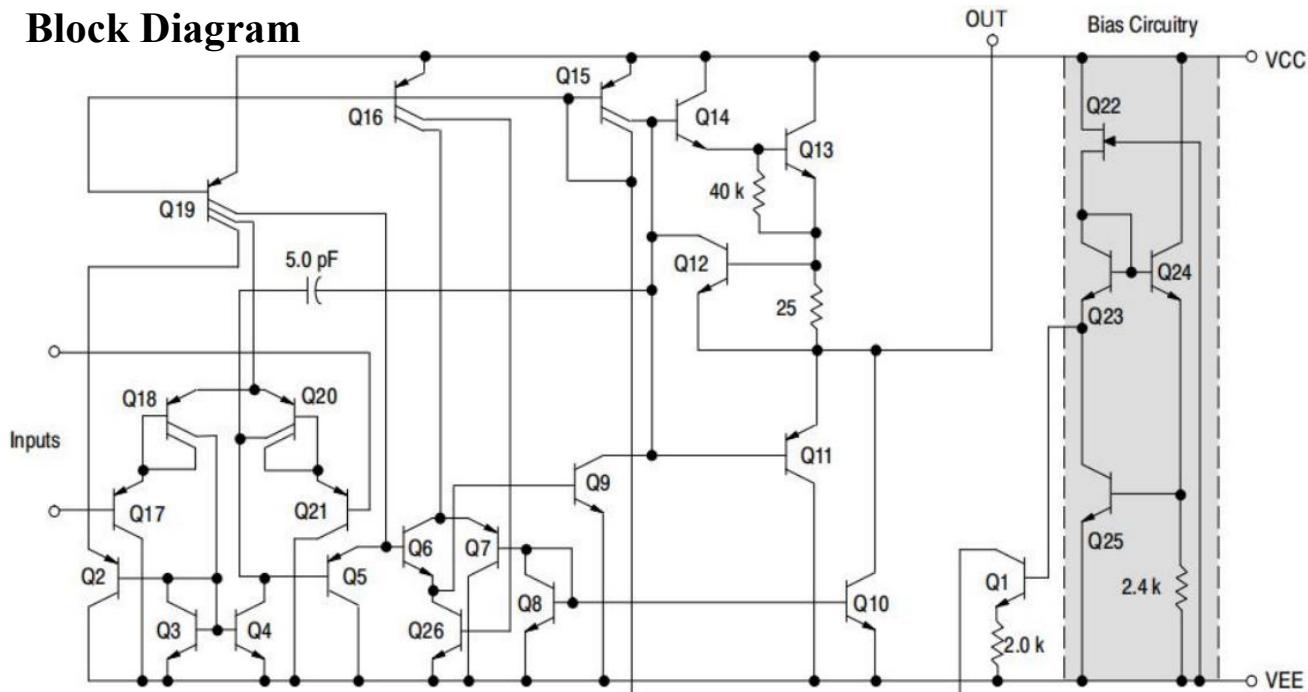


Low Power Single Operational Amplifiers

Features

- Internal frequency compensation
- Output short circuit protection
- Low power: 0.3mA(typ.)@VCC=5V
- Single power supply voltage range: 3V~32V
- Dual power supply voltage range: $\pm 1.5V$ ~ $\pm 16V$
- Gain bandwidth product: 1.0MHz

Applications


- Charger
- Power application
- Desktop computers and motherboards
- Communication infrastructure

Description

The LM321 is a single-channel low-power differential operational amplifier. It can be powered by a single power supply or a dual power supply. The LM321 has a high open-loop gain, internal compensation, a wide common-mode input range, good temperature stability, and the feature of output short-circuit protection. It can operate under power voltages ranging from as low as 3.0V to as high as 32V, and the common-mode input range includes the negative power supply. This eliminates the need for external biasing, and it can also drive large-capacity loads.

The LM321 is available in a SOT23 - 5 package, allowing for low-cost integration into various applications without sacrificing valuable board space.

Block Diagram

Pin Description

Pin Number	Pin Name	I/O	Description	Pin Configuration Diagram
1	IN+	I	Non-inverting input	
2	VEE	P	Negative supply	
3	IN-	I	Inverting input	
4	OUT	O	Output	
5	VCC	P	Positive supply	

Absolute Maximum Ratings ($T_A=25^\circ\text{C}$ unless otherwise noted)

Parameter	Symbol	Value	Unit
Supply Voltage	V_{CC}	32 ± 16	V
Differential Input Voltage	V_{ID}	± 32	V
Common-mode Input Voltage	V_{ICM}	$-0.3 \sim V_{CC}$	V
Maximum Operating Junction Temperature	T_J	150	$^\circ\text{C}$
Operating Ambient Temperature	T_A	$-20 \sim +85$	$^\circ\text{C}$
Storage Temperature	T_{STG}	$-65 \sim +150$	$^\circ\text{C}$
Lead Temperature(Soldering , 10 s)	T_W	260	$^\circ\text{C}$

Electrical Characteristics ($T_A=25^\circ\text{C}$, $V_{CC}=5.0\text{V}$, $VEE=\text{GND}$, unless otherwise noted)

