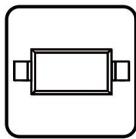
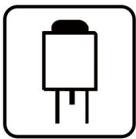
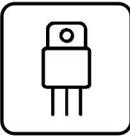
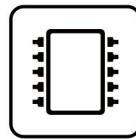


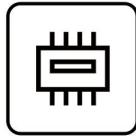
自主封測 品質把控 售後保障


WEB | WWW.TDSEMIC.COM

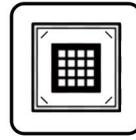

電源管理



顯示驅動

二三極管 LDO穩壓器


觸摸芯片

MOS管


運算放大器

存儲芯片

MCU

串口通信

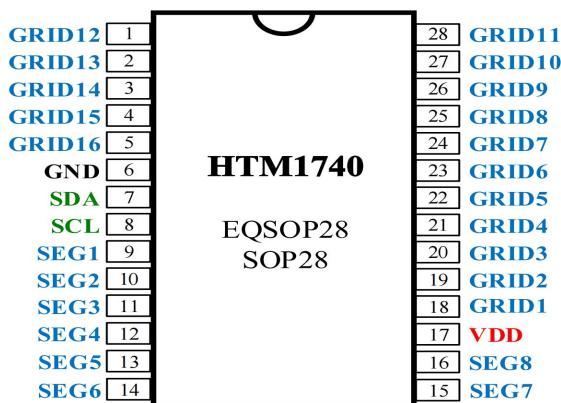
HTM1740S-TD

產品規格說明書

目录

修改记录.....	1
1. 概述.....	3
2. 功能特性.....	3
3. 管脚排列.....	3
3.1 EQSOP28/SOP28 管脚图.....	3
4. 功能描述.....	4
4.1 功能框图.....	4
4.2 功能简介.....	5
4.3 通讯协议.....	5
4.4 寄存器定义.....	6
4.5 显示周期.....	9
4.6 参数配置流程.....	10
5. 应用电路.....	11
6. 电气参数.....	12
6.1 极限电气参数.....	12
6.2 直流电参数 (TA=25°C, VDD=5V, GND=0V)	12
6.3 交流电参数 (TA=25°C, VDD=5V, GND=0V)	13
7. 封装.....	13
7.1 EQSOP28	13
7.2 SOP28	14

1. 概述

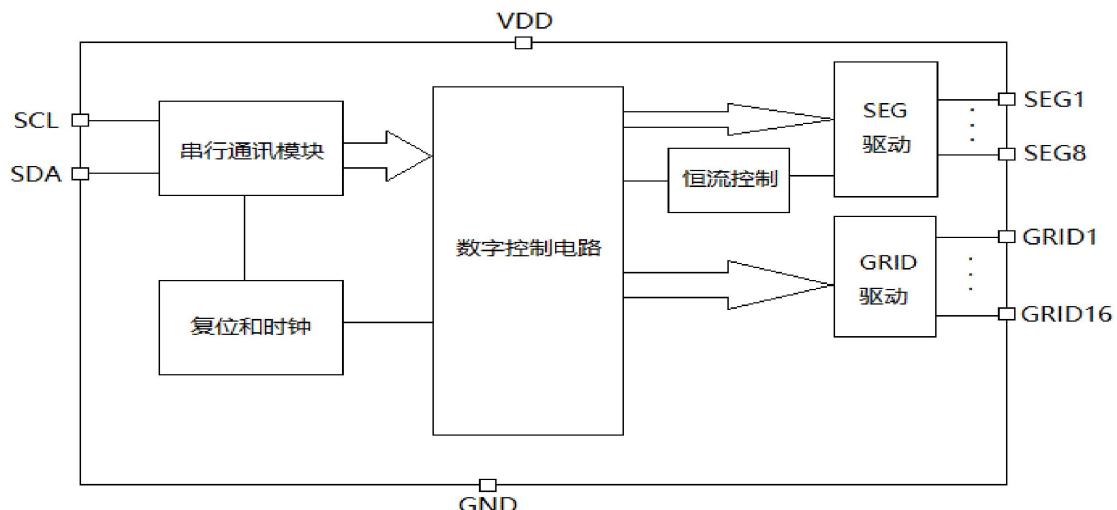

HTM1740 是一款恒流 LED 显示驱动控制电路，驱动能力强，内部集成了 MCU 数字串行接口、数据存储器、LED 恒流控制驱动模块。本产品采用 CMOS 工艺，主要应用于高亮中小型 LED 显示驱动。

