

Automotive Fault Protected High-Speed CAN FD SIC Transceiver with Standby Mode

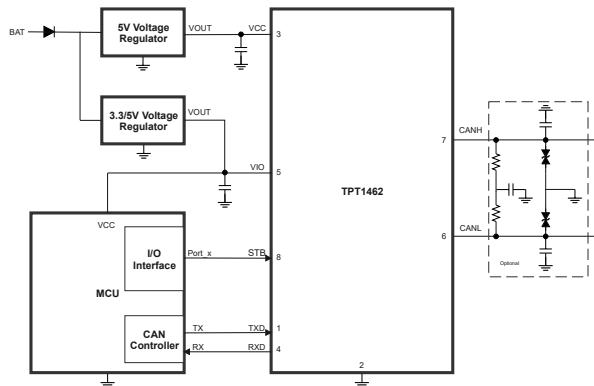
Features

- Meets the ISO 11898-2:2024 and CiA601-4 for Signal Improvement Capability (SIC) and SAE J2284-1 to SAE J2284-5 Physical Layer Standards
- Supports Classical CAN and Optimized CAN FD SIC up to 8 Mbps Data Rates
- Short and Symmetrical Propagation Delay and Fast Loop Delay for Enhanced Timing Margin
- 5-V Power Supply, I/O Voltage Range Supports 1.7-V to 5.5-V MCU Interface (V variants only)
- Ultra-low Current Standby Mode with Bus Wake-up Capability
- Ideal Passive Behavior to CAN Bus when Unpowered
- Glitch-free on CAN Bus and RXD when Power on/off
- Protection Feature:
 - Bus HBM ESD Protection up to 15 kV and IEC 61000-4-2 ESD Protection
 - Bus Fault Protection: ± 45 V
 - VCC and VIO (V variants only) Undervoltage Protection
 - TXD Dominant Time-out Function and Bus-dominant Time-out
 - Thermal Shutdown Protection
- Available in the SOP8 Package and the Leadless DFN3X3-8 Package with Improved Automated Optical Inspection (AOI) Capability
- AEC-Q100 Qualified for Automotive Applications, Grade 1

Applications

- All Devices Supporting Highly Loaded CAN Networks
- Automotive and Transportation
 - Body Electronics/Lighting
 - Power Train/Chassis
 - Infotainment/Cluster
 - ADAS/Safety

Description


The TPT1462VQ and the TPT1462Q are CAN transceivers that meet the ISO11898-2:2024, CiA601-4 signal improvement capability (SIC), and SAEJ2284-1 to SAE J2284-5 high-speed CAN (Controller Area Network) physical layer standards.

The devices are designed to be used in CAN FD networks up to 8 Mbps with an enhanced timing margin. The system design can be optimized with excellent electromagnetic compatibility (EMC) and electrostatic discharge (ESD) performance. The TPT1462VQ has a secondary power supply input VIO pin for I/O level shifting to support 1.8-V, 2.5-V, 3.3-V, and 5-V MCU logic levels directly. This family has a low-current standby mode with CAN bus waked-up capability via wake-up pattern (WUP) which is defined in ISO11898-2:2024.

As designed, the devices feature bus fault protection from -45 V to +45 V, TXD dominant time-out (DTO), over-temperature shutdown (TSD). Additionally, all devices include power-off ideal passive behavior fail-safe features to enhance the network robustness.

The TPT1462VQ and the TPT1462Q are available in SOP8 and DFN3X3-8 packages and are AEC-Q100 qualified for automotive applications.

Typical Application Circuit

**Automotive Fault Protected High-Speed CAN FD SIC Transceiver
with Standby Mode****Table of Contents**

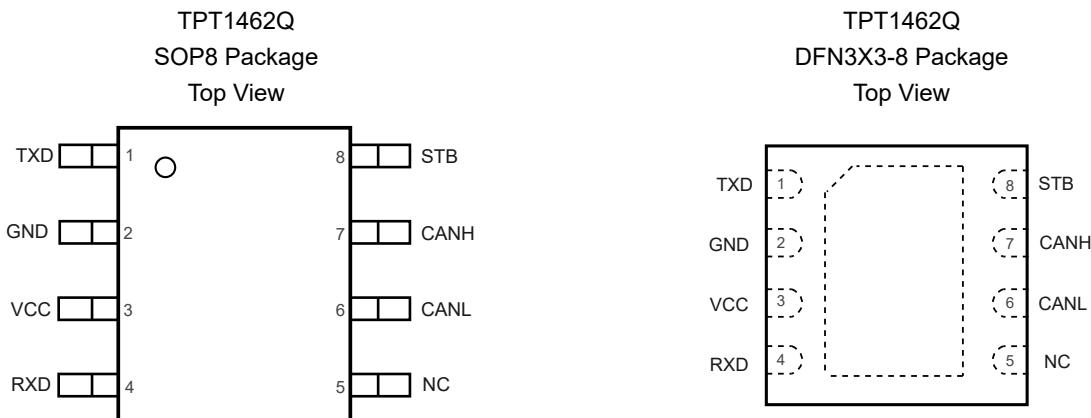
Features.....	1
Applications.....	1
Description.....	1
Typical Application Circuit.....	1
Product Family Table.....	3
Revision History.....	3
Pin Configuration and Functions.....	4
Specifications.....	6
Absolute Maximum Ratings ⁽¹⁾	6
ESD and Transient Ratings.....	6
Recommended Operating Conditions.....	7
Thermal Information.....	7
Electrical Characteristics.....	8
AC Timing Requirements.....	12
Parameter Measurement Information.....	14
Test Circuit.....	14
Parameter Diagram.....	15
Detailed Description.....	16
Overview.....	16
Functional Block Diagram.....	16
Feature Description.....	17
Device Operating Modes.....	17
Remote Wake-up.....	17
Protection Features.....	18
VIO Supply Pin.....	18
Application and Implementation.....	19
Application Information	19
Typical Application.....	19
Tape and Reel Information.....	21
Package Outline Dimensions.....	22
SOP8.....	22
DFN3X3-8.....	23
Order Information.....	24
IMPORTANT NOTICE AND DISCLAIMER.....	25

TPT1462VQ, TPT1462Q


**Automotive Fault Protected High-Speed CAN FD SIC Transceiver
with Standby Mode**

Product Family Table

Order Number	VCC (V)	VIO (V)	BUS Protection (V)	Package
TPT1462VQ-SO1R-S	5	1.7 to 5.5	±45	SOP8
TPT1462VQ-DFCR-S	5	1.7 to 5.5	±45	DFN3X3-8
TPT1462Q-SO1R-S	5	NC	±45	SOP8
TPT1462Q-DFCR-S	5	NC	±45	DFN3X3-8


Revision History

Date	Revision	Notes
2023-01-05	Rev.Pre.0	Initial version
2024-11-22	Rev.A.0	Released version
2025-03-06	Rev.A.1	Added a note for $V_{HYS_RX_DIF}$ Updated the typical value of V_{HYS_UVVIO}

