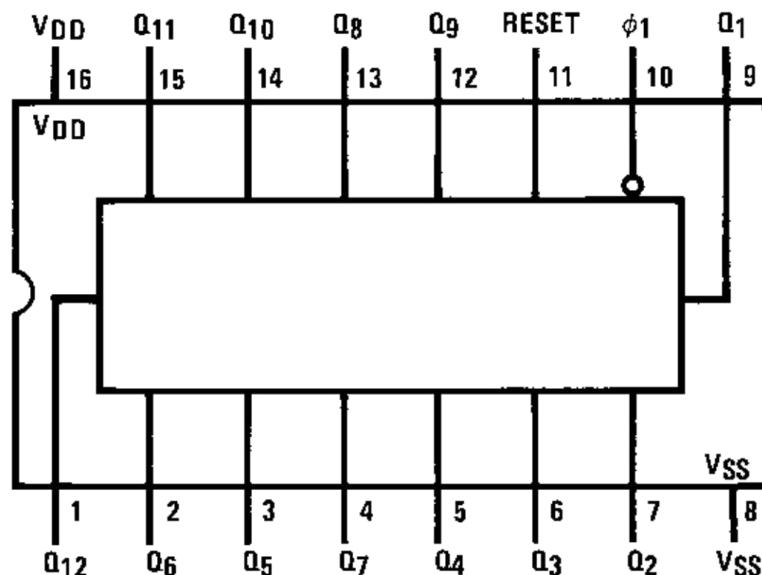

12-Stage Ripple Carry Binary Counters

General Description

The CD4040B is a 12-stage ripple carry binary counter. The counters are advanced one count on the negative transition of each clock pulse. The counters are reset to the zero state by a logical “1” at the reset input independent of clock.

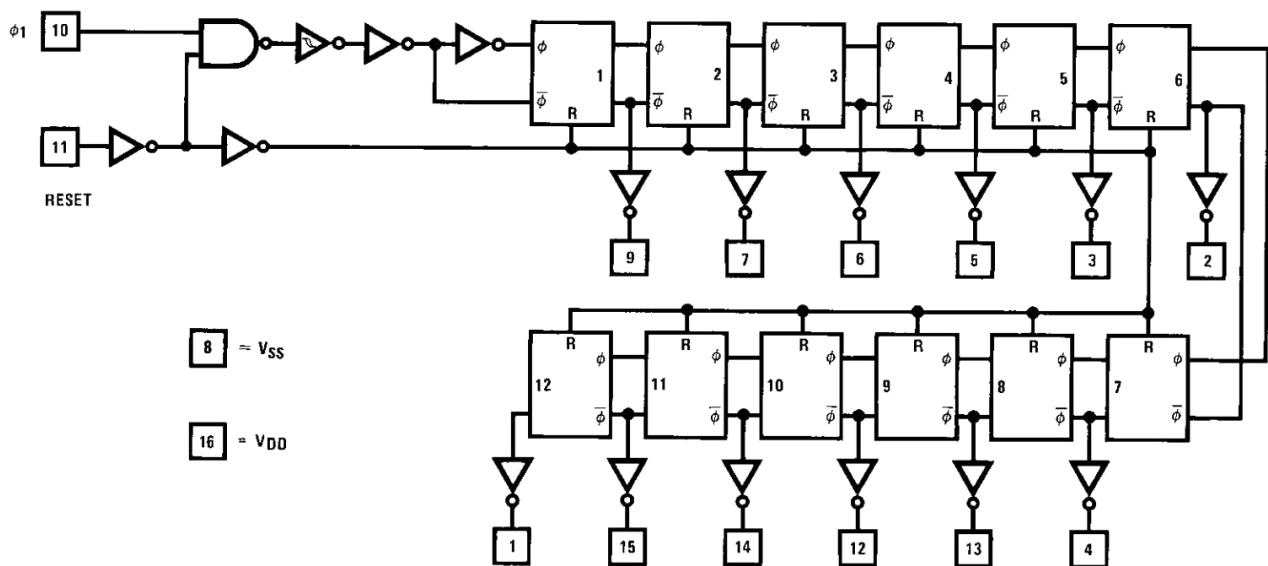
Features

- Wide supply voltage range: 1.0V to 15V
- High noise immunity: 0.45 V_{DD} (typ.)
- Low power TTL compatibility: Fan out of 2 driving 74L or 1 driving 74LS
- Medium speed operation: 8 MHz typ. at V_{DD}=10V
- Schmitt trigger clock input



Ordering Information

DEVICE	PACKAGE TYPE	MARKING	PACKING	PACKING QTY
CD4040BE/ CD4040BN	DIP-16	CD4040B	TUBE	1000pcs/box
CD4040BM/TR	SOP-16	CD4040B	REEL	2500pcs/reel
CD4040BMT/TR	TSSOP-16	CD4040B	REEL	2500pcs/reel