2. 功能特性

- 电源电压：3V-5.5V；
- 最多驱动 8 SEG×16 GRID，共 128 个 LED；
- 输出恒流驱动；
- 驱动电流大，适合高亮显示场合；
- 显示亮度调节范围：恒流 16 级可调；
- 显示位数可调（1~16 位）；
- I2C 通讯接口；
- 内置 RC 振荡；
- 内置上电复位；
- 封装形式：EQSOP28、SOP28。

3. 管脚排列

3.1 EQSOP28/SOP28 管脚图


管脚说明：

符号	管脚名称	EQSOP28	说明
SEG1-SEG8	段输出	9-16	段输出, 接 LED 正极
GRID1-GRID16	位输出	18-28,1-5	位输出, 接 LED 负极
SDA	串行数据输入输出	7	I2C 串行数据输入
SCL	串行时钟	8	I2C 串行时钟输入
GND	地	6	逻辑地
VDD	电源	17	逻辑电源

注：EQSOP28 与 SSOP28 脚位封装尺寸相同，EQSOP28 封装底部固定接地，方便散热。

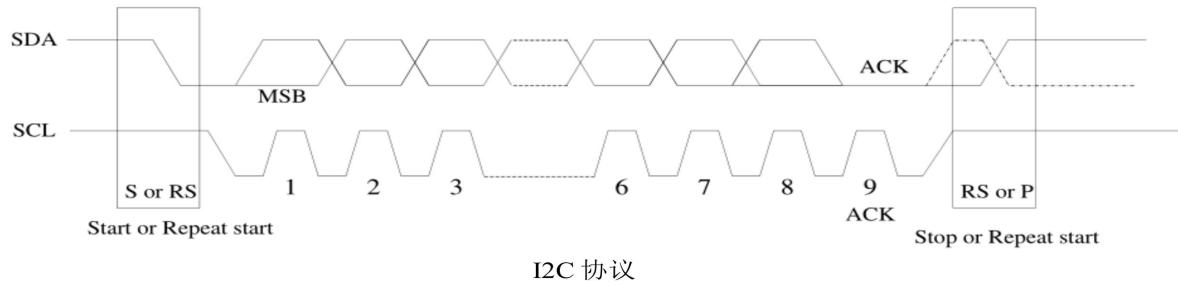
4. 功能描述

4.1 功能框图

NOTE: SCL、SDA I_C 串行接口；

SEG1-SEG8 段码输出；

GRID1-GRID16 位输出。


电路中包含时钟复位、串行接口、数字控制、恒流控制、SEG 输出、GRID 输出、ESD 模块，通过串行接口控制，实现显示控制、显示模式、状态控制三组寄存器的控制，内置 RC 振荡器，恒流输出 16 级可调，位驱动 16 扫可调。同时，通过串行接口可以实现芯片的关断和开启，LED 显示的关和开。ESD 模块中，每个管脚都有对电源和地的 ESD 泄放通路。

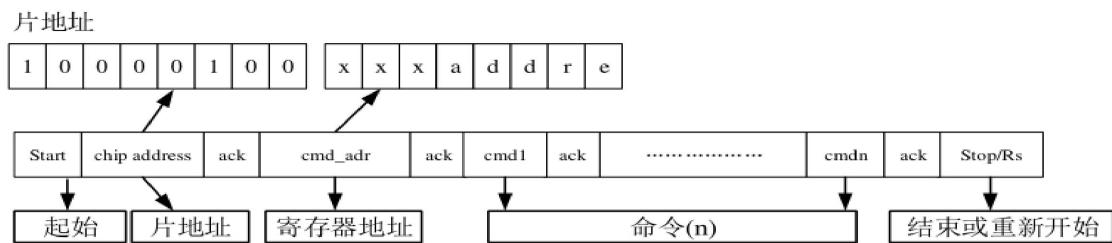
4.2 功能简介

HTM1740 是一颗基于 I2C 通讯协议的 LED 显示面板设计的恒流驱动芯片，支持最多 8 段×16 位输出，且可以通过寄存器配置，调节扫描的位数，从而获得更大的单点驱动电流。