**Automotive Fault Protected High-Speed CAN FD SIC Transceiver
with Standby Mode**
Pin Configuration and Functions

Table 1. Pin Functions: TPT1462VQ

Pin		I/O	Description
No.	Name		
1	TXD	I	CAN transmit data input, internal weak pull-up (low for dominant and high for recessive bus states)
2	GND ⁽¹⁾	GND	Ground
3	VCC	POWER	Transceiver 5-V supply voltage
4	RXD	O	CAN receive data output (low for dominant and high for recessive bus states)
5	VIO	POWER	Transceiver I/O level shifting supply voltage
6	CANL	BUS I/O	Low-level CAN bus input/output line
7	CANH	BUS I/O	High-level CAN bus input/output line
8	STB	I	Standby mode control input, internal weak pull-up (active high)

(1) The DFN package die is connected to both the GND pin and the exposed pad. The GND pin must be soldered to the board ground and for enhanced thermal and electrical performance, the exposed pad is also recommended to be soldered to the board ground.

**Automotive Fault Protected High-Speed CAN FD SIC Transceiver
with Standby Mode**

Table 2. Pin Functions: TPT1462Q

Pin		I/O	Description
No.	Name		
1	TXD	I	CAN transmit data input (low for dominant and high for recessive bus states)
2	GND ⁽¹⁾	GND	Ground
3	VCC	Power	Transceiver 5-V supply voltage
4	RXD	O	CAN receive data output (low for dominant and high for recessive bus states)
5	NC	-	Not connected, no bonding
6	CANL	Bus I/O	Low-level CAN bus input/output line
7	CANH	Bus I/O	High-level CAN bus input/output line
8	STB	I	Standby mode control input (active high)

(1) The DFN package die is connected to both the GND pin and the exposed pad. The GND pin must be soldered to the board ground and for enhanced thermal and electrical performance, the exposed pad is also recommended to be soldered to the board ground.

**Automotive Fault Protected High-Speed CAN FD SIC Transceiver
with Standby Mode**

Specifications

Absolute Maximum Ratings (1)

Parameter		Min	Max	Unit
V_{CC}	Supply Voltage Range	-0.3	7	V
V_{IO}	I/O Level-shifting Voltage Range	-0.3	7	V
V_{BUS}	CAN Bus Voltage Range (CANH, CANL)	-45	45	V
V_{BUS_DIFF}	Differential Output Voltage of CAN Bus, (CANH - CANL)	-45	45	V
V_{LOGIC_IN}	Logic Input Terminal Voltage Range (TXD, STB)	-0.3	7	V
V_{LOGIC_OUT}	Logic Output Terminal Voltage Range (RXD)	-0.3	7	V
T_J	Junction Temperature	-40	150	°C
T_{STG}	Storage Temperature	-55	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

ESD and Transient Ratings

Parameter		Condition	Min	Max	Unit
V_{ESD}	Electrostatics Discharge (1)(2)	IEC61000-4-2(150pF, 330Ω discharge circuit), contact discharge on bus pins (CANH, CANL)	-8	8	kV
		Human Body Model (HBM) on all pins Human Body Model (HBM) on bus pins (CANH, CANL)	-15	15	kV
		Human Body Model (HBM) on all pins	-8	8	kV
		Charged Device Model (CDM) on all pins	-750	750	V
V_{TRAN}	Transient Immunity ISO 7637-2 on Bus Pins	Pulse1	-100		V
		Pulse2a		75	V
		Pulse3a	-150		V
		Pulse3b		100	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

TPT1462VQ, TPT1462Q

**Automotive Fault Protected High-Speed CAN FD SIC Transceiver
with Standby Mode**

Recommended Operating Conditions

	Parameter	Min	Max	Unit
V_{IO}	Input/output Voltage, TXD, RXD, STB	1.7	5.5	V
V_{CC}	Power Supply	4.5	5.5	V
$I_{OH(RXD)}$	RXD Terminal High-Level Output Current	-1		mA
$I_{OL(RXD)}$	RXD Terminal Low-Level Output Current		1	mA
T_J	Operating Junction Temperature	-40	150	°C

Thermal Information

Package Type	θ_{JA}	θ_{JC}	Unit
SOP8	118	48	°C/W
DFN3x3-8	51	23	°C/W

**Automotive Fault Protected High-Speed CAN FD SIC Transceiver
with Standby Mode**
Electrical Characteristics

All test conditions: $V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$, $V_{IO} = 1.7 \text{ V to } 5.5 \text{ V}$, $R_L = 60 \Omega$, $T_J = -40^\circ\text{C to } 150^\circ\text{C}$, unless otherwise noted.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
Pin VCC; Power Supply						
V_{CC}	Supply Voltage		4.5		5.5	V
$V_{UV_{D_STB_VCC}}$	Standby Undervoltage Detection on V_{CC}		4		4.5	V
$V_{UV_{D_SWO_FF_VCC}}$	Switch-off Undervoltage Detection on V_{CC} for Protected Mode (Variants without V suffix)		1.35	1.5	1.65	V
I_{CC}	Normal Mode Supply Current	Dominant, $V_{TXD} = 0 \text{ V}$; $t < t_{TXD_DTO}$		48	70	mA
		Dominant bus fault, $V_{TXD} = 0 \text{ V}$; short circuit on bus lines; $-40 \text{ V} < (V_{CANH} = V_{CANL}) < +40 \text{ V}$		65	115	mA
		Recessive; $V_{TXD} = V_{IO}$		2.5	10	mA
	Standby Mode Supply Current	Device with the "V" suffix; $V_{STB} = V_{IO}$		0.3	2	μA
		Device without the "V" suffix; $V_{STB} = V_{CC}$		8.0	17.5	μA
Pin VIO; IO Level Adapter Power Supply (variants with V suffix only)						
V_{IO}	Supply Voltage		1.7		5.5	V
V_{UV_VIO}	Rising Undervoltage Detection on V_{IO} for Protected Mode				1.65	V
	Falling Undervoltage Detection on V_{IO} for Protected Mode		1.35			V
V_{HYS_UVVIO}	Hysteresis Voltage on V_{IO} Undervoltage Detection ⁽¹⁾			100		mV
I_{IO}	Normal Mode Supply Current	Dominant; $V_{TXD} = 0 \text{ V}$		290	500	μA
		Recessive; $V_{TXD} = V_{IO}$		110	210	μA
	Standby Mode Supply Current	$V_{STB} = V_{IO}$		10	19	μA
Pin STB; Standby Mode Control Input						
V_{IH}	High-level Input Voltage	$V_{IO} = V_{CC}$ for variants without V suffix	$0.7 \times V_{IO}$		$V_{IO} + 0.3$	V
V_{IL}	Low-level Input Voltage	$V_{IO} = V_{CC}$ for variants without V suffix	-0.3		$0.3 \times V_{IO}$	V
V_{HYS_STB}	Hysteresis Voltage on Pin STB ⁽¹⁾			300		mV
R_{PU}	Pull-up Resistance		20		80	$\text{k}\Omega$

