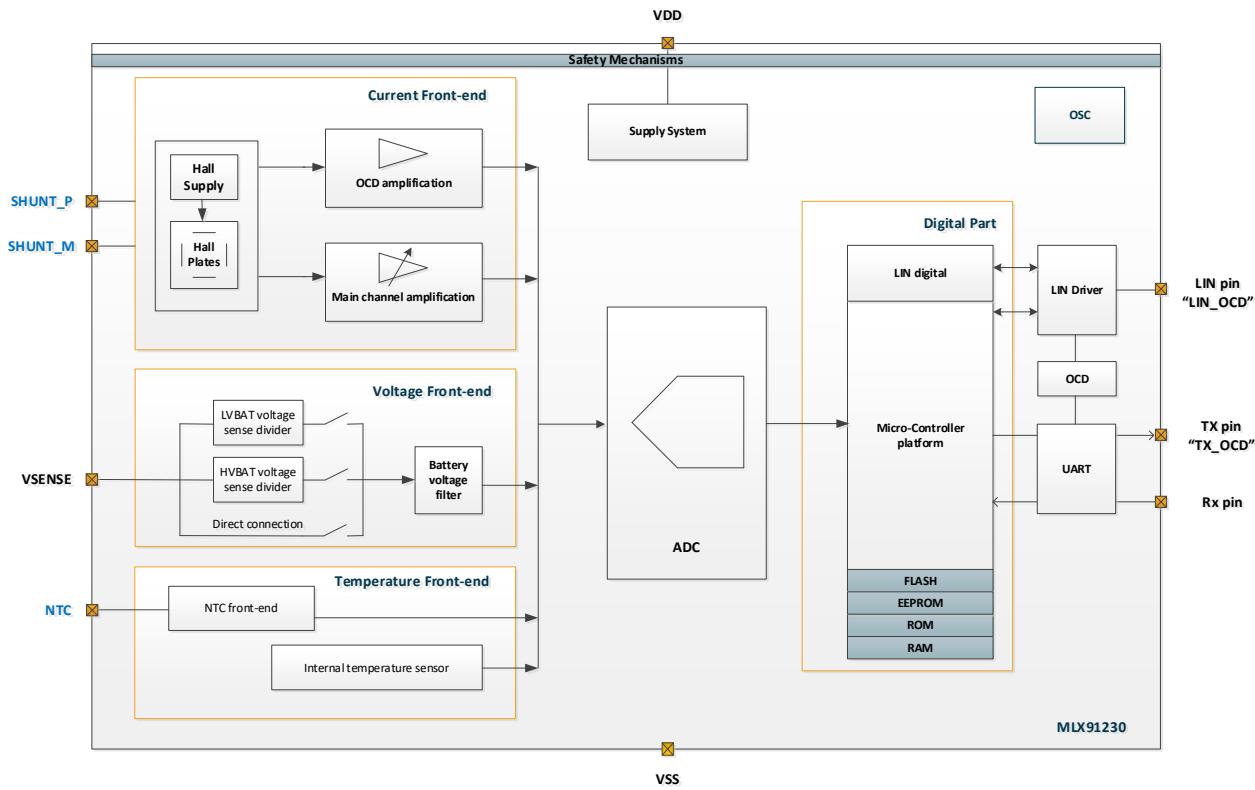


Figure 1- Detailed Block Diagram^{1, 2}

6. Functional Safety

The MLX91230 is an ASIL-compliant IC, developed as SEooC following ISO26262. The safety concept is described in the “MLX91230 Safety Manual”, and defines safety requirements for the IVT signals (current, internal temperature and voltage measurement) as well as for the OCD function. Please contact your local sales representative for obtaining this document, which is only shared under NDA.

7. References

Melexis makes documentation available in addition to the present datasheet. The Customer User Manual, several Application Notes as well as software tools and libraries can be found under www.melexis.com/mymelexis. To gain access to this platform and the MLX91230 directory in particular, please contact your local sales representative.

¹ NTC pad or shunt pins bonded out – defined by ordering code explained in Table 1, Table 4 and Table 5

² When shunt pins are available, this product version's software does not support shunt measurements. This functionality is available in MLX91231

8. Glossary of Terms

Term	Explanation
ADC	Analog-to-Digital Converter
AFE	Analog Front End
AGC	Automatic Gain Control
DC	Duty Cycle
DSP	Digital Signal Processing
ECU	Electronic Control Unit
EMC	Electro-Magnetic Compatibility
IVT	Current – Voltage – Temperature
LIN	Local Interconnect Network
LVBAT/ HV	Low Voltage Battery/ High Voltage (>60V)
MCU	Microcontroller Unit
OCD	Over Current Detection
PCB	Printed Circuit Board
PWM	Pulse Width Modulation
SoC/ SoH/ SoF	State of Charge/ State of Health/ State of Function
UART	Universal Asynchronous Receiver-Transmitter

Table 3 – Glossary of terms

9. Pin description, Pin Definitions and Pinout

9.1. Conventional Hall with Voltage Sense

Pin #	Name	Description	Pinout	
1	TX_OCD	UART transmit communication pin <u>OR</u> Overcurrent detection pin	1 2 3 4	TX_OCD
2	VSS	Ground pin		VSS
3	LIN_OCD	LIN communication pin <u>OR</u> Overcurrent detection pin		VSENSE
4	VDD	Supply pin		SHUNT_P
5	SHUNT_M	Shunt minus input pin		SHUNT_M
6	SHUNT_P	Shunt plus input pin		5
7	VSENSE	Voltage measurement input pin		6
8	RX	UART receive communication pin		7 8

Table 4 – Pin description, definitions and pinout of Conventional Hall and Voltage Sense (Product Version: *000 and *100)

9.2. Conventional Hall with Voltage Sense and External Temperature Sense

Pin #	Name	Description	Pinout	
1	TX_OCD	UART transmit communication pin <u>OR</u> Overcurrent detection pin	1 2 3 4	TX_OCD
2	VSS	Ground pin		VSS
3	LIN_OCD	LIN communication pin <u>OR</u> Overcurrent detection pin		VSENSE
4	VDD	Supply pin		NC
5	NTC	NTC		6
6	N/C	Not connected		5
7	VSENSE	Voltage measurement input pin		NTC
8	RX	UART receive communication pin		8

Table 5 – Pin description, definitions and pinout of Conventional Hall and NTC (Product Version: *200)

10. Absolute Maximum Ratings

Parameter	Symbol	Min.	Typ.	Max.	Unit	Condition
Operating Ambient Temperature Range	T _a	-40		+125	°C	
Storage Temperature Range	T _s	-55		+165	°C	
Junction Temperature Range	T _j	-40		+150	°C	
Maximum Supply Voltage	V _{DD_MAX}	-0.3		36	V	Referred to VSS
Shunt pins absolute voltage	SHUNT_ABS_MAX	-0.5		1	V	SHUNTP or SHUNTM referred to VSS
Shunt pins differential voltage	SHUNT_DIFF_MAX	-1		1	V	SHUNTP-SHUNTM Pin to pin (differential input)
Maximum Voltage Sensing Channel	VSENSE_MAX	-14		36	V	12V input mode 400ms max for 36V referred to VSS
		-60		70	V	48V input mode 200ms max for 70V (only for LV148 E48-02 short test) referred to VSS
		-0.3		5.5	V	Direct (HV) input mode referred to VSS
LIN pin voltage	V _{LIN_MAX}	-27		40	V	Conformance test according to ISO 17987-7
RX pin voltage	R _{X_MAX}	-0.3		5.5	V	
TX OCD pin voltage	T _{XOCD_MAX_PP}	-14		18	V	TX OCD configured as push-pull driver
TX OCD pin voltage	T _{XOCD_MAX_OD}	-0.3		18	V	TX OCD configured as low side open drain driver
NTC pin voltage	N _{TC_MAX}	-0.3		3	V	

Parameter	Symbol	Min.	Typ.	Max.	Unit	Condition
ESD – Human Body Model Protection	HBM_LINTX	8			kV	Test method: AEC-Q100-002 LIN_OCD and TX_OCD pin
	HBM_VDD	6			kV	Test method: AEC-Q100-002 VDD pin
	HBM_OTHER	2			kV	Test method: AEC-Q100-002 Other pins
ESD Charged Device Model Protection	CDM_ALL	500			V	Test method: AEC-Q100-011 Corner pins (1,4,5,8) 750V

Table 6 – Absolute Maximum Ratings

Attention: exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute maximum-rated conditions for extended periods of time may affect device reliability.