相较于传统的 LED 显示面板驱动芯片，当点亮的 LED 数量变化或者输入电压变化时，单颗 LED 电流会发生变化，从而会影响显示亮度；而采用了 HTM1740 的恒流设计，当显示模式配置好后，每颗 LED 的电流就恒定不变，不会因点亮的 LED 数量变化和输入电压变化而产生波动。

4.3 通讯协议

NOTE: ACK=应答信号；


MSB=字节的最高位；

S=起始信号； RS=重新开始信号； P=停止信号；

最大时钟速度=400kB/s；

Restart: 此时 SDA 电平翻转如波形中虚线所表示。

写命令寄存器接口协议（连续写）：

连续写操作步骤：

- ① 开始位；
- ② 芯片地址字节= 84H, ACK=应答位；
- ③ 寄存器地址范围： 00H~12H, ACK=应答位；
- ④ 命令寄存器数据 1= (命令数据位 cmd1) , ACK=应答位；
.....
- ⑤ 命令寄存器数据 n= (命令数据位 cmdn) , ACK=应答位；
- ⑥ 结束位。

4.4 寄存器定义

- 寄存器概述

寄存器地址	说明
00H – 0FH	显示数据寄存器
10H – 11H	显示模式寄存器
12H	状态控制寄存器

- 显示数据寄存器

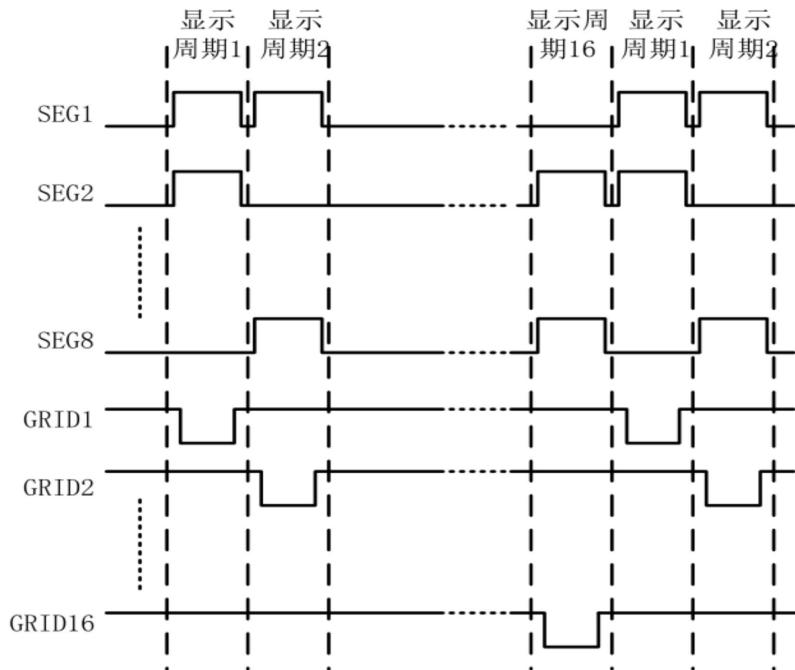
该寄存器存储 HTM1740 的数据，地址从 00H ~ 0FH 共 16 字节单元，分别与 SEG 和 GRID 管脚所接矩阵的 LED 灯对应。

地址	名称	缺省值
00H	GRID1 对应的显示地址	00H
01H	GRID2 对应的显示地址	
02H	GRID3 对应的显示地址	
03H	GRID4 对应的显示地址	
04H	GRID5 对应的显示地址	
05H	GRID6 对应的显示地址	
06H	GRID7 对应的显示地址	
07H	GRID8 对应的显示地址	
08H	GRID9 对应的显示地址	
09H	GRID10 对应的显示地址	
0AH	GRID11 对应的显示地址	
0BH	GRID12 对应的显示地址	
0CH	GRID13 对应的显示地址	
0DH	GRID14 对应的显示地址	
0EH	GRID15 对应的显示地址	
0FH	GRID16 对应的显示地址	

- 显示数据寄存器各 BIT 与 LED 关系

地址	BIT	名称	数据描述
00H – 0FH	7	SEG8 与 GRIDn 对应的 LED	1: 点亮 0: 熄灭
	6	SEG7 与 GRIDn 对应的 LED	
	5	SEG6 与 GRIDn 对应的 LED	
	4	SEG5 与 GRIDn 对应的 LED	
	3	SEG4 与 GRIDn 对应的 LED	
	2	SEG3 与 GRIDn 对应的 LED	
	1	SEG2 与 GRIDn 对应的 LED	
	0	SEG1 与 GRIDn 对应的 LED	