**Automotive Fault Protected High-Speed CAN FD SIC Transceiver
with Standby Mode**

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
C_{IN}	Input Capacitance (1)				10	pF
Pin TXD; CAN Transit Data Input						
V_{IH}	High-level Input Voltage	$V_{IO} = V_{CC}$ for variants without V suffix	$0.7 \times V_{IO}$		$V_{IO} + 0.3$	V
V_{IL}	Low-level Input Voltage	$V_{IO} = V_{CC}$ for variants without V suffix	-0.3		$0.3 \times V_{IO}$	V
V_{HYS_TXD}	Hysteresis Voltage on Pin TXD (1)			300		mV
R_{PU}	Pull-up Resistance		20		80	k Ω
C_{IN}	Input Capacitance (1)				10	pF
Pin RXD; CAN Receive Data Output						
I_{OH}	High-level Output Current	$V_{RXD} = V_{IO} - 0.4$ V	-10		-1	mA
I_{OL}	Low-level Output Current	$V_{RXD} = 0.4$ V; Bus dominant	1		35	mA
Pin CANH, CANL; Bus lines						
V_{O_DOM}	Dominant Output Voltage, CANH	Dominant; $V_{TXD} = 0$ V; $t < t_{TXD_DTO}$; $50 \Omega \leq R_L \leq 65 \Omega$; $4.75 \text{ V} \leq V_{CC} \leq 5.25 \text{ V}$	2.89	3.5	4.26	V
	Dominant Output Voltage, CANH	Dominant; $V_{TXD} = 0$ V; $t < t_{TXD_DTO}$; $50 \Omega \leq R_L \leq 65 \Omega$	2.75	3.5	4.5	V
	Dominant Output Voltage, CANL	Dominant, $V_{TXD} = 0$ V; $t < t_{TXD_DTO}$; $50 \Omega \leq R_L \leq 65 \Omega$; $4.75 \text{ V} \leq V_{CC} \leq 5.25 \text{ V}$	0.77	1.5	2.13	V
	Dominant Output Voltage, CANL	Dominant, $V_{TXD} = 0$ V; $t < t_{TXD_DTO}$; $50 \Omega \leq R_L \leq 65 \Omega$	0.5	1.5	2.25	V
$V_{DOM_TX_SYM}$	Transmitter Dominant Voltage Symmetry	$V_{DOM_TX_SYM} = V_{CC} - V_{CANH} - V_{CANL}$	-300		300	mV
V_{SYM}	Transmitter Symmetry (Dominant or Recessive) (1)	$V_{SYM} = V_{CANH} + V_{CANL} / V_{CC}$; $C_{SPLIT} = 4.7 \text{ nF}$; $f_{TXD} = 250 \text{ kHz, 1 MHz, 2.5 MHz}$	0.9		1.1	V/V
V_{OD_DOM}	Dominant Differential Output Voltage	Normal mode; $4.75 \text{ V} \leq V_{CC} \leq 5.25 \text{ V}$ $V_{TXD} = 0$ V; $t < t_{TXD_DTO}$; $50 \Omega \leq R_L \leq 65 \Omega$	1.5		3.0	V
		Normal mode; $4.75 \text{ V} \leq V_{CC} \leq 5.25 \text{ V}$ $V_{TXD} = 0$ V; $t < t_{TXD_DTO}$; $45 \Omega \leq R_L \leq 70 \Omega$	1.4		3.3	V
		Normal mode; $4.75 \text{ V} \leq V_{CC} \leq 5.25 \text{ V}$ $V_{TXD} = 0$ V; $t < t_{TXD_DTO}$; $R_L = 2240 \Omega$	1.5		5.0	V
V_{OD_REC}	Recessive Differential Output Voltage	Normal mode; $V_{TXD} = V_{IO}$; no load	-50		50	mV
		Standby mode; no load	-0.2		0.2	V
V_{O_REC}	Recessive Output Voltage	Normal mode; $V_{TXD} = V_{IO}$; no load	2.0	2.5	3.0	V
		Standby mode; no load	-0.1		0.1	V

