
1. Description

The SP485 is low-power transceivers for RS-485 and RS-422 communication. IC contains one driver and one receiver. The driver slew rates of the SP485 is not limited, allowing them to transmit up to 2.5Mbps. These transceivers draw between 120 μ A and 500 μ A of supply current when unloaded or fully loaded with disabled drivers. All parts operate from a single 5V supply. Drivers are short-circuit current limited and are protected against excessive power dissipation by thermal shutdown circuitry that places the driver outputs into a high-impedance state. The receiver input has a fail-safe feature that guarantees a logic-high output if the input is open circuit. The SP485 is designed for half-duplex applications.

2. Features

- Low Quiescent Current: 300 μ A
- -7V to +12V Common-Mode Input Voltage Range
- Three-State Outputs
- 30ns Propagation Delays, 5ns Skew
- Full-Duplex and Half-Duplex Versions Available
- Operate from a Single 5V Supply
- Allows up to 32 Transceivers on the Bus
- Data rate: 2.5 Mbps
- Current-Limiting and Thermal Shutdown for Driver Overload Protection

3. Pinning Information

SOP-8

4. Absolute Maximum Ratings

Parameter	Symbol	Value
Supply Voltage	V _{CC}	7V
Control Input Voltage		-0.5V to (V _{CC} + 0.5V)
Driver Input Voltage	DI	-0.5V to (V _{CC} + 0.5V)
Driver Output Voltage	A, B	-8V to +12.5V
Receiver Input Voltage (A, B)	A, B	-8V to +12.5V
Receiver Output Voltage	RO	-0.5V to (V _{CC} + 0.5V)
Continuous Power Dissipation		T _A =70°C
8-Pin Plastic DIP (derate 9.09mW/°C above +70°C)		727mW
8-Pin SO (derate 5.88mW/°C above +70°C)		471mW
Operating Temperature Ranges		-40°C to +105°C
Storage Temperature Range		-65°C to +160°C
Lead Temperature (soldering, 10sec)		300°C

5. DC Electrical Characteristics

($V_{CC}=5V \pm 5\%$, $T_A=T_{MIN}$ to T_{MAX} , unless otherwise noted.) (Notes 1, 2)

Parameter	Symbol	Conditions		Min.	Typ.	Max.	Units
Differential Driver Output (noload)	V_{OD1}					5	V
Differential Driver Output (with load)	V_{OD2}	R=50Ω (RS-422)		2			V
		R=27Ω (RS-485), Figure 4		1.5		5	V
Change in Magnitude of Driver	ΔV_{OD}					0.2	V
Differential Output Voltage for Complementary Output States		R=27Ω or 50Ω, Figure 4				0.2	V
Driver Common-Mode Output Voltage	V_{OC}	R=27Ω or 50Ω, Figure 4				3	V
Change in Magnitude of Driver	ΔV_{OD}					0.2	V
Common-Mode Output Voltage for Complementary Output States		R=27Ω or 50Ω, Figure 4				0.2	V
Input High Voltage	V_{IH}	DE, DI, \overline{RE}		2			V
Input Low Voltage	V_{IL}	DE, DI, \overline{RE}				0.8	V
Input Current	I_{IN1}	DE, DI, \overline{RE}				± 2	μA
Input Current (A, B)	I_{IN2}	DE=0V		$V_{IN}=12V$		1	mA
		$V_{CC}=0V$ or 5.25V		$V_{IN}=-7V$		-0.8	mA
Receiver Differential Threshold Voltage	V_{TH}	$-7V \leq V_{CM} \leq 12V$		-0.2		0.2	V
Receiver Input Hysteresis	ΔV_{TH}	$V_{CM}=0V$			70		mV
Receiver Output High Voltage	V_{OH}	$I_O=-4mA$, VID=200mV		3.5			V
Receiver Output Low Voltage	V_{OL}	$I_O=4mA$, VID=-200mV				0.4	V
Three-State (high impedance)	I_{OZR}	$0.4V \leq V_O \leq 2.4V$				± 1	μA
Output Current at Receiver							
Receiver Input Resistance	R_{IN}	$-7V \leq V_{CM} \leq 12V$		12			$k\Omega$
No-Load Supply Current (Note 3)	I_{CC}	$DE=V_{CC}$			500	900	μA
		$RE=0V$ or V_{CC}			300	500	μA
		$DE=0V$			400	900	μA