11. Operating Ranges

The IC comprises a Standby and a KeyOn mode:

- **Standby mode:** the IC is programmed to wake up at regular time intervals, make IVT measurements and go back into low power mode afterwards. In Standby mode, the RAM content is maintained.
- **KeyOn mode:** the IC is active all the time, performing continuous measurements of IVT and transmitting measurements via LIN or UART.

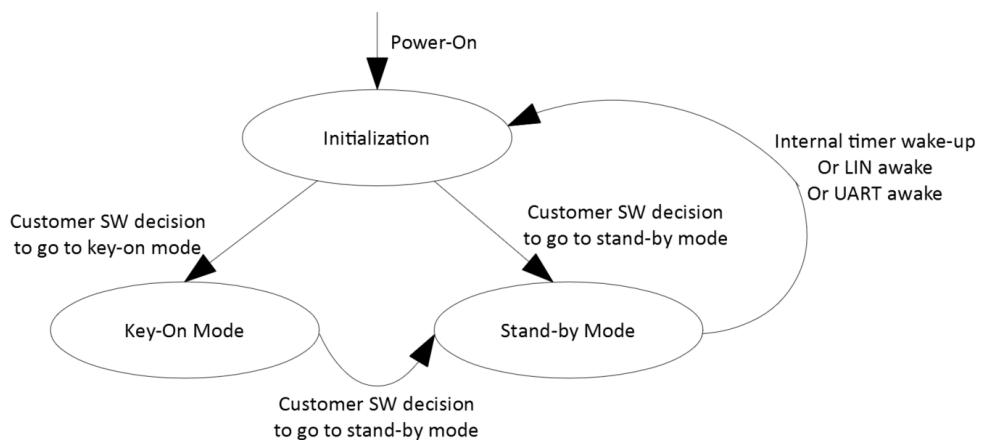


Figure 2 - State Diagram

Electrical Parameter	Symbol	Min.	Typ.	Max.	Unit	Condition
Supply Voltage	VDD	4.5	12	18	V	
Voltage Sensing Channel	VSENSE	3		18	V	LVBAT (12V)
		20		60	V	HVBAT (24V/ 48V)
		0.3		1.1	V	Direct connection, external divider
Current consumption	IDD_KEY			21	mA	KeyOn mode, without external load circuitry
	IDD_STBY			0.1	mA	Standby mode (averaged over 1 hour operation)

Table 7 – Operating conditions

Operating ranges	Ambient temperature [°C]	
	Standby Mode	KeyOn Mode
Normal	[5...45]	[-10...45]
Extended	[-10...5] and [45...65]	/
Full	[-40...-10] and [65...125]	[-40...-10] and [45...125]

Table 8 – Operating ranges per mode

12. General Timing Specification

The timing specification is built around the sequential measurement of Vbat (battery voltage measured on VSENSE pin) and Ibat (the battery current measured through the integrated Hall elements). With a single ADC resource, these Vbat and Ibat measurements are alternated, together with internal temperature ADCs, diagnostic ADCs and other ADC tasks. The IC can only start measuring after a start-up time called $T_{\text{initialization}}$.

Parameter	Value	Unit	Remarks
$T_{\text{initialization}}$	20	ms	Maximum value
$T_{\text{acquisition}}$	477	μs	Clock has a tolerance of $\pm 3\%$
T_{synch}	123	μs	Clock has a tolerance of $\pm 3\%$

Table 9 – Timing synchronization

The figure below shows the synchronization between the current and the voltage measurement based on the timing values in Table 8 above. These values are supported by the standard SW library delivered by Melexis. If different timings are needed, they can be adjusted through the FLASH SW based on a technical discussion with Melexis. Some applications may not require a voltage measurement that exists abundantly through other sensors, which could then speed up the MLX91230 Ibat acquisitions or improve the OCD response time which is more important for PyroFuse applications.

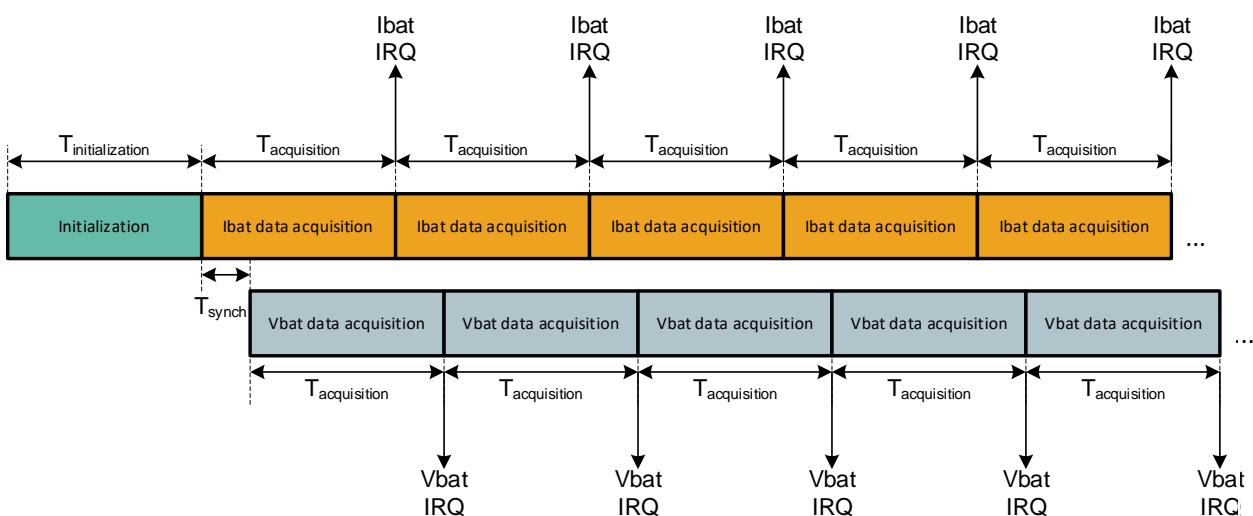


Figure 3 – Standard timing synchronization (programmable)

13. Analog Front End

13.1. Linear current measurement

Parameter	Symbol	Min.	Typ.	Max.	Unit	Condition
Measurement range	B_{range}	-512		512	mT	Compatible core design needed
Peak-to-Peak Noise (Input referred)	$B_{N,\text{PTP}}$			9 9 10 42	μT	Averaging over 100ms - Standby mode - KeyOn mode: $\pm 4\text{mT}$ - KeyOn mode: $\pm 45\text{mT}$ - KeyOn mode: $\pm 512\text{mT}$
Non-linearity error	NLE	-0.1 -0.6		0.1 0.6	%	0mT to 200mT magnitude 200mT to 512mT magnitude