**Automotive Fault Protected High-Speed CAN FD SIC Transceiver
with Standby Mode**

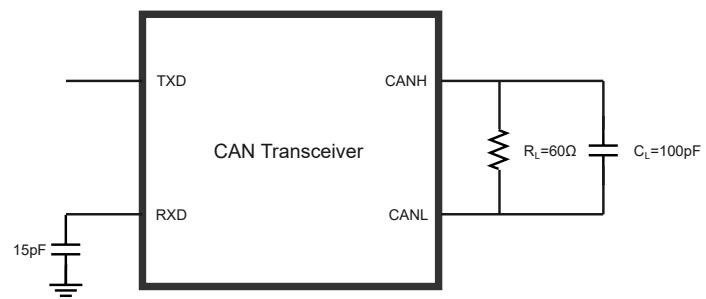
Symbol	Parameter	Conditions	Min	Typ	Max	Unit
V _{TH_RX_DIF}	Differential Receiver Threshold Voltage	Normal mode; $t < t_{TXD_DTO}$; $-12 \text{ V} \leq V_{CANH}/V_{CANL} \leq +12 \text{ V}$	0.5		0.9	V
		Standby mode; $t < t_{TXD_DTO}$; $-12 \text{ V} \leq V_{CANH}/V_{CANL} \leq +12 \text{ V}$	0.4		1.1	V
V _{REC_RX}	Receiver Recessive Voltage (1)	Normal mode; $t < t_{TXD_DTO}$; $-12 \text{ V} \leq V_{CANH}/V_{CANL} \leq +12 \text{ V}$	-4		0.5	V
		Standby mode; $t < t_{TXD_DTO}$; $-12 \text{ V} \leq V_{CANH}/V_{CANL} \leq +12 \text{ V}$	-4		0.4	V
V _{DOM_RX}	Receiver Dominant Voltage (1)	Normal mode; $t < t_{TXD_DTO}$; $-12 \text{ V} \leq V_{CANH}/V_{CANL} \leq +12 \text{ V}$	0.9		9.0	V
		Standby mode; $t < t_{TXD_DTO}$; $-12 \text{ V} \leq V_{CANH}/V_{CANL} \leq +12 \text{ V}$	1.1		9.0	V
V _{HYS_RX_DIF}	Differential Receiver Hysteretic Threshold (1)	Normal mode; $t < t_{TXD_DTO}$; $-12 \text{ V} \leq V_{CANH}/V_{CANL} \leq +12 \text{ V}$	50	100	300	mV
I _{O_SC_DOM}	Dominant Short-Circuit Output Current	$V_{TXD} = 0 \text{ V}$; $t < t_{TO_DOM_TXD}$; $V_{CC} = 5 \text{ V}$; $-40 \text{ V} \leq V_{CANH}/V_{CANL} \leq +40 \text{ V}$		55	100	mA
I _{O_SC_REC}	Recessive Short-Circuit Output Current	$V_{TXD} = V_{IO}$; $t < t_{TO_DOM_TXD}$; $V_{CC} = 5 \text{ V}$; $-40 \text{ V} \leq V_{CANH}/V_{CANL} \leq +40 \text{ V}$	-3		3	mA
I _L	Unpowered Bus Input Leakage Current	$V_{CC} = V_{IO} = 0 \text{ V}$ or $V_{CC} = V_{IO}$ pins shorted to GND via $47 \text{ k}\Omega$; $V_{CANH} = V_{CANL} = 5 \text{ V}$	-10		10	μA
R _{IN}	CANH or CANL Input Resistance	$-2 \text{ V} \leq V_{CANH}/V_{CANL} \leq +7 \text{ V}$	25	35	50	$\text{k}\Omega$
ΔR_{IN}	Input Resistance Deviation	$-2 \text{ V} \leq V_{CANH}/V_{CANL} \leq +7 \text{ V}$ CANH	-3		3	%
R _{IN_DIF}	Differential Input Resistance	$-2 \text{ V} \leq V_{CANH}/V_{CANL} \leq +7 \text{ V}$	50	70	100	$\text{k}\Omega$
C _{IN}	Common Mode Input Capacitance (1)				20	pF
C _{IN_DIF}	Differential Input Capacitance (1)				10	pF
Pin CANH, CANL; Bus Lines Signal Improvement Capability (SIC)						
R _{IN_ACT_REC}	Active Recessive Phase Internal Resistance (1)	Recessive; $V_{TXD} = 0 \text{ V}$; $t < t_{TXD_DTO}$; $-12 \text{ V} \leq V_{CANH}/V_{CANL} \leq +12 \text{ V}$; $R_{IN_DIF_ACT_REC} = R_{IN_ACT_REC_CANH} + R_{IN_ACT_REC_CANL}$	37.5		66.5	Ω
R _{IN_DIF_ACT_REC}	Active Recessive Phase Differential Internal Resistance (1)	Recessive; $V_{TXD} = 0 \text{ V}$; $t < t_{TXD_DTO}$; $-12 \text{ V} \leq V_{CANH}/V_{CANL} \leq +12 \text{ V}$; $R_{IN_DIF_ACT_REC} = R_{IN_ACT_REC_CANH} + R_{IN_ACT_REC_CANL}$	75		133	Ω
Temperature Detection						
T _{J_SD}	Thermal Shutdown Temperature (1)		160	175	190	°C
J _{SD_HYS}	Thermal Shutdown Hysteresis (1)			20		°C

TPT1462VQ, TPT1462Q

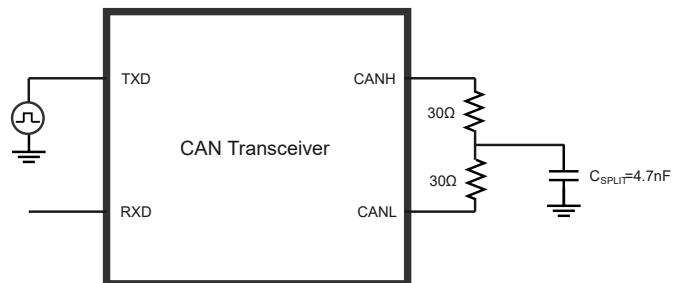
**Automotive Fault Protected High-Speed CAN FD SIC Transceiver
with Standby Mode**

(1) The data is based on bench tests and design simulation.

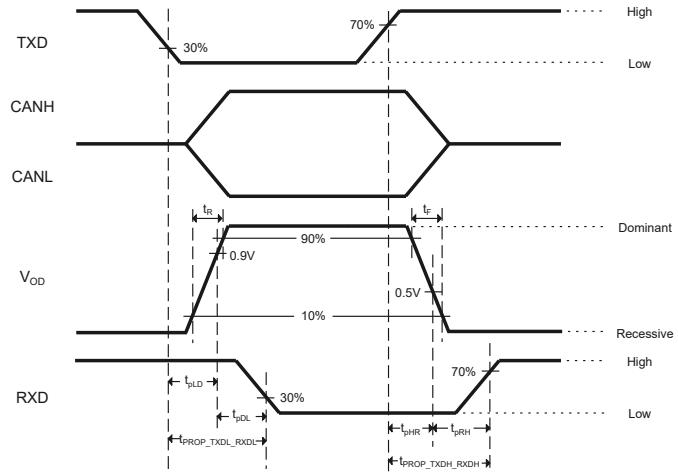
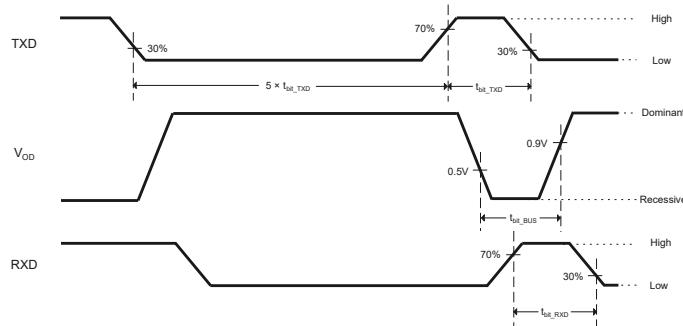
**Automotive Fault Protected High-Speed CAN FD SIC Transceiver
with Standby Mode**
AC Timing Requirements


All test conditions: $V_{CC} = 4.75$ V to 5.25 V, $V_{IO} = 1.7$ V to 5.5 V, $R_L = 60 \Omega$, $T_J = -40^\circ\text{C}$ to 150°C , unless otherwise noted.