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Units
Driver Short-Circuit Current, $V_O=$ High	I_{OSD1}	$-7V \leq V_O \leq 12V$ (Note 4)	35		250	mA
Driver Short-Circuit Current, $V_O=$ LOW	I_{OSD2}	$-7V \leq V_O \leq 12V$ (Note 4)	35		250	mA
Receiver Short-Circuit Current	I_{OSR}	$0V \leq V_O \leq V_{CC}$	7		95	mA

6. Switching Characteristics

($V_{CC} = 5V \pm 5\%$, $T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted.) (Notes 1, 2)

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Units
Driver Input to Output	t_{PLH}	$R_{DIFF}=54\Omega$	10	30	60	ns
	t_{PHL}	$C_{L1}=C_{L2}=100pF$	10	30	60	ns
Driver Output Skew to Qoutput	t_{SKEW}	$R_{DIFF}=54\Omega, C_{L1}=C_{L2}=100pF$		5	10	ns
Driver Enable to Qoutput High	t_{ZH}	$C_L=100pF, S2$ closed		40	70	ns
Driver Enable to Output Low	t_{ZL}	$C_L=100pF, S1$ closed		40	70	ns
Driver Disable Time from Low	t_{LZ}	$C_L=15pF, S1$ closed		40	70	ns
Driver Disable Time from High	t_{HZ}	$C_L=15pF, S2$ closed		40	70	ns
$ t_{PLH} - t_{PHL} $ Differential	t_{SKD}	$R_{DIFF}=54\Omega$		13		ns
Receiver Skew		$C_{L1}=C_{L2}=100pF$		10		ns
Receiver Enable to Output Low	t_{ZL}	$C_{RL}=15pF, S1$ closed		20	50	ns
Receiver Enable to Output High	t_{ZH}	$C_{RL}=15pF, S2$ closed		20	50	ns
Receiver Disable Time from Low	t_{LZ}	$C_{RL}=15pF, S1$ closed		20	50	ns
Receiver Disable Time from High	t_{HZ}	$C_{RL}=15pF, S2$ closed		20	50	ns
Maximum Data Rate	f_{MAX}		2.5			Mbps