Table 10 – Conventional Hall specifications

Parameter	Symbol	Absolute Min. ³	Min -3 σ	Typ.	Max +3 σ	Absolute Max. ³	Unit	Condition
Offset Thermal Drift Error	$\Delta^T O_{\text{COLD}}$	-50	-20	-	20	50	μT	Difference from -40°C to 25°C
	$\Delta^T O_{\text{HOT}}$	-60	-40	-	40	60	μT	Difference from 125°C to 25°C
Offset Total Drift Error	$\Delta^{T,L} O_{\text{COLD}}$	-120	-70	-	70	120	μT	Difference from -40°C after to 25°C before ageing ⁴
	$\Delta^{T,L} O_{\text{HOT}}$	-75	-50	-	50	75	μT	Difference from 125°C after to 25°C before ageing ⁴
Sensitivity Thermal Drift Error	$\Delta^T S$	-1.5	-1.1	-	0.5	1	%	Difference vs. 25°C measured at $\text{VDD} = 12\text{V}$ MLX91230KDC-BBA-000-RE
		-0.65	-0.4	-	0.4	0.65	%	MLX91230KDC-BBx-100/200-RE, Temp. range: -40°C to -20°C
		-0.5	-0.3	-	0.3	0.5	%	MLX91230KDC-BBx-100/200-RE, Temp. range: -20°C to 125°C
Sensitivity Total Drift Error ⁵	$\Delta T, LS$	-1.6	-1.2	-	0.6	1	%	Difference vs. 25°C before ageing ⁴ MLX91230KDC-BBA-000-RE measured at $\text{VDD} = 12\text{V}$

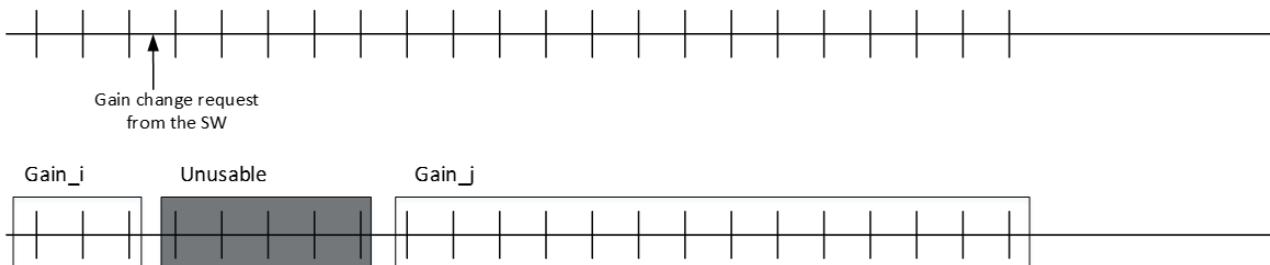
Table 11 – Key Hall specifications

³ Absolute Max/ Min values correspond to ppk values exceeding 1.67

⁴ Total drift data are built on a dataset of 3 lots of 77pcs each, as the difference between the measured variable after 1000h HTOL and the measured value after MSL3 preconditioning readout at 25°C .

⁵ Sensitivity Total Drift is pending for MLX91230KDC-BBx-100/200-RE and will be updated upon completion

13.2. Automatic gain control


The Analog Front End (AFE) for the current measurement is factory trimmed for different amplifications. For MLX91230 three different gain settings are used to cover the following ranges: $\pm 4\text{mT}$, $\pm 45\text{mT}$ and $\pm 512\text{mT}$. The customer application firmware is responsible for the transition from one range to the other.

When a gain change is requested, following behavior of the IC is expected. Please contact Melexis for more detailed specifications linked to particular programmed settings.

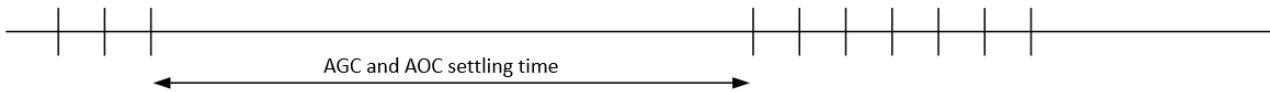

Timeline	Time before the next sample	Condition
Normal processing	500us	Starting condition before the range change is requested
From range change till the first DSP update	9.5ms	AGC (Automatic Gain Control) and AOC (Automatic Offset Correction) are completely settled
Normal processing	500us	Once the first DSP value is obtained, the refresh rate is 2kHz

Table 12 – Timing for AGC

ADC Samples

DSP Samples

AGC: Automatic Gain Control
AOC: Automatic Offset Correction

Figure 4 - Automatic Gain Control (AGC)

13.3. Overcurrent detection

The MLX91230 provides an overcurrent signal that can be put out on the LIN pin or TX pin when detecting an overcurrent event. The IC has two analog amplification channels, a slower and more precise one for the linear current measurement (supporting AGC) and a faster one (fixed gain) for the overcurrent detection. The ADC is also used for the OCD function, with the aim of bringing higher levels of accuracy and programmability in the DSP.

This feature allows detecting overcurrent outside of a defined (programmable) range that can even be set asymmetrically (negative current thresholds at lower magnitude than positive current thresholds), often linked to different requirements for charging (overcharge) and discharging (short-circuit). It can be enabled or disabled in the software. The rising threshold can be set at a higher magnitude than the falling threshold to introduce some hysteresis avoiding chattering of the OCD signal. If the OCD is set on the LIN pin, it uses the open drain LIN driver. If it is set on the TX pin, a push-pull or an open drain output can be set. Open-drain outputs are typically slower because of the passive pull-up.

There are 3 possible OCD modes⁶ as mentioned in the following table:

- **Level-based readout:**

The OCD information is encoded in the voltage level mapped to either the LIN pin or the TX pin. In case of an OCD event, the output transitions from low level to high level (active high signal) if OCD is on TX_OCD pin and from high to low level (active low signal) if on LIN_OCD pin. An external MCU detects the transitions and triggers the necessary actions or the signal can be used to (pre-)drive some event-handling transistor or switch. Diagnostic capabilities are limited since no distinction exists between stuck-at errors and active/inactive levels.

- **PWM digital readout:**

The OCD output has a fixed PWM duty cycle (DC) in absence of an OCD event, but transitions to another fixed PWM DC in case of an OCD detection. The external MCU requires timer resources to monitor the OCD state (encoded in the DC) and continuously diagnose anomalies through signal plausibility checks (PWM period & allowed duty cycle) for safety purposes.

- **PWM analog readout:**

Having an output which is the same as the PWM digital readout, this time the PWM signal is then low-pass filtered before being interpreted by the external MCU giving rise again to a level-based information that is very EMC-robust. For functional safety purposes, (another) MCU still has to perform the signal plausibility checks employing timer resources, but the OCD state is now again level-based and can therefore be interpreted using a voltage comparator versus one or more threshold(s). Note that the MCU has to monitor the PWM signal before the RC filter for functional safety purposes.

⁶ The MLX91230/31 Safety Manual is built around PWM diagnosis capabilities. Level-based thresholds are not well diagnosable and as such do not reach the targeted safety goals described in the Safety Manual.

OCD modes	OCD event IC output	OCD event decoding	OCD diagnostics decoding
Level - based	Voltage level change (active high on TX_OCD, active low on LIN_OCD)	Voltage Level Change (IC output)	N/A
PWM digital	PWM Dutycycle Change	PWM Dutycycle Change	PWM Allowed Dutycycle Tolerance PWM Period
PWM analog	PWM Dutycycle Change	Voltage Level Change (RC-filtered PWM signal)	PWM Allowed Dutycycle Tolerance PWM Period

Table 13 – OCD modes and decoding information

OCD response time [μs]		OCD on TX_OCD pin		OCD on LIN_OCD pin	
OCD mode	Symbol	Typ.	Max.	Typ.	Max.
Level - based	$T_{OCD,LEVEL}$	300	417.5	300	417.5
PWM digital	$T_{OCD,PWM-DIG}$	325	506.6	350	619.5
PWM analog	$T_{OCD,PWM-ANA}$	370	553.6	450	723