● 显示模式寄存器

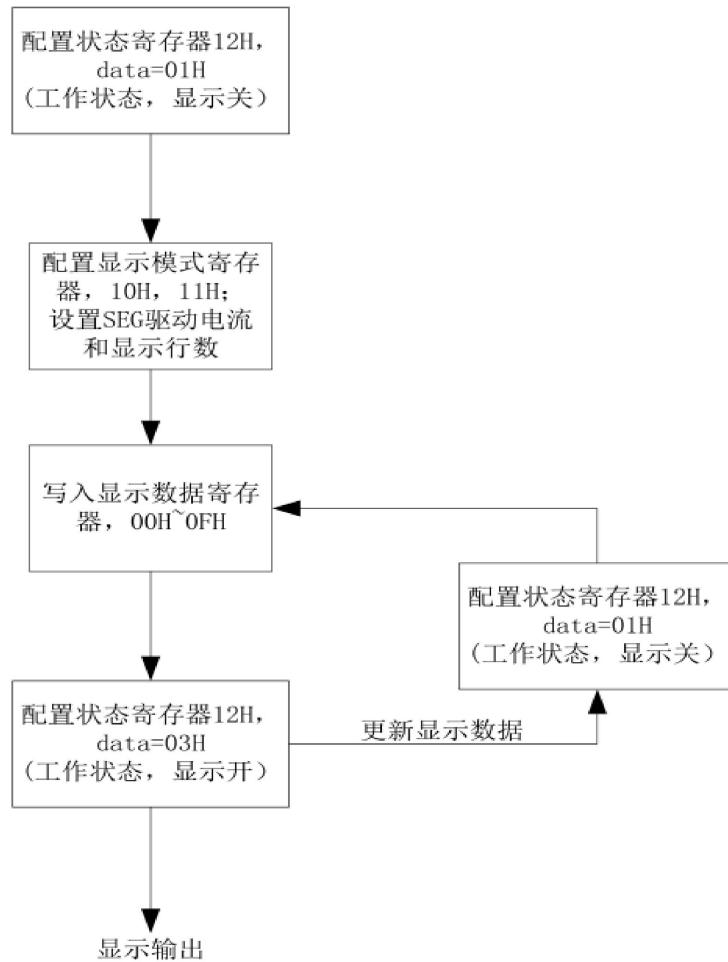

地址	BIT	名称	缺省值	W/R	说明
10H	7:4	无	0000	-	无, 固定为 0
	3:0	SEG 输出电流	1111	W	SEG 端口输出电流
					1111 实测
					1110
					1101
				
					0000

地址	BIT	名称	缺省值	W/R	说明
11H	7:4	无	0000	-	无, 固定为 0
	3:0	GRID 扫描行数	1111	W	有效 GRID 扫描行数
					1111 16 扫 (缺省)
					1110 15 扫
					1101 14 扫
				