Parameter	Conditions	Min	Typ	Max	Unit	
CAN Timing Characteristics						
$t_{D_TXD_BUSDOM}$	Delay time from TXD to bus dominant	Normal mode;		80	ns	
$t_{D_TXD_BUSREC}$	Delay time from TXD to bus recessive	Normal mode;		80	ns	
$t_{D_BUSDOM_RXD}$	Delay time from bus dominant to RXD	Normal mode;		110	ns	
$t_{D_BUSREC_RXD}$	Delay time from bus recessive to RXD	Normal mode;		110	ns	
$t_{D_TXDL_RXDL}$	Loop delay time from TXD low to RXD low	Normal mode;		190	ns	
$t_{D_TXDH_RXDH}$	Loop delay time from TXD high to RXD high	Normal mode;		190	ns	
CAN FD Signal Improvement Capability (SIC) Timing Characteristics;						
t_{BIT_BUS}	Transmitted recessive bit width	2 Mbps, $t_{BIT_TXD} = 500$ ns	490		510	ns
		5 Mbps, $t_{BIT_TXD} = 200$ ns	190		210	ns
		8 Mbps, $t_{BIT_TXD} = 125$ ns	115		135	ns
t_{BIT_RXD}	RXD bit width	2 Mbps, $t_{BIT_TXD} = 500$ ns	470		520	ns
		5 Mbps, $t_{BIT_TXD} = 200$ ns	170		220	ns
		8 Mbps, $t_{BIT_TXD} = 125$ ns	95		145	ns
Δt_{REC}	Receiver timing symmetry	$2, 5, 8$ Mbps; $\Delta t_{REC} = t_{BIT_RXD} - t_{BIT_BUS}$	-20		15	ns
Δt_{BIT_BUS}	Transmitted recessive bit width variation	$\Delta t_{BIT_BUS} = t_{BIT_BUS} - t_{BIT_TXD}$	-10		10	ns
Δt_{BIT_RXD}	Received recessive bit width variation	$\Delta t_{BIT_RXD} = t_{BIT_RXD} - t_{BIT_TXD}$	-30		20	ns
Δt_{REC}	Receiver timing symmetry variation	$\Delta t_{REC} = t_{BIT_RXD} - t_{BIT_BUS}$	-20		15	ns
$t_{ACT_REC_START}$	Start time of active signal improvement phase Start time of active signal improvement phase ⁽¹⁾			120	ns	
$t_{PAS_REC_START}$	Signal improvement start time of passive recessive phase ⁽¹⁾			530	ns	
$t_{ACT_REC_END}$	End time of active signal improvement phase ⁽¹⁾		355		ns	
Device Timing Characteristics						


**Automotive Fault Protected High-Speed CAN FD SIC Transceiver
with Standby Mode**

Parameter		Conditions	Min	Typ	Max	Unit
t _{TXD_DTO}	TXD dominant time-out time	Normal mode; V _{TXD} = 0 V	0.8	2.0	9.0	ms
t _{WAKE_BUS}	Bus wake-up time (dominant or recessive)	Standby mode	0.5		1.8	μs
t _{WAKE_BUS_TO}	Bus wake-up time-out time ⁽¹⁾	Standby mode	0.8	3.0	9.0	ms
t _{WAKE_BUS_FILTER_ER}	Bus wake-up filter time ⁽¹⁾	Standby mode			1.8	μs
t _{MODE}	Mode transition time ⁽¹⁾				40	μs
t _{START_UP}	Start-up time ⁽¹⁾				0.5	ms
t _{START_UP_RXD}	RXD Start-up time ⁽¹⁾	After wake-up detected	4		20	μs
t _{UV_D}	Undervoltage detection time ⁽¹⁾	Pin VCC			30	μs
t _{UV_D_OFF}	Switch-off undervoltage detection time ⁽¹⁾	Pin VCC; Device without V suffix			30	μs
		Pin VIO; Device without V suffix			30	μs
t _{UV_R}	Undervoltage recovery time ⁽¹⁾	Pin VCC			30	μs



(1) The test data is based on bench tests and design simulation.

**Automotive Fault Protected High-Speed CAN FD SIC Transceiver
with Standby Mode****Parameter Measurement Information****Test Circuit**

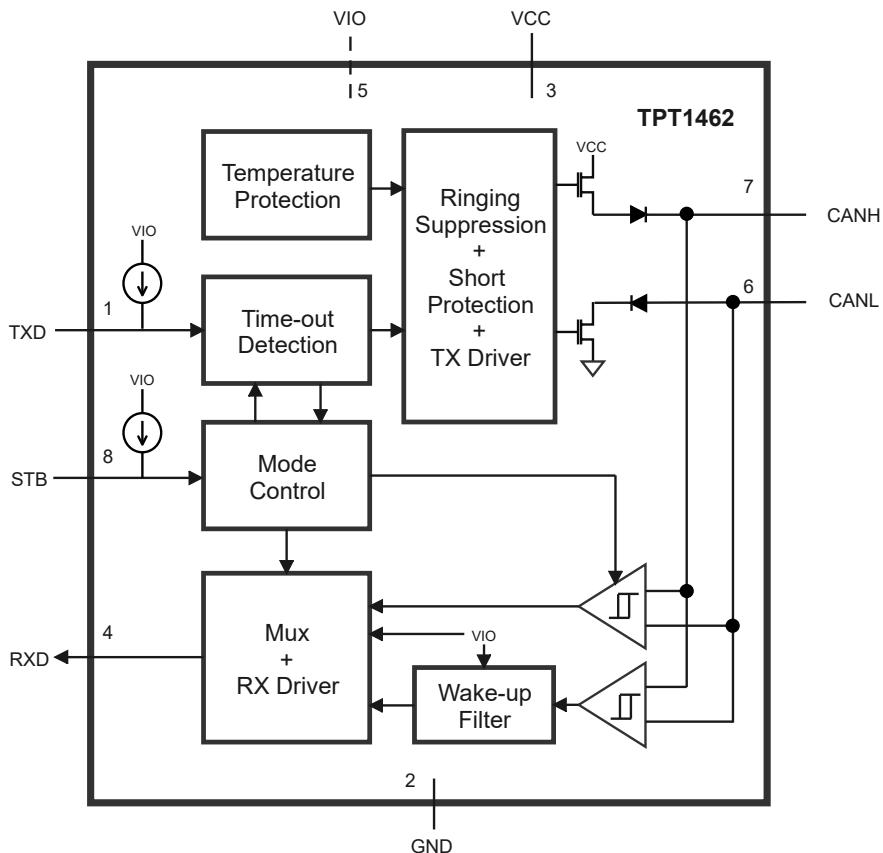
Figure 1. CAN Transceiver Timing Parameter Test Circuit

Figure 2. CAN Transceiver Driver Symmetry Test Circuit

**Automotive Fault Protected High-Speed CAN FD SIC Transceiver
with Standby Mode**
Parameter Diagram

Figure 3. CAN Transceiver Timing Diagram

Figure 4. CAN FD Timing Parameter Diagram


Automotive Fault Protected High-Speed CAN FD SIC Transceiver with Standby Mode

Detailed Description

Overview

The TPT1462VQ and the TPT1462Q are CAN transceivers that meet the ISO11898-2:2024, CiA601-4 signal improvement capability (SIC), and SAEJ2284-1 to SAE J2284-5 high-speed CAN (Controller Area Network) physical layer standards. The devices are designed to be used in CAN FD networks up to 8 Mbps with an enhanced timing margin. The system design can be optimized with excellent electromagnetic compatibility (EMC) and electrostatic discharge (ESD) performance. The TPT1462VQ has a secondary power supply input VIO pin for I/O level shifting to support 1.8-V, 2.5-V, 3.3-V, and 5-V MCU logic levels directly. This family has a low-current standby mode with CAN bus waked-up capability via wake-up pattern (WUP) which is defined in ISO11898-2:2024. As designed, the devices feature bus fault protection from -45 V to +45 V, TXD dominant time-out (DTO), and over-temperature shutdown (TSD). Additionally, all devices include power-off ideal passive behavior fail-safe features to enhance the network robustness. The TPT1462VQ and the TPT1462Q are available in SOP8 and DFN3X3-8 packages and are AEC-Q100 qualified for automotive applications.