Table 14 – OCD response times on TX pin or LIN pin, per OCD mode

13.3.1. PWM digital OCD on TX_OCD pin

Category	Parameter	Symbol	Min.	Typ.	Max.	Unit	Condition
General	Upper voltage ⁷	V _{OH,TX-OCD}	3.9	4.5	4.95	V	VDD ≥ 6V 1mA sourcing current
			3.8	4.3	4.95	V	4.5V < VDD < 6V 1mA sourcing current
	Lower voltage ⁷	V _{OL,TX-OCD}	0	0.1	0.2	V	1mA sinking current
OCD programmable threshold	B_OCD threshold	B _{OCD-THRES}	±100		±650	mT	Input referred Bidirectional, 16bits
PWM output	TX-OCD output signal frequency	F _{PWM,TX-OCD}	20	22	24	kHz	22kHz is set by default 1kHz steps
	No OCD detected – TX duty cycle ^{7, 8}	D _{C_{OFF,TX-OCD}}	16	20	24	%	
	OCD detected - TX duty cycle ^{7, 8}	D _{C_{ON,TX-OCD}}	76	80	84	%	
Slew rate	Rising slew rate	S _{R_{TXrise}}		1		V/µs	
	Falling slew rate	S _{R_{TXfall}}		-1		V/µs	
Accuracy	OCD threshold accuracy TX	ACC _{TX-OCD}	-10	±5	10	%	Relative to programmed OCD threshold at 25°C
Timings	TX OCD Input debounce time ⁹	T _{DEB,TX-OCD}	70			µs	OCD event duration needed for detection
	TX OCD Output latch time	T _{HOLD,TX-OCD}		90		µs	OCD event lasts minimum 2 PWM periods

Table 15 – OCD specifications on the TX_OCD pin

⁷ With reference to the recommended application diagram in Chapter 15⁸ Duty cycle measured with trigger level between 2V and 3.3V⁹ The OCD will not be triggered for over-current event having a lower duration than the minimum value

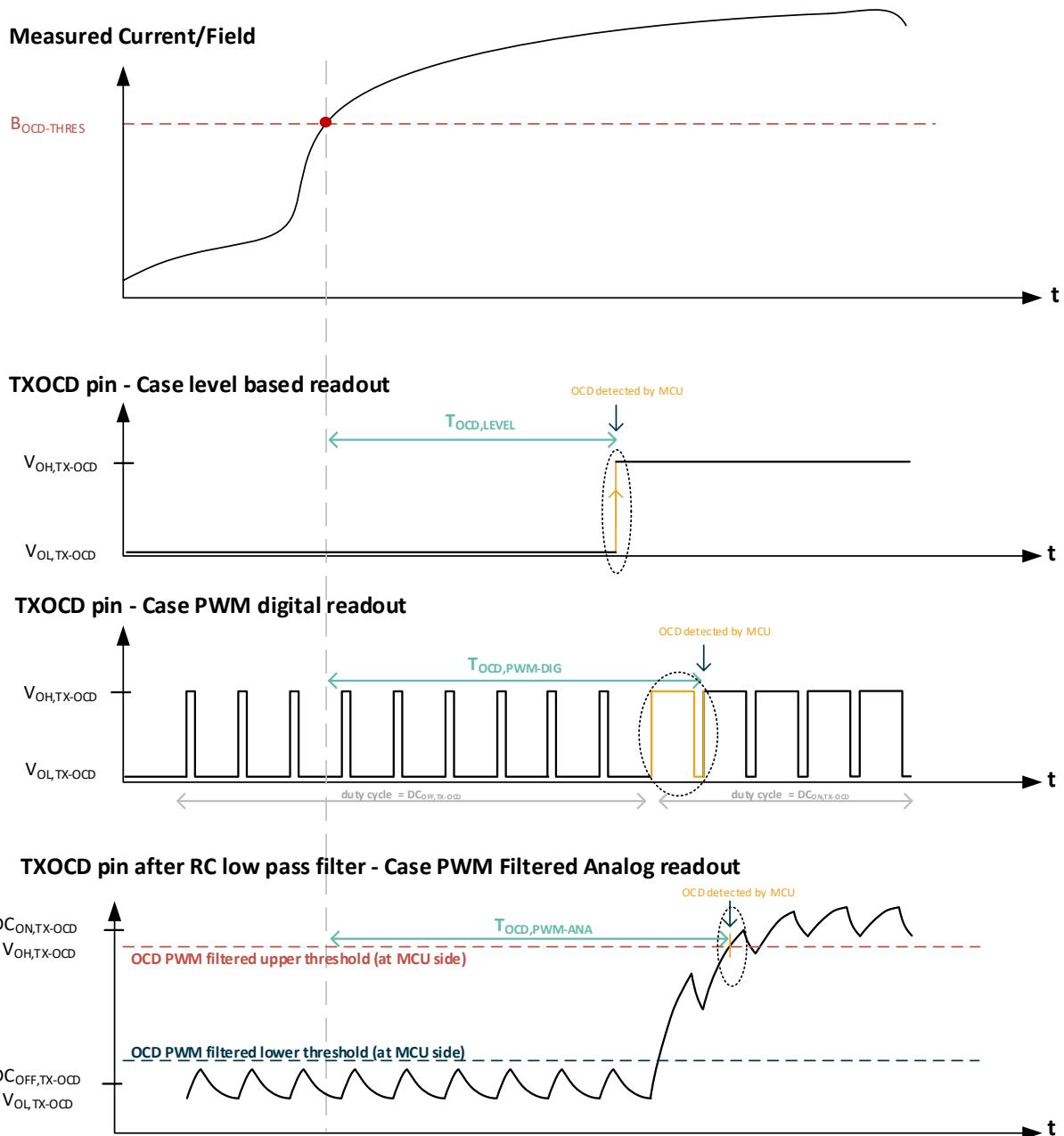


Figure 5 – Example of an overcurrent detection on TX_OCD pin and timing overview per readout (LIN_OCD using timings and voltages of the table in Chapter 13.3.2)

13.3.2. PWM digital OCD on LIN_OCD pin

Category	Parameter	Symbol	Min.	Typ.	Max.	Unit	Condition
General	Supply Voltage OCD use	$V_{DD_{LIN-OCD}}$	4.5	5	5.5	V	
	Pull-up voltage ¹⁰	$V_{PU,LIN}$	4.5	-	5.5	V	
	Upper voltage ¹⁰	$V_{OH,LIN-OCD}$	$V_{PU,LIN} - 0.1$	-	$V_{PU,LIN}$	V	
	Lower voltage ¹⁰	$V_{OL,LIN-OCD}$	0.55	0.9	1.1	V	$R_{PU} = 2.2k\Omega$ pull-up resistance $V_{PU,LIN}$
OCD programmable threshold	B_OCD threshold	$B_{OCD-THRES}$	± 100		± 650	mT	Input referred Bidirectional, 16bits
PWM output	LIN-OCD output signal frequency	$F_{PWM,LIN-OCD}$			10	kHz	10kHz is set by default
	No OCD detected – LIN duty cycle ^{10, 11}	$DC_{OFF,LIN-OCD}$	70	75	91	%	
	OCD detected – LIN duty cycle ^{10, 11}	$DC_{ON,LIN-OCD}$	15	25	33	%	
Accuracy	OCD threshold accuracy LIN	$ACC_{LIN-OCD}$	-10	± 5	10	%	Relative to programmed OCD threshold at 25°C
Timings	LIN OCD Input debounce time ¹²	$T_{DEB,LIN-OCD}$	70			μs	
	LIN OCD Output latch time	$T_{HOLD,LIN-OCD}$		200		μs	OCD event lasts minimum 2 PWM periods

Table 16 – OCD specifications on the LIN_OCD pin

¹⁰ With reference to the recommended application diagram in Chapter 15¹¹ Duty cycle measured with trigger level between 2V and 3.3V¹² The OCD will not be triggered for over-current event having a lower duration than the minimum value