					0000 1 扫

● 状态控制寄存器

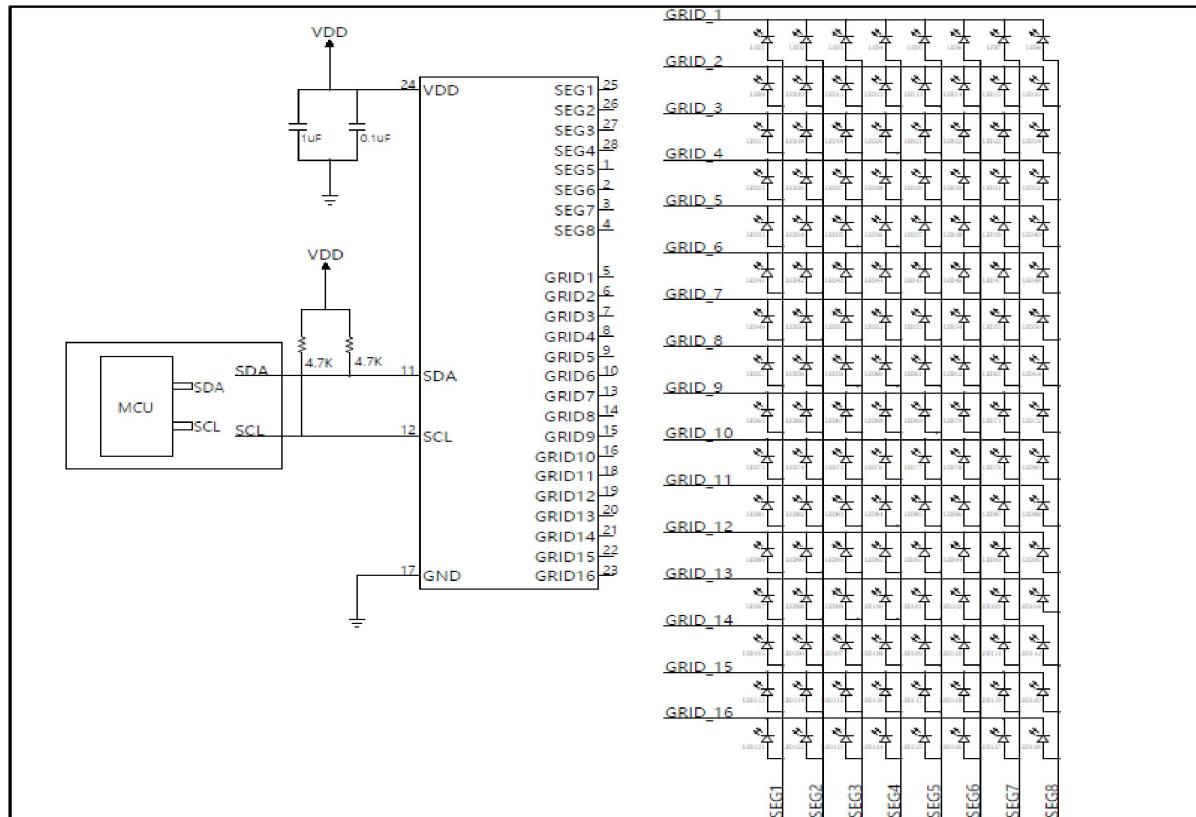
地址	BIT	名称	缺省值	W/R	说明
12H	0	状态控制	0	W	关断状态
	1				工作状态
	1	显示控制	0	W	显示关
	7:2				显示开
		无	000000	-	无, 固定为 0