7. Operation Timing Diagrams of SP485

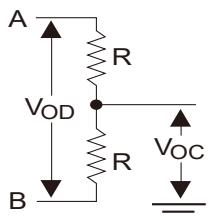


Figure 2. DC test load of the drive

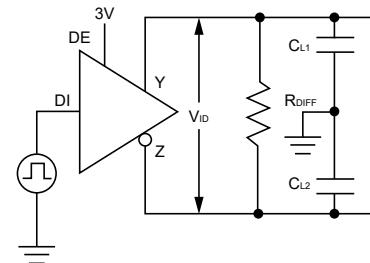


Figure 3. Drive timing test circuit

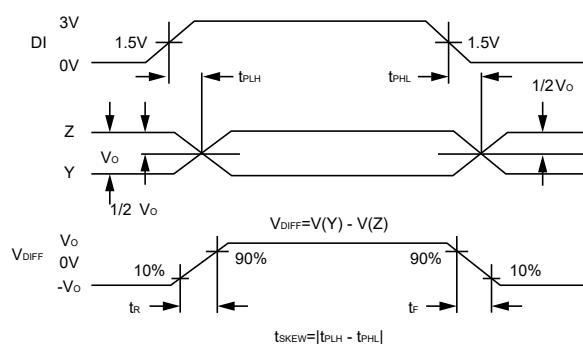


Figure 4. Drive propagation delay

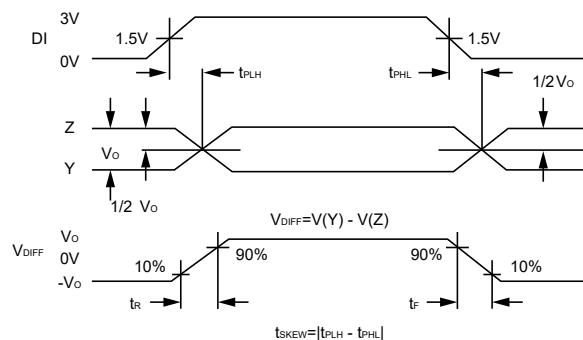


Figure 5. Drive enable/disable timing sequence

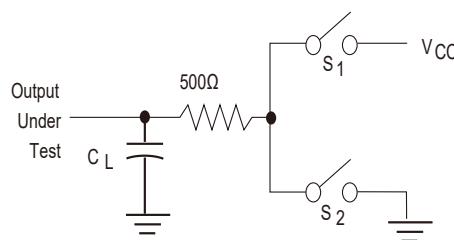


Figure 6. Drive enable/disable timing test circuit

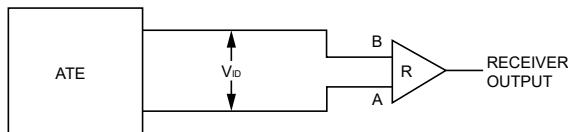


Figure 7. Receiver propagation delay test circuit

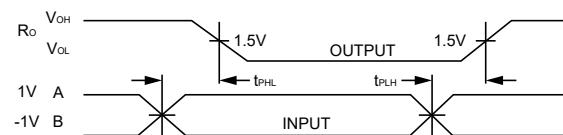
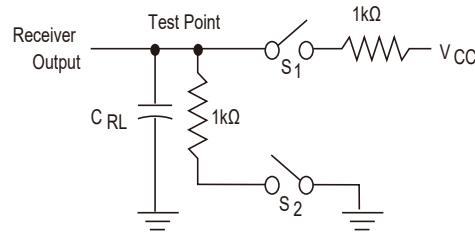
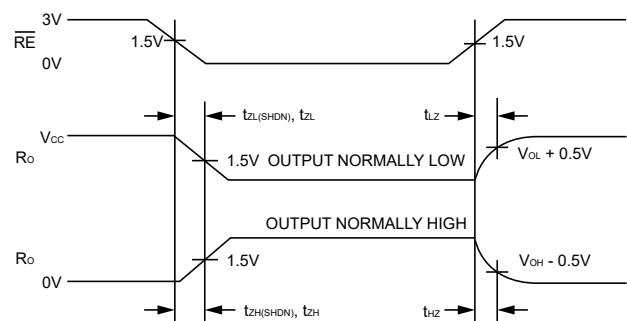
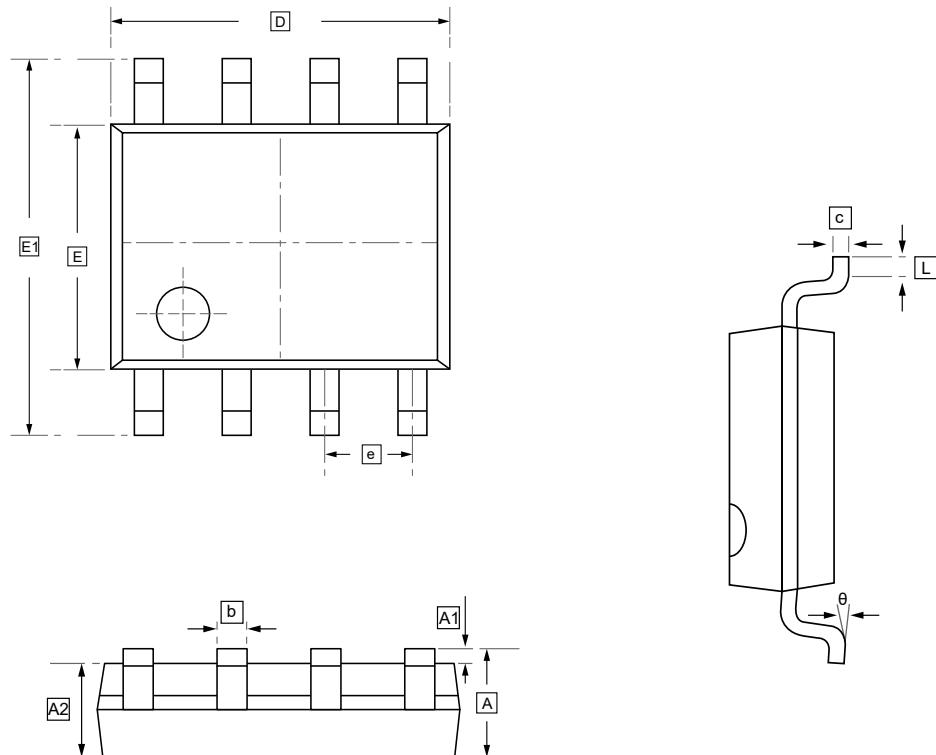