13.4. VSENSE voltage measurement

13.4.1. LVBAT (12V) measurement

Parameter	Symbol	Min.	Typ.	Max.	Unit	Condition
Sensing range	$V_{R,LVBAT}$	3		18	V	
Input current	I_{LVBAT}			30	μA	Due to internal voltage division
Resolution	R_{LVBAT}		0.5		mV	1 LSB representation
Integral non-linearity error	INL		± 0.015		%	
Error Drift	LVBat_err	-0.2 -0.25 -0.5		0.2 0.25 0.5	%	Relative to 25°C Range = [12...13]V, Standby mode, temperature in [5...45]°C Range = [8...16]V, KeyOn mode, temperature in [-40...125]°C Range = [3...8] and [16...18]V, KeyOn mode, temperature in [-40...125]°C
Peak-to-Peak Noise	$V_{N,PTP}$		± 0.01 ± 0.02		%Full Scale Range	Standby mode KeyOn mode (averaged over 100ms)

Table 17 – LVBAT (12V) analog front-end specifications

13.4.2. HVBAT (24V/48V) measurement

Parameter	Symbol	Min.	Typ.	Max.	Unit	Condition
Sensing range	$V_{R,HVBAT}$	20		60	V	
Input current	I_{HVBAT}			110	μA	Due to internal voltage division
Resolution	R_{HVBAT}		2		mV	1 LSB representation
Integral non-linearity error	INL		± 0.015		%	
Error Drift	HVBat_err	-0.2 -0.25 -0.5		0.2 0.25 0.5	%	Relative to 25°C Range = [36...52]V, Standby mode, temperature in [5...45]°C. Range = [36...52]V, KeyOn mode, temperature in [-40...125]°C. Range = [20...36] and [52...60]V, KeyOn mode, temperature in [-40...125]°C.
Peak-to-Peak Noise	$V_{N,PTP}$		± 0.01 ± 0.02		%Full Scale Range	Standby mode KeyOn mode (averaged over 100ms)

Table 18 – HVBAT (24V/48V) analog front-end specifications

13.4.3. Direct voltage (HV) measurement

Parameter	Symbol	Min.	Typ.	Max.	Unit	Condition
Sensing range	$V_{R,DIRECT}$	0.3		1.1	V	The external HV battery should be stepped down to this range by using an external resistive divider
Input current	I_{DIRECT}		0		μA	No internal resistive divider
Resolution	R_{DIRECT}		33.33		μV	
Integral non-linearity error	INL		± 0.015		%	
Error	DVBat_err	-0.3 -0.5		0.3 0.5	%	Range=[0.6...1.1]V Range=[0.3...1.1]V
Peak-to-Peak Noise	$V_{N,PTP}$		± 0.01 ± 0.02		%Full Scale Range	Standby mode KeyOn mode (averaged over 100ms)

Table 19 – Direct voltage analog front-end specification

13.5. Internal die Temperature measurement

Parameter	Symbol	Min.	Typ.	Max.	Unit	Condition
Sensing range	$T_{INT,RANGE}$	-40		150	°C	
Accuracy	ACC_{TINT}	-5 -2		+5 +2	°C	KeyOn mode Operating range in -10 to 45°, KeyOn mode
Resolution	R_{TINT}		1/16		°C	
Sampling rate	F_{TINT}		250		Hz	Standard MLX SW library

Table 20 – Internal die temperature sensing specification

13.6. VDD voltage measurement

Parameter	Symbol	Min.	Typ.	Max.	Unit	Condition
Sensing range	VDD _{RANGE}	7		17	V	
Accuracy	ACC _{VDD}		±1		%	KeyOn mode
Resolution	R _{VDD}	50			mV	
Peak-to-Peak Noise	VDD _{N,PTP}		±90		mV	KeyOn mode, averaged over 100ms
Sampling rate	F _{VDD}		250		Hz	Standard MLX SW library

Table 21 – Internal supply voltage measurement specification

13.7. NTC Measurement

Parameter	Symbol	Min.	Typ.	Max.	Unit	Condition
NTC resistance sensing range	R _{NTC}	0.5	10	500	kΩ	Over full temperature range
NTC Accuracy	ACC _{NTC}	-1		+1	°C	Performance does not include external components (NTC and resistor) errors
Peak-to-Peak Noise	NTC _{N,PTP}		±0.5		°C	
Sampling Rate	F _{NTC}		250		Hz	
Resolution	N _{NTC}		1/32		°C	

Table 22 – NTC measurement specification

14. Electrical specifications

14.1. LIN

Note that the electrical specification of the LIN transceiver is developed in compliance to LIN2.2, ISO17987-4 and SAE J2602. For details, please refer to the customer user manual where LIN transceiver's description, static and dynamic values are described in the "Communication protocols" chapter.

14.2. UART

For more details about the UART interface, please refer to the product customer user manual in "Communication protocols" chapter.

14.2.1. RX

Parameter	Symbol	Min.	Typ.	Max.	Unit
RX input voltage threshold - high	VTH_RX_IO	2.6			V
RX input voltage threshold - low	VTL_RX_IO			0.5	V
RX input voltage threshold - hysteresis	VHY_RX_IO	0.7		1.7	V
RX pin input pull-down resistance	RPD_RX_IO	40	100	240	kΩ

Table 23 – RX electrical specifications

14.2.2. TX

Parameter	Symbol	Min.	Typ.	Max.	Unit	Condition
Upper voltage	VOH_TX	3.9	4.5	4.85	V	VDD>6V, 1mA sourcing current
		3.8	4.3	4.85	V	4.5V< VDD <6V, 1mA sourcing current
Lower voltage	VOL_TX	0	0.1	0.2	V	1mA sinking current

Table 24 – TX electrical specifications

14.3. Supply system

Parameter	Symbol	Min.	Typ.	Max.	Unit
VDD under-voltage detection threshold	VDD_UV_thres	3.9	4.05	4.5	V
VDD over-voltage detection threshold	VDD_OV_thres	20	22	24	V

Table 25 – Electrical specifications: VDD over- and under-voltage detection

14.4. Internal Clock Generation

Parameter	Symbol	Min.	Typ.	Max.	Unit	Condition
30MHz Oscillator	Fosc_trim		30		MHz	Factory Trimmed
30MHz Oscillator frequency error (target 100% or 75% of the trimmed frequency)	Fosc_error	-3.5	0	+3.5	%	Trimmed oscillator, over temperature and over VDDD
30MHz Oscillator frequency error (target 50% or 25% of the trimmed frequency)	Fosc_error	-5	0	+5	%	Trimmed oscillator, over temperature and over VDDD
1MHz Oscillator	Fosc_1M	0.95	1	1.05	MHz	Trimmed, Nominal VDD
10kHz Oscillator	Fosc_10K	5	10	20	kHz	Non-trimmable