4.5 显示周期


● 指令顺序

首次上电，需要将状态控制寄存器（即 12H）配置成 01H（即电路进入工作状态）。

寄存器写入顺序：状态控制状态→显示数据寄存器→显示模式寄存器→状态控制寄存器。


NOTE：一旦状态控制寄存器的 Bit0 配置成“0”，重新写入数据时，一定要先将状态控制寄存器配置成 01H 后再执行其他操作。

4.6 参数配置流程

5. 应用电路

主控制器与 HTM1740 组成显示系统，见下图：

注意： 电源滤波电容尽量靠近 VDD 管脚。

6. 电气参数

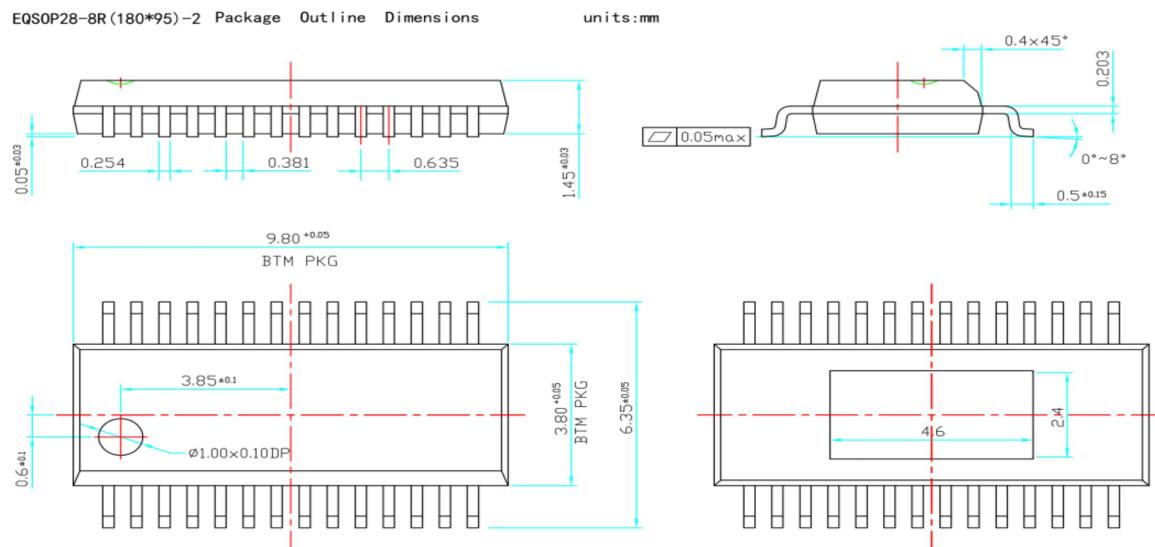
6.1 极限电气参数

符号	参数名称	条件	数值	单位
V _{DD}	电源电压		3 – 5.5	V
I _{SEG}	SEG 驱动电流	VDD=5V, TA=25°C	-100	mA
I _{OUT}	GRID 驱动电流	VDD=5V, TA=25°C	800	mA
P _D	功率损耗		1800	mW
T _A	工作温度		-40 – 85	°C
T _S	储存温度		-65 - 150	°C

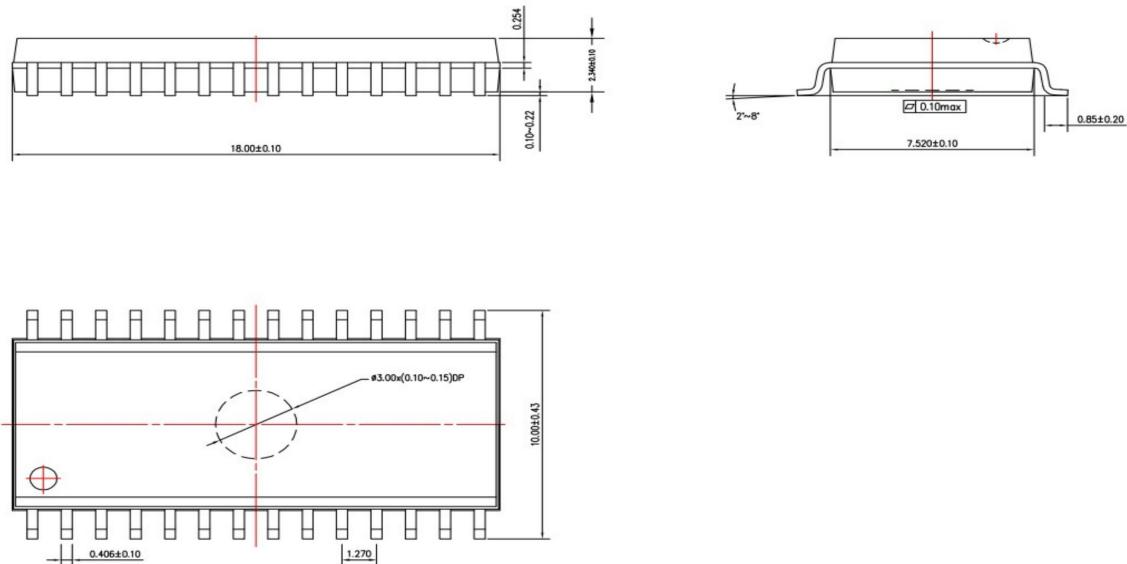
推荐工作电压范围 (TA=-40 - 85°C, GND=0V)

符号	参数名称	最小	典型	最大	单位
V _{DD}	电源电压		5		V
V _{IH}	高电平输入电压	0.7VDD	-	VDD	V
V _{IL}	低电平输入电压	0	-	0.3VDD	V

6.2 直流电参数 (TA=25°C, VDD=5V, GND=0V)


符号	参数名称	最小	典型	最大	单位
I _{SEG}	高电平输出电流	-72	-80	-88	mA
I _{OUT}	低电平输出电流		640	-	mA
I _{IN}	输入电流	-	-	±1	uA
V _{IH}	高电平输入电压	0.7VDD	-	VDD	V
V _{IL}	低电平输入电压	0	-	0.3VDD	V
V _H	迟滞电压	-	0.35	-	V
I _{DD_DYN}	动态电流损耗	-	-	0.8	mA
I _{SHUT}	关断电流	-	-	10	uA

6.3 交流电参数 (TA=25°C, VDD=5V, GND=0V)


符号	参数名称	最小	典型	最大	单位
TTZH1	上升时间	-	-	2	us
TTZH2		-	-	0.5	us
TTZH	下降时间	-	-	120	us

7. 封装

7.1 EQSOP28

7.2 SOP28