Functional Block Diagram

Figure 5. Functional Block Diagram

(1) Pin5 is not connected and VIO = VCC in variants without V suffix

Automotive Fault Protected High-Speed CAN FD SIC Transceiver with Standby Mode

Feature Description

Device Operating Modes

Table 3. Operating Modes Table

Mode	Inputs		Outputs	
	STB Pin	TXD Pin	CAN BUS State	RXD Pin
Normal	Low	Low	Dominant	L
		H or Open (Internal weak pull-up)	Recessive	Low when bus dominant
				High when bus recessive
Standby	High or Open (Internal weak pull-up)	X (Don't care)	Biased to ground	Follow bus state when wake-up detected
				High when no wake-up detected

Normal Mode

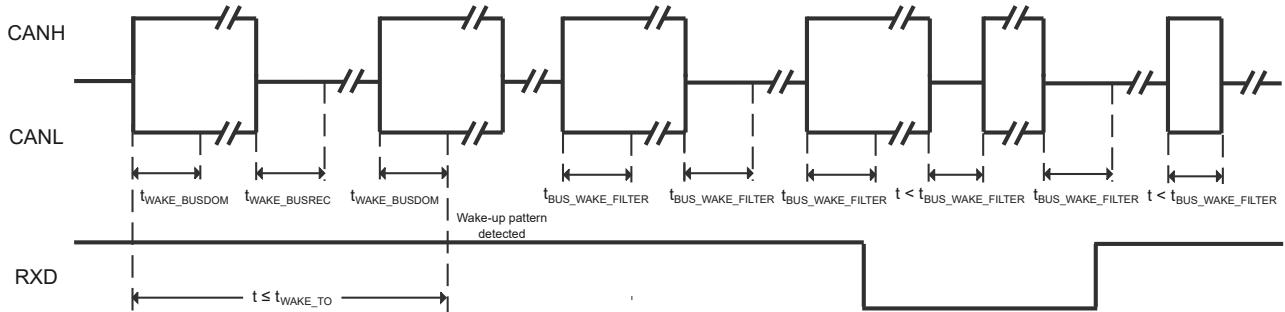
A low level on the STB pin sets the device into Normal mode. In normal mode, the transceiver is fully operational, it can transmit and receive data via CANH and CANL bus lines. The differential receiver converts the analog data on the bus lines into digital output on the RXD pin. The driver converts the digital data on the TXD pin to differential analog output on bus lines, the slopes of the output signals on the bus lines are controlled internally and optimized to guarantee the lowest possibility for Electro Magnetic Emission (EME).

Standby Mode

Activate the low-power standby mode by setting the STB terminal high. In this mode, the bus transmitter is not able to send data, and the normal mode receiver is not able to accept data as the bus lines are biased to ground minimizing the system supply current. Only the low-power receiver is actively monitoring the bus for activity. RXD follows the bus state after a valid wake-up signal has been detected on the bus. For the variants with the V suffix, the low-power receiver is powered using the VIO pin only, this allows V_{CC} to be removed reducing power consumption further. The device transmits into Normal mode after the STB pin is forced low.

Remote Wake-up

A dedicated wake-up pattern (specified in ISO11898-2:2024) on the can bus wakes up the device from standby mode, this filtering prevents the device from being woken up by bus dominant clamped, or noise on the bus. The wake-up pattern consists of the following:


- a dominant phase of at least t_{WAKE_BUSDOM} followed by
- a recessive phase of at least t_{WAKE_BUSRES} followed by
- a dominant phase of at least t_{WAKE_BUSDOM}

The complete wake-up pattern (dominant-recessive-dominant) must be received within $t_{TO_WAKE_BUS}$, otherwise, the internal wake-up logic is reset to wait for the next valid wake-up pattern, the complete wake-up pattern needs to be reserved to wake-up the device. RXD pin keeps high until the device is woken up. A wake-up event is not flagged on the RXD pin if any of the following events occurs:

- The device transits to Normal mode
- An undervoltage event is detected

Automotive Fault Protected High-Speed CAN FD SIC Transceiver with Standby Mode

- The complete wake-up pattern was not received within $t_{TO_WAKE_BUS}$

Protection Features

TXD Dominant Time-out

The device detects TXD dominant time-out and prevents a permanent low on the TXD pin, caused by application failure, driving the CAN bus into permanent dominant blocking the CAN bus network. A TXD dominant time-out timer is started when the TXD pin is set low, if the TXD pin remains low for longer than t_{TXD_DTO} , the transmitter is disabled, releasing the bus lines to a recessive state. The TXD dominant time-out timer is reset when the TXD pin is set high.

TXD and STB Pins Internal Biasing

There are internal weak pull-ups to VCC (variants without V suffix) or VIO (variants with V suffix) on TXD and STB pins to ensure a defined safe state in case these pins are floating. Both pins should be held high in Standby mode to minimize the supply current.

Under-voltage Lockout (UVLO)

The device integrates under-voltage to detect and lockout the circuit of the supply terminal to keep the device in protected mode if the supply voltage drops below the threshold until the supply voltage is higher than the UVLO threshold. This protects the device and system during undervoltage events on supply terminals.

If VCC drops below the standby undervoltage detection threshold, the device transits to Standby mode. The STB pin state is ignored until the VCC power supply is recovered. If VCC (variants without V suffix) or VIO (variants with V suffix) drops below the switch-off undervoltage detection threshold, the device switches off until the power supply has recovered.

Overtemperature Protection (OTP)

The device is protected against overtemperature conditions. If the junction temperature exceeds the shutdown junction temperature T_{J_SD} , the output drivers are disabled until the virtual junction temperature falls below $T_{J_SD_R}$ and TXD sets to high again.

VIO Supply Pin

VIO pin should be connected to the microcontroller supply voltage, this adjusts the voltage level of TXD, RXD, and STB pins to the microcontroller I/O level, this allows the device to interface with 5-V, 3.3-V, and 1.8-V supplied microcontroller without an additional level shifter. VIO pin also powers the low-power receiver, this allows wake-up frame to be detected without a VCC power supply in low-power applications. For the device without a VIO pin, all block is connected to VCC, pin5 is not connected internally.

Automotive Fault Protected High-Speed CAN FD SIC Transceiver with Standby Mode

Application and Implementation

Note

Information in the following application sections is not part of the 3PEAK's component specification and 3PEAK does not warrant its accuracy or completeness. 3PEAK's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

Application Information

The TPT1462xQ is a CAN SIC transceiver that supports CAN FD up to 8 Mbps, with BUS protection voltage from -45 V to $+45\text{ V}$. The VIO of TPT1462VQ can support the voltage level of TXD and RXD from 1.7 V to 5.5 V . The following sections show a typical application of the TPT1462xQ.