Table 26 – Internal clock electrical specifications

15. Recommended Application Diagrams

15.1. Resistor and Capacitor Values for LIN and UART communications

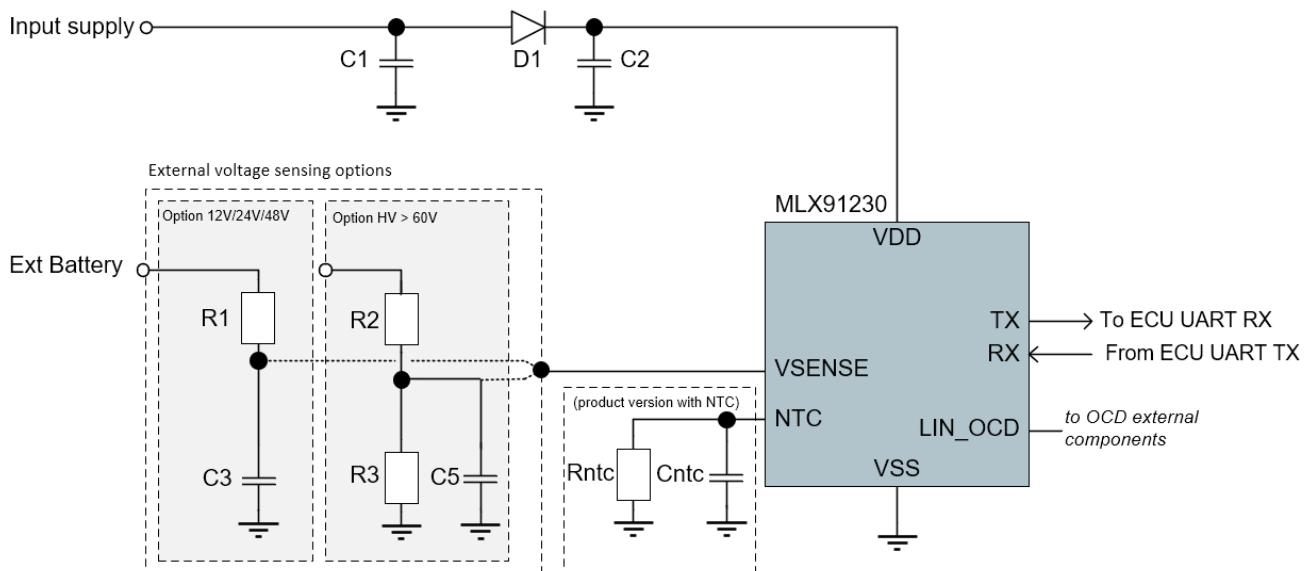


Figure 6 – Application diagram with UART communication – possible to read OCD on LIN (Chapter 13.3.2)

For UART usage at lower voltages than those defined in the datasheet or activation of the open-drain mode instead of default push-pull mode, please contact Melexis for support. TX_OCD functionality below is only recommended in this default push-pull mode.

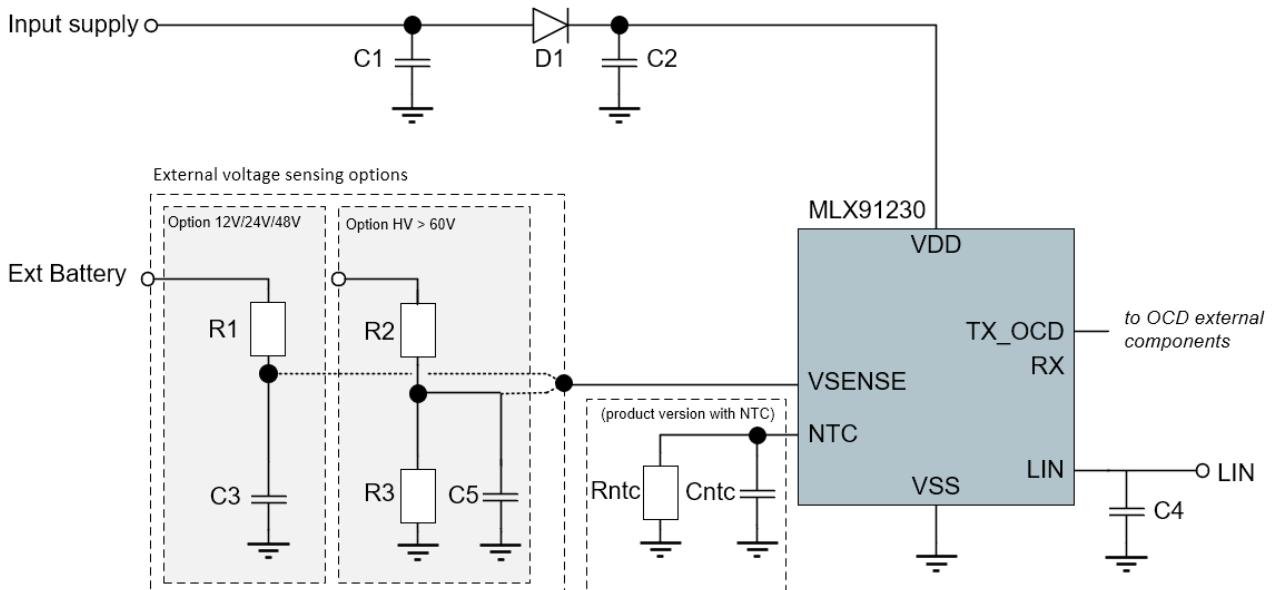


Figure 7 - Application diagram with LIN communication – possible to read OCD on TX (Chapter 13.3.1)

Component	Description	Value	Unit
C_1	Battery supply capacitance, before diode	10	nF
C_2	Battery supply capacitance, after diode → Type: Ceramic SMD Murata X7R 4.7uF +-10% 50V GCM31CC71H475KA03 or similar	4.7	uF
C_3	12/24/48V (LVBAT/HVBAT) voltage sense capacitor	1	nF
C_4	LIN pin capacitor	0.18	nF
C_5	Direct voltage sense capacitor	1	nF
C_{NTC}	NTC Decoupling capacitor	10	nF
R_{NTC}	NTC resistor → Type: Murata NTC thermistor NCU18XH103F6SRB (other NTC also supported, see Table 22)	10 ($T_{amb} = 25^\circ\text{C}$)	kΩ
R_1	12/48V voltage sense resistance	2.2	kΩ
R_2	Direct voltage sense resistive division – high side	Voltage divider to stay in the VSENSE operating range – customer to manage voltage isolation if applicable	kΩ
R_3	Direct voltage sense resistive division – low side		

Table 27 – Resistor and Capacitor Values for Recommended Application Diagrams in Figure 6 and Figure 7

15.2. OCD external circuit example (PWM)

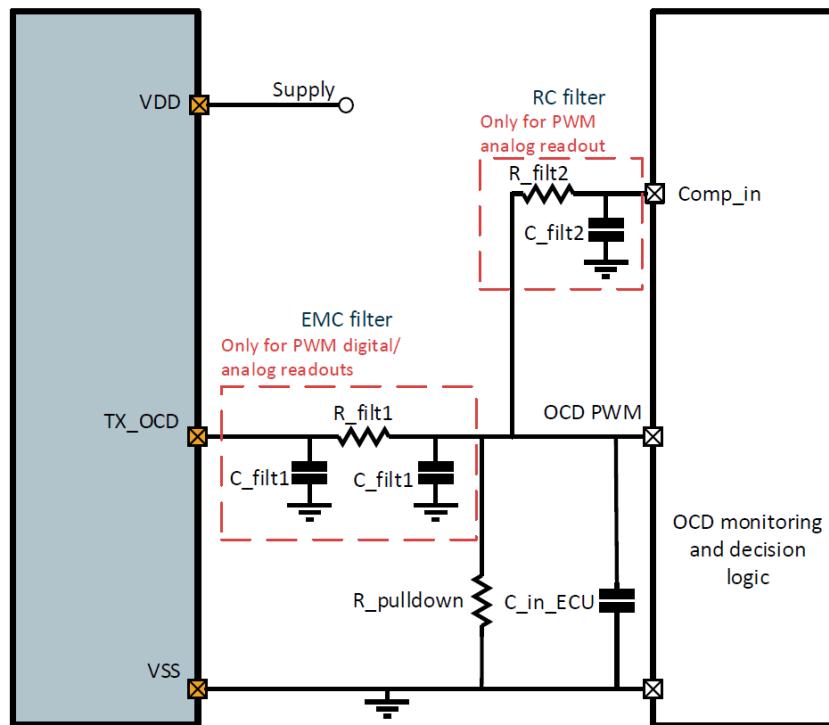


Figure 8 – OCD application diagram example for OCD on TX_OCD pin

Part	Description	Value	Unit
C_filt1	EMC filter capacitor	100	pF
R_filt1	EMC filter resistor	220	Ω
C_filt2	OCD PWM filter capacitor	470	pF
R_filt2	OCD PWM filter resistor	100	kΩ
R_pulldown	Pull down resistor at ECU side	51	kΩ
C_in_ECU	Input capacitor at ECU side	4.7	nF