Connection Diagrams

Pin Assignments for DIP, SOP and TSSOP

CD4040B
Top View

Schematic Diagrams

CD4040B

Absolute Maximum Ratings

Conditions		Min	Max
Supply Voltage (V _{DD})		- 0.5V	18V
Input Voltage (V _{IN})		-0.5V	V _{DD} + 0.5V
Storage Temperature Range (T _S)		-65 °C	150 °C
Package Dissipation (P _D)	Dual-In-Line	700 mW	
	Small Outline	500 mW	
Lead Temperature (T _L) (Soldering, 10 seconds)		-	260 °C

Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not ensured.

Recommended Operating Conditions

Conditions		Min	Max
Supply Voltage (V _{DD})		3V	15V
Input Voltage (V _{IN})		0V	V _{DD}
Operating Temperature Range (T _A)		-40 °C	85 °C

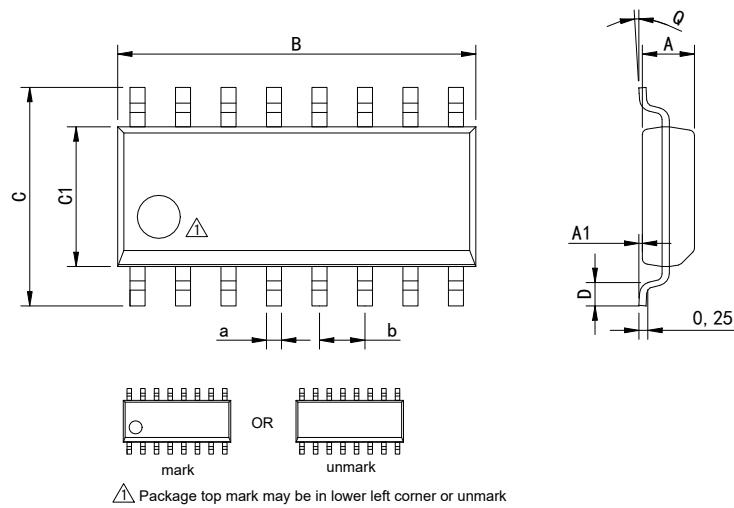
Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Recommended Operating Conditions" and "Electrical Characteristics" provide conditions for actual device operation.

Note 2: V_{SS} = 0V unless otherwise specified.

DC Electrical Characteristics (Note 2)

Symbol	Parameter	Conditions	- 40 °C		+25 °C			+85 °C		Units
			Min	Max	Min	Typ	Max	Min	Max	
I _{DD}	Quiescent Device Current	VDD=5V,VIN=VDD or VSS		20			20		150	μA
		VDD=10V,VIN=VDD or VSS		40			40		300	
		VDD=15V,VIN=VDD or VSS		80			80		600	
V _{OL}	LOW Level Output Voltage	VDD=5V		0.05		0	0.05		0.05	V
		VDD=10V		0.05		0	0.05		0.05	
		VDD=15V		0.05		0	0.05		0.05	
V _{OH}	HIGH Level Output Voltage	VDD=5V	4.95		4.95	5		4.95		V
		VDD=10V	9.95		9.95	10		9.95		
		VDD=15V	14.95		14.95	15		14.95		
V _{IL}	LOW Level Input Voltage	VDD=5V,VO=0.5V or 4.5V		1.5		2	1.5		1.5	V
		VDD =10V,VO =1.0V or 9.0V		3.0		4	3.0		3.0	
		VDD=15V,VO=1.5V or 13.5V		4.0		6	4.0		4.0	
V _{IH}	HIGH Level Input Voltage	VDD=5V,VO=0.5V or 4.5V	3.5		3.5	3		3.5		V
		VDD=10V,VO=1.0V or 9.0V	7.0		7.0	6		7.0		
		VDD=15V,VO=1.5V or 13.5V	11.0		11.0	9		11.0		
I _{OL}	LOW Level Output Current	VDD=5V,VO=0.4V	0.52		0.44	0.88		0.36		mA
		VDD=10V,VO=0.5V	1.3		1.1	2.25		0.9		
		VDD=15V,VO=1.5V	3.6		3.0	8.8		2.4		
I _{OH}	HIGH Level Output Current	VDD=5V,VO=4.6V	-0.52		-0.44	-0.88		-0.36		mA
		VDD=10V,VO=9.5V	-1.3		-1.1	-2.25		-0.9		
		VDD=15V,VO=13.5V	-3.6		-3.0	-8.8		-2.4		
I _{IN}	Input Current	VDD=15V,VIN=0V		-0.30		-10 ⁻⁵	-0.30		-1.0	μA
		VDD=15V,VIN=15V		0.30		10 ⁻⁵	0.30		1.0	