Typical Application

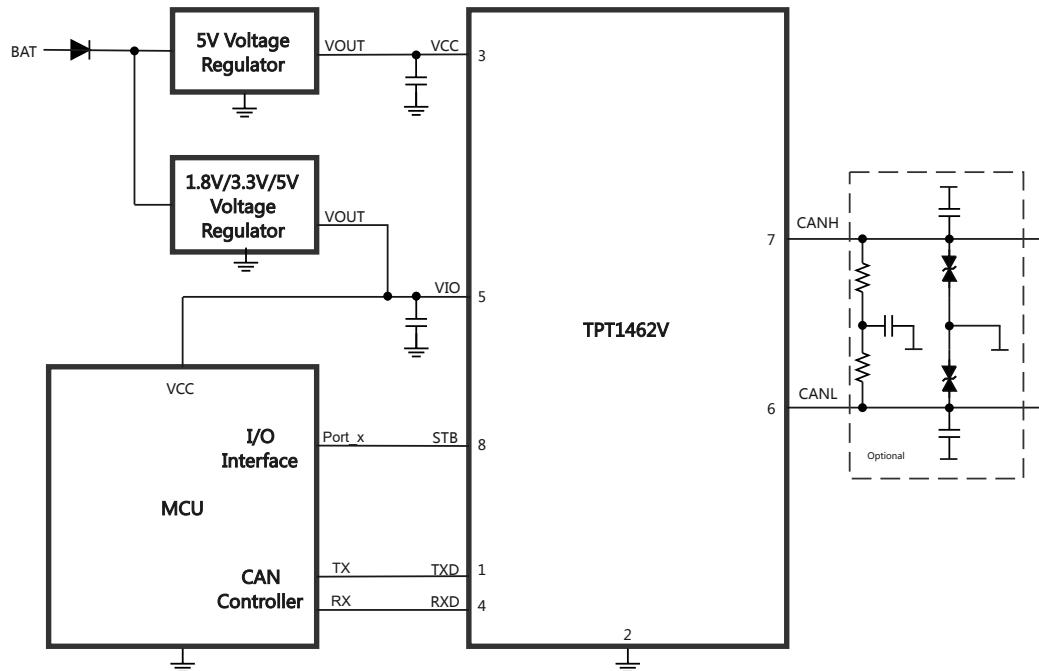


Figure 6. TPT1462VQ Typical Application Circuit

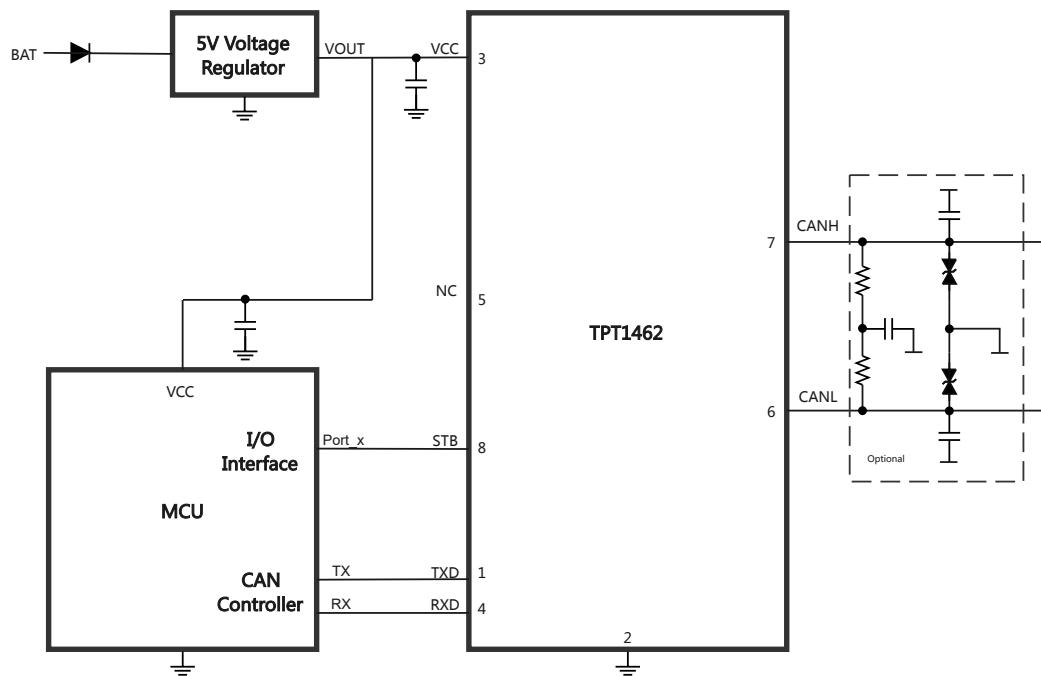
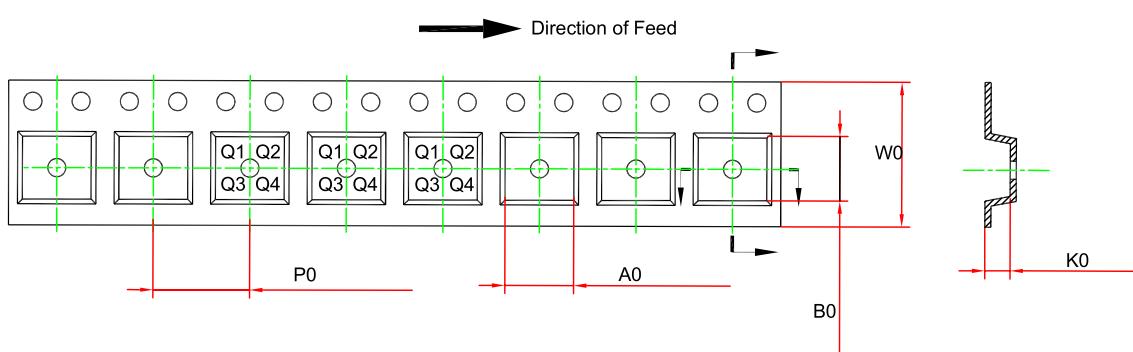
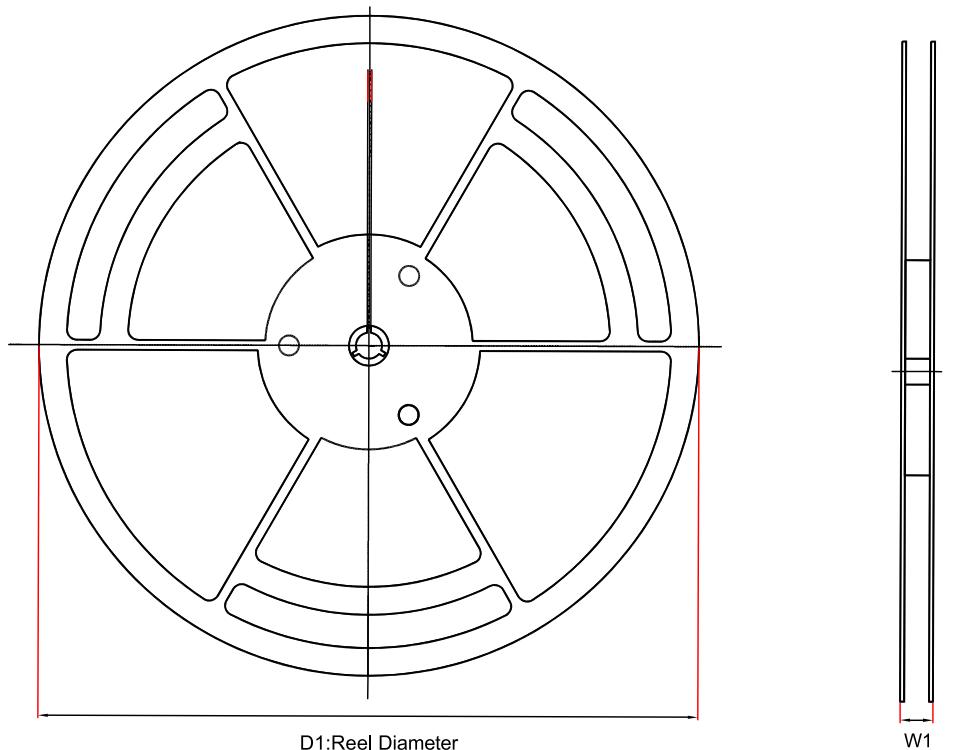