Table 28 – Resistor and Capacitor Values for TX OCD Application Diagram example

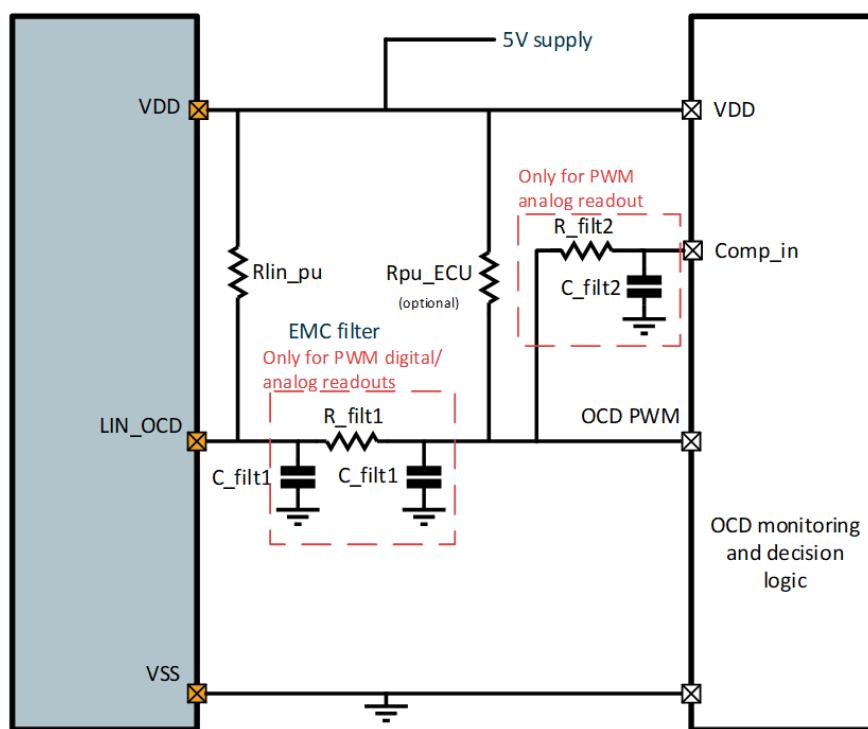


Figure 9 – OCD application diagram example for OCD on LIN pin
(Recommended 5V operation with 5V pull-up on LIN_OCD)

Part	Description	Value	Unit
Rlin_pu	Pull up resistance (high side driver on the LIN pin)	2.2	kΩ
Cfilt_1	EMC filter capacitance	470	pF
Rfilt_1	EMC filter resistance	220	Ω
Cfilt_2	PWM filtering capacitance	1	nF
Rfilt_2	PWM filtering resistor	100	kΩ
Rpu_ECU	Pull up resistance at the ECU/ MCU side (not required if the ECU/ MCU is on the same PCB)	82	kΩ

Table 29 – Resistor and Capacitor Values for LIN OCD Application Diagram example

16. Package, IC handling and assembly

16.1. Package information

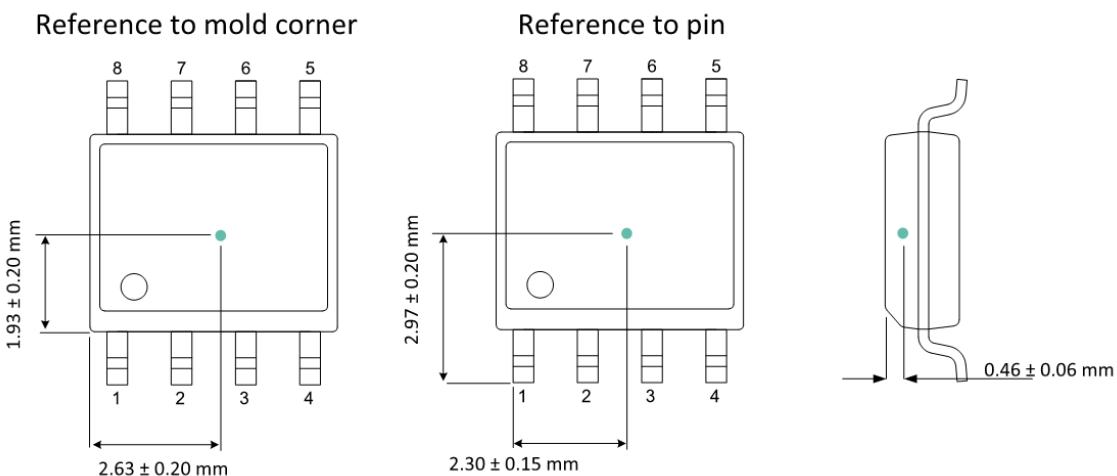


Figure 10 - Hall Plate position

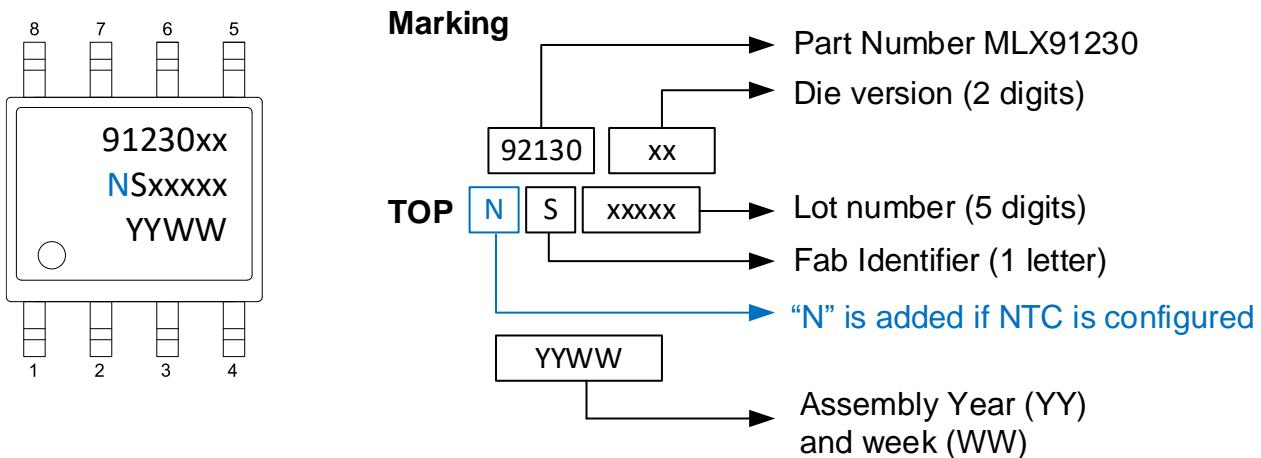
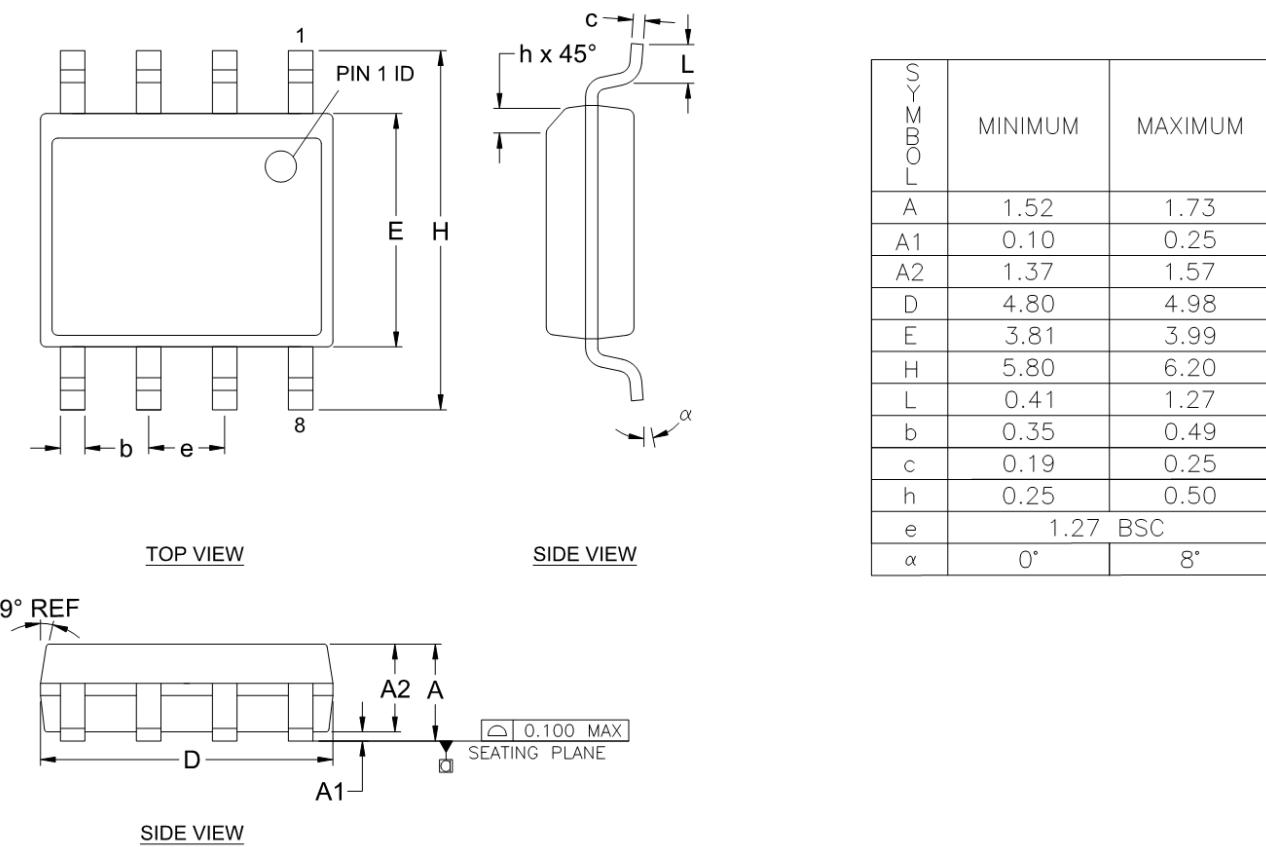