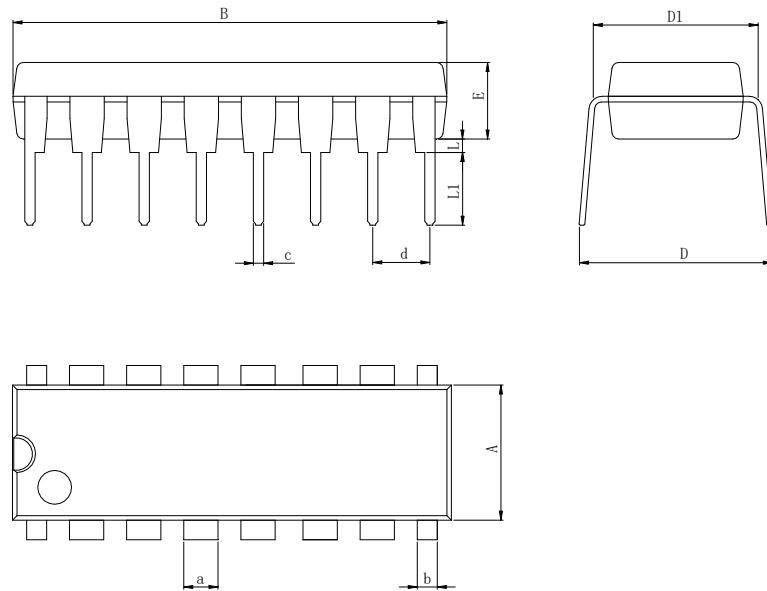
AC Electrical Characteristics (Note 3)


$T_A = 25^\circ\text{C}$, $CL = 50 \text{ pF}$, $RL = 200\text{k}$, $tr = tf = 20 \text{ ns}$, unless otherwise noted

Symbol	Parameter	Conditions	Min	Typ	Max	Units
tPHL1, tPLH1	Propagation Delay Time to Q1	$V_{DD} = 5\text{V}$ $V_{DD} = 10\text{V}$ $V_{DD} = 15\text{V}$		250 100 75	550 210 150	ns
tPHL, tPLH	Interstage Propagation Delay Time from Qn to Qn+1	$V_{DD} = 5\text{V}$ $V_{DD} = 10\text{V}$ $V_{DD} = 15\text{V}$		150 60 45	330 125 90	ns
tTHL, tTLH	Transition Time	$V_{DD} = 5\text{V}$ $V_{DD} = 10\text{V}$ $V_{DD} = 15\text{V}$		100 50 40	200 100 80	ns
tWL, tWH	Minimum Clock Pulse Width	$V_{DD} = 5\text{V}$ $V_{DD} = 10\text{V}$ $V_{DD} = 15\text{V}$		125 50 40	335 125 100	ns
trCL, tfCL	Maximum Clock Rise and Fall Time	$V_{DD} = 5\text{V}$ $V_{DD} = 10\text{V}$ $V_{DD} = 15\text{V}$			No Limit No Limit No Limit	ns
fCL	Maximum Clock Frequency	$V_{DD} = 5\text{V}$ $V_{DD} = 10\text{V}$ $V_{DD} = 15\text{V}$	1.5 4 5	4 10 12		MHz
tPHL(R)	Reset Propagation Delay	$V_{DD} = 5\text{V}$ $V_{DD} = 10\text{V}$ $V_{DD} = 15\text{V}$		200 100 80	450 210 170	ns
tWH(R)	Minimum Reset Pulse Width	$V_{DD} = 5\text{V}$ $V_{DD} = 10\text{V}$ $V_{DD} = 15\text{V}$		200 100 80	450 210 170	ns
CIN	Average Input Capacitance	Any Input		5	7.5	pF
CPD	Power Dissipation Capacitance			50		pF

Note 3: AC Parameters are guaranteed by DC correlated testing.