**Automotive Fault Protected High-Speed CAN FD SIC Transceiver
with Standby Mode**

Figure 7. TPT1462Q Typical Application Circuit

**Automotive Fault Protected High-Speed CAN FD SIC Transceiver
with Standby Mode**
Tape and Reel Information

Order Number	Package	D1 (mm)	A0 (mm)	K0(mm)	W0 (mm)	W1 (mm)	B0 (mm)	P0 (mm)	Pin1 Quadrant
TPT1462VQ-SO1R-S	SOP8	330	6.5	2	12	17.6	5.4	8	Q1
TPT1462VQ-DFCR-S	DFN3x3-8	330	3.3	1.1	12	17.6	3.3	8	Q1
TPT1462Q-SO1R-S	SOP8	330	6.5	2	12	17.6	5.4	8	Q1
TPT1462Q-DFCR-S	DFN3x3-8	330	3.3	1.1	12	17.6	3.3	8	Q1

**Automotive Fault Protected High-Speed CAN FD SIC Transceiver
with Standby Mode**
Package Outline Dimensions
SOP8

Package Outline Dimensions				SO1(SOP-8-A)
Symbol	Dimensions In Millimeters		Dimensions In Inches	
	MIN	MAX	MIN	MAX
A	1.350	1.750	0.053	0.069
A1	0.050	0.250	0.002	0.010
A2	1.250	1.550	0.049	0.061
b	0.330	0.510	0.013	0.020
c	0.170	0.250	0.007	0.010
D	4.700	5.100	0.185	0.201
E	5.800	6.200	0.228	0.244
E1	3.800	4.000	0.150	0.157
e	1.270 BSC		0.050 BSC	
L	0.400	1.000	0.016	0.039
θ	0	8°	0	8°

NOTES

1. Do not include mold flash or protrusion.
2. This drawing is subject to change without notice.

**Automotive Fault Protected High-Speed CAN FD SIC Transceiver
with Standby Mode**
DFN3X3-8

Package Outline Dimensions		DFC(DFN3X3-8-WET-H)			
Symbol	Dimensions In Millimeters		Dimensions In Inches		Notes
	MIN	MAX	MIN	MAX	
A	0.800	0.900	0.031	0.035	1. Do not include mold flash or protrusion.
A1	0.000	0.050	0.000	0.002	2. This drawing is subject to change without notice.
A2	0.150	0.250	0.006	0.010	3. The many types of E-pad Pin1 signs may appear in the product.
A3	0.080	0.180	0.003	0.007	
D	2.900	3.100	0.114	0.122	
D2	1.500	1.700	0.059	0.067	
E	2.900	3.100	0.114	0.122	
b	0.250	0.350	0.010	0.014	
E2	2.300	2.500	0.091	0.098	
e	0.650 BSC		0.026 BSC		
L	0.350	0.450	0.014	0.018	
L1	0.010	0.090	0.0004	0.004	
K	0.300 REF		0.012 REF		

Automotive Fault Protected High-Speed CAN FD SiC Transceiver with Standby Mode

Order Information

Order Number	Operating Temperature Range	Package	Marking Information	MSL	Transport Media, Quantity	Eco Plan
TPT1462VQ-SO1R-S	-40 to 125°C	SOP8	T62VQ	MSL1	Tape and Reel, 4000	Green
TPT1462VQ-DFCR-S	-40 to 125°C	DFN3x3-8	T62VQ	MSL1	Tape and Reel, 4000	Green
TPT1462Q-SO1R-S	-40 to 125°C	SOP8	T162Q	MSL1	Tape and Reel, 4000	Green
TPT1462Q-DFCR-S	-40 to 125°C	DFN3x3-8	T162Q	MSL1	Tape and Reel, 4000	Green

Green: 3PEAK defines "Green" to mean RoHS compatible and free of halogen substances.

TPT1462VQ, TPT1462Q

**Automotive Fault Protected High-Speed CAN FD SIC Transceiver
with Standby Mode**

IMPORTANT NOTICE AND DISCLAIMER

Copyright© 3PEAK 2012-2025. All rights reserved.

Trademarks. Any of the 思瑞浦 or 3PEAK trade names, trademarks, graphic marks, and domain names contained in this document /material are the property of 3PEAK. You may NOT reproduce, modify, publish, transmit or distribute any Trademark without the prior written consent of 3PEAK.

Performance Information. Performance tests or performance range contained in this document/material are either results of design simulation or actual tests conducted under designated testing environment. Any variation in testing environment or simulation environment, including but not limited to testing method, testing process or testing temperature, may affect actual performance of the product.

Disclaimer. 3PEAK provides technical and reliability data (including data sheets), design resources (including reference designs), application or other design recommendations, networking tools, security information and other resources "As Is". 3PEAK makes no warranty as to the absence of defects, and makes no warranties of any kind, express or implied, including without limitation, implied warranties as to merchantability, fitness for a particular purpose or non-infringement of any third-party's intellectual property rights. Unless otherwise specified in writing, products supplied by 3PEAK are not designed to be used in any life-threatening scenarios, including critical medical applications, automotive safety-critical systems, aviation, aerospace, or any situations where failure could result in bodily harm, loss of life, or significant property damage. 3PEAK disclaims all liability for any such unauthorized use.

TPT1462VQ, TPT1462Q

**Automotive Fault Protected High-Speed CAN FD SIC Transceiver
with Standby Mode**

This page intentionally left blank