Figure 8. Receiver propagation delay timing

Figure 9. Receiver Enable/Disable
Timing Test CircuitFigure 10. Receiver enable and disable
timing sequence

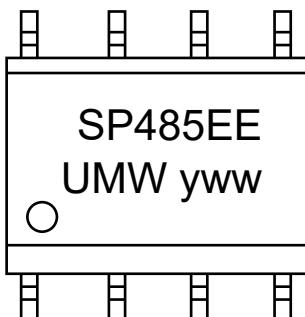
8. Table of SP485 Operation


Transmission					Receipt				
Inputs			Outputs X		Inputs			Outputs	
\overline{RE}	DE	DI	B	A	\overline{RE}	DE	A-B	RO	
X	1	1	0	1	0	0	+0.2V	1	
X	1	0	1	0	0	0	-0.2V	0	
0	0	X	Z	Z	0	0	open	1	
1	0	X	Z	Z	1	1	X	Z	

X-don't care

Z-high resistance

9. SOP-8 Package Outline Dimensions



DIMENSIONS (mm are the original dimensions)

Symbol	A	A1	A2	b	c	D	E	E1	e	L	θ
Min	1.350	0.000	1.350	0.330	0.170	4.700	3.800	5.800	1.270	0.400	0°
Max	1.750	0.100	1.550	0.510	0.250	5.100	4.000	6.200	BSC	1.270	8°

10. Ordering Information

yww: Batch Code

Order Code	Package	Base QTY	Delivery Mode
UMW SP485EEN	SOP-8	2500	Tape and reel

11.Disclaimer

UMW reserves the right to make changes to all products, specifications. Customers should obtain the latest version of product documentation and verify the completeness and currency of the information before placing an order.

When applying our products, please do not exceed the maximum rated values, as this may affect the reliability of the entire system. Under certain conditions, any semiconductor product may experience faults or failures. Buyers are responsible for adhering to safety standards and implementing safety measures during system design, prototyping, and manufacturing when using our products to prevent potential failure risks that could lead to personal injury or property damage.

Unless explicitly stated in writing, UMW products are not intended for use in medical, life-saving, or life-sustaining applications, nor for any other applications where product failure could result in personal injury or death. If customers use or sell the product for such applications without explicit authorization, they assume all associated risks.

When reselling, applying, or exporting, please comply with export control laws and regulations of China, the United States, the United Kingdom, the European Union, and other relevant countries, regions, and international organizations.

This document and any actions by UMW do not grant any intellectual property rights, whether express or implied, by estoppel or otherwise. The product names and marks mentioned herein may be trademarks of their respective owners.