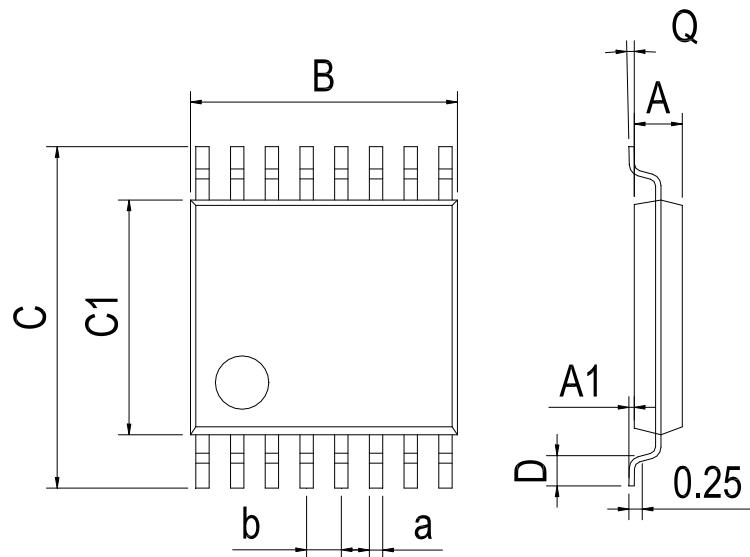
Physical Dimensions


SOP-16

Dimensions In Millimeters(SOP-16)

Symbol:	A	A1	B	C	C1	D	Q	a	b
Min:	1.35	0.05	9.80	5.80	3.80	0.40	0°	0.35	1.27 BSC
Max:	1.55	0.20	10.0	6.20	4.00	0.80	8°	0.45	

DIP-16



Dimensions In Millimeters(DIP-16)

Symbol:	A	B	D	D1	E	L	L1	a	b	c	d
Min:	6.10	18.94	8.10	7.42	3.10	0.50	3.00	1.50	0.85	0.40	2.54 BSC
Max:	6.68	19.56	10.9	7.82	3.55	0.70	3.60	1.55	0.90	0.50	

Physical Dimensions

TSSOP-16

Dimensions In Millimeters(TSSOP-16)

Symbol:	A	A1	B	C	C1	D	Q	a	b
Min:	0.85	0.05	4.90	6.20	4.30	0.40	0°	0.20	0.65 BSC
Max:	0.95	0.20	5.10	6.60	4.50	0.80	8°	0.25	

Revision History

REVISION NUMBER	DATE	REVISION	PAGE
V1.0	2012-3-	New	1-8
V1.1	2018-11	Modify the package dimension diagramTSSOP-16、Updated DIP-16 dimension	5、6
V1.2	2021-6	Add annotation for Maximum Ratings、Update encapsulation type、Update DIP Package New Model	1、3
V1.3	2024-10	Update Lead Temperature	3
V1.4	2025-11	Update important statements、Update SOP-16 Dimension drawing	5、8

IMPORTANT STATEMENT:

Huaguan Semiconductor reserves the right to change products and services offered without prior notice. Customers should obtain the latest relevant information before placing orders and verify that such information is current and complete. Huaguan Semiconductor assumes no responsibility or liability for altered documents.

Customers are responsible for complying with safety standards and implementing safety measures when using Huaguan Semiconductor products in system design and end-product manufacturing. You assume full responsibility for: selecting the appropriate Huaguan Semiconductor products for your application; designing, validating, and testing your application; and ensuring that your application complies with applicable standards and all other safety, security, or other requirements. This is to prevent potential risks that may lead to personal injury or property damage.

Huaguan Semiconductor products are not approved for use in life support, military, aerospace, or other high-risk applications. Huaguan products are neither intended nor warranted for use in such systems or equipment. Any failure or malfunction may lead to personal injury or severe property damage. Such applications are deemed "Unsafe Use." Unsafe Use includes, but is not limited to: surgical and medical equipment, nuclear energy control equipment, aircraft or spacecraft instruments, control or operation of vehicle power, braking, or safety systems, traffic signal instruments, all types of safety devices, and any other applications intended to support or sustain life. Huaguan Semiconductor shall not be liable for consequences resulting from Unsafe Use in these fields. Users must independently evaluate and assume all risks. Any issues, liabilities, or losses arising from the use of products beyond their approved applications shall be solely borne by the user. Users may not claim any compensation from Huaguan Semiconductor based on these terms. If any third party claims against Huaguan Semiconductor due to such Unsafe Use, the user shall compensate Huaguan Semiconductor for all resulting damages and liabilities.

Huaguan Semiconductor provides technical and reliability data (including datasheets), design resources (including reference designs), application or other design advice, web tools, safety information, and other resources for its semiconductor products. However, no guarantee is made that these resources are free from defects, and no express or implied warranties are provided. The use of testing and other quality control techniques is limited to Huaguan Semiconductor's quality assurance scope. Not all parameters of each device are tested.

Huaguan Semiconductor's documentation authorizes you to use these resources only for developing applications related to the products described herein. You are not granted rights to any other intellectual property of Huaguan Semiconductor or any third party. Any other reproduction or display of these resources is strictly prohibited. You shall fully indemnify Huaguan Semiconductor and its agents against any claims, damages, costs, losses, and liabilities arising from your use of these resources. Huaguan Semiconductor shall not be held responsible.