Figure 11 – Package marking

NOTE :

1. ALL DIMENSIONS IN MILLIMETERS (mm) UNLESS OTHERWISE STATED.
2. DIMENSION D DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS OF MAX 0.15 mm PER SIDE.
3. DIMENSION E DOES NOT INCLUDE INTERLEADS FLASH OR PROTRUSIONS OF MAX 0.25 mm PER SIDE.
4. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION OF MAX 0.08 mm.
5. LEAD COPLANARITY SHALL BE 0.1 mm MAX.

Figure 12 – SOIC8 package information

16.2. Storage and handling of plastic encapsulated ICs

Plastic encapsulated ICs shall be stored and handled according to their MSL categorization level (specified in the packing label) as per J-STD-033.

Electronic semiconductor products are sensitive to Electro Static Discharge (ESD). The component assembly shall be handled in EPA (Electrostatic Protected Area) as per ANSI S20.20

For more information refer to Melexis [Guidelines for storage and handling of plastic encapsulated ICs](#)

16.3. Assembly of encapsulated ICs

Relevant documentation can be found on www.melexis.com/en/tech-info/ic-handling-and-assembly

For Surface Mounted Devices (SMD, as defined according to JEDEC norms), the only applicable soldering method is reflow.

Melexis products soldering on PCB should be conducted according to the requirements of IPC/JEDEC and J-STD-001. Solder quality acceptance should follow the requirements of IPC-A-610.

Environmental protection of customer assembly with Melexis products for harsh media application, is applicable by means of coating, potting or overmolding considering restrictions listed in the relevant application notes.

For other specific process, contact Melexis via www.melexis.com/technical-inquiry

16.4. Environment and sustainability

Melexis is contributing to global environmental conservation by promoting non-hazardous solutions.

For more information on our environmental policy and declarations (RoHS, REACH...) visit

www.melexis.com/environmental-forms-and-declarations

17. Disclaimer

The content of this document is believed to be correct and accurate. However, the content of this document is furnished "as is" for informational use only and no representation, nor warranty is provided by Melexis about its accuracy, nor about the results of its implementation. Melexis assumes no responsibility or liability for any errors or inaccuracies that may appear in this document. Customer will follow the practices contained in this document under its sole responsibility. This documentation is in fact provided without warranty, term, or condition of any kind, either implied or expressed, including but not limited to warranties of merchantability, satisfactory quality, non-infringement, and fitness for purpose. Melexis, its employees and agents and its affiliates' and their employees and agents will not be responsible for any loss, however arising, from the use of, or reliance on this document. Notwithstanding the foregoing, contractual obligations expressly undertaken in writing by Melexis prevail over this disclaimer.

This document is subject to change without notice, and should not be construed as a commitment by Melexis. Therefore, before placing orders or prior to designing the product into a system, users or any third party should obtain the latest version of the relevant information.

Users or any third party must determine the suitability of the product described in this document for its application, including the level of reliability required and determine whether it is fit for a particular purpose.

This document as well as the product here described may be subject to export control regulations. Be aware that export might require a prior authorization from competent authorities. The product is not designed, authorized or warranted to be suitable in applications requiring extended temperature range and/or unusual environmental requirements. High reliability applications, such as medical life-support or life-sustaining equipment or avionics application are specifically excluded by Melexis. The product may not be used for the following applications subject to export control regulations: the development, production, processing, operation, maintenance, storage, recognition or proliferation of:

1. chemical, biological or nuclear weapons, or for the development, production, maintenance or storage of missiles for such weapons;
2. civil firearms, including spare parts or ammunition for such arms;
3. defense related products, or other material for military use or for law enforcement;
4. any applications that, alone or in combination with other goods, substances or organisms could cause serious harm to persons or goods and that can be used as a means of violence in an armed conflict or any similar violent situation.

No license nor any other right or interest is granted to any of Melexis' or third party's intellectual property rights.

If this document is marked "restricted" or with similar words, or if in any case the content of this document is to be reasonably understood as being confidential, the recipient of this document shall not communicate, nor disclose to any third party, any part of the document without Melexis' express written consent. The recipient shall take all necessary measures to apply and preserve the confidential character of the document. In particular, the recipient shall (i) hold document in confidence with at least the same degree of care by which it maintains the confidentiality of its own proprietary and confidential information, but no less than reasonable care; (ii) restrict the disclosure of the document solely to its employees for the purpose for which this document was received, on a strictly need to know basis and providing that such persons to whom the document is disclosed are bound by confidentiality terms substantially similar to those in this disclaimer; (iii) use the document only in connection with the purpose for which this document was received, and reproduce document only to the extent necessary for such purposes; (iv) not use the document for commercial purposes or to the detriment of Melexis or its customers. The confidentiality obligations set forth in this disclaimer will have indefinite duration and in any case, they will be effective for no less than 10 years from the receipt of this document.

This disclaimer will be governed by and construed in accordance with Belgian law and any disputes relating to this disclaimer will be subject to the exclusive jurisdiction of the courts of Brussels, Belgium.

The invalidity or ineffectiveness of any of the provisions of this disclaimer does not affect the validity or effectiveness of the other provisions. The previous versions of this document are repealed.

Melexis © - No part of this document may be reproduced without the prior written consent of Melexis. (2025)
IATF 16949 and ISO 14001 Certified

For the latest revision of this document, visit www.melexis.com/MLX91230

Happy to help you! www.melexis.com/contact