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Input Offset Voltage	V_{IO}	$V_{CC}=5\text{V to } 32\text{V}$, $V_{ICM}=V_{ICM(\text{min})}$, $V_O=1.4\text{V}$		± 2	± 5	mV
Input Offset Current	I_{IO}	$V_O=1.4\text{V}$		± 10	± 50	nA
Input Bias Current	I_B	$V_O=1.4\text{V}$		± 50	± 250	nA
Input Common-mode Voltage Range	V_{ICM}	$V_{CC}=5\text{V to } 32\text{V}$	V_{EE}		$V_{CC}-1.5$	V
Open-loop Voltage Gain	A_{OL}	$V_{CC}=15\text{V}, V_O=1\text{V to } 11\text{V}$; $R_L \geq 10\text{k}\Omega$, connected to V_{EE}		100		V/mV
Common-mode Rejection Ratio	C_{MRR}	$V_{CC}=5\text{V to } 32\text{V}$, $V_{ICM}=V_{ICM(\text{min})}$		80		dB

Power Supply Rejection Ratio	P _{SRR}	V _{CC} =5V to 32V,f=20kHz			90		dB
Channel Isolation Degree	CS	f=1kHz to 20kHz			120		dB
Output High Level Voltage	V _{OH}	V _{CC} =15V,V _{ID} =1V	I _{OUT} =-50uA		13.6		V
			I _{OUT} =-1mA		13.5		V
			I _{OUT} =-5mA		13.4		V
		V _{CC} =32V,V _{ID} =1V	R _L =2kΩ		30		V
Output Low Level Voltage	V _{OL}	V _{CC} =15V,V _{ID} =-1V	I _{OUT} =50uA		0.1		V
			I _{OUT} =1mA		0.3		V
			I _{OUT} =5mA		0.7		V
		V _{CC} =32V,V _{ID} =-1V	R _L =2kΩ		1.0		V
Output Short-circuit Current	I _{SC}	V _{CC} =10V,V _{EE} =-10V,V _O =0V			±40	±60	mA
Supply Current	I _{CC1}	V _{CC} =5V,V _O =1/2V _{CC} ,No load			0.3		mA
	I _{CC2}	V _{CC} =32V,V _O =1/2V _{CC} ,No load			0.4		mA
Gain Bandwidth Product	GBWP				1		MHz
Slew Rate	S _R				0.4		V/uS

Typical Applications

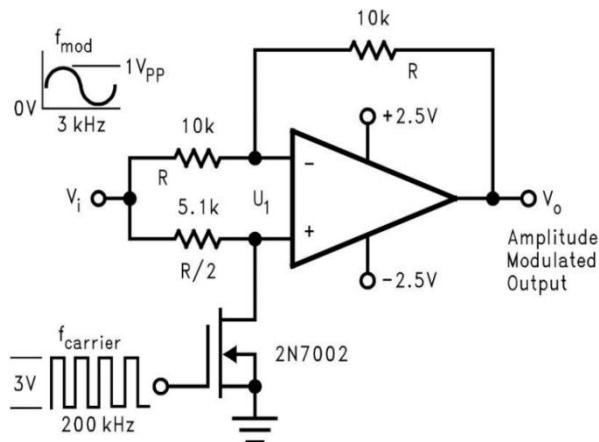


Fig.1 Amplitude Modulator Circuit

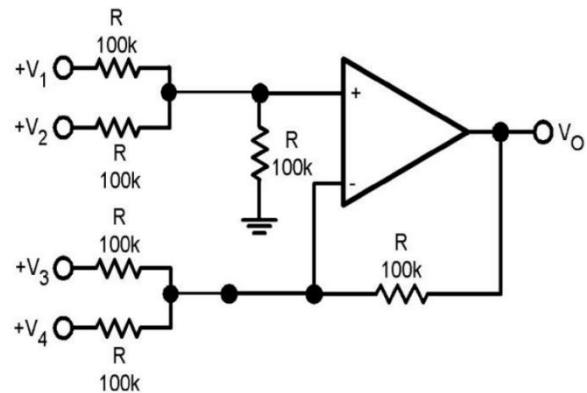


Fig.2 DC Adder Amplifier ($V_{IN} \geq 0 \text{ V}_{DC}$, $V_o \geq V_{DC}$)

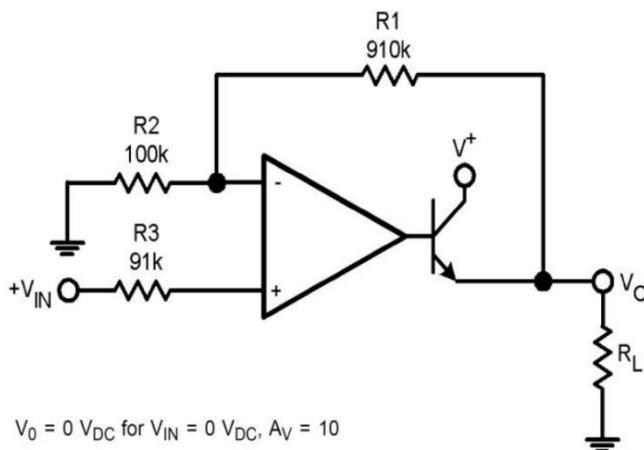


Fig.3 Power Amplifier

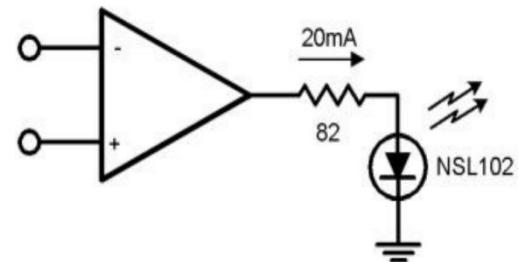


Fig.4 LED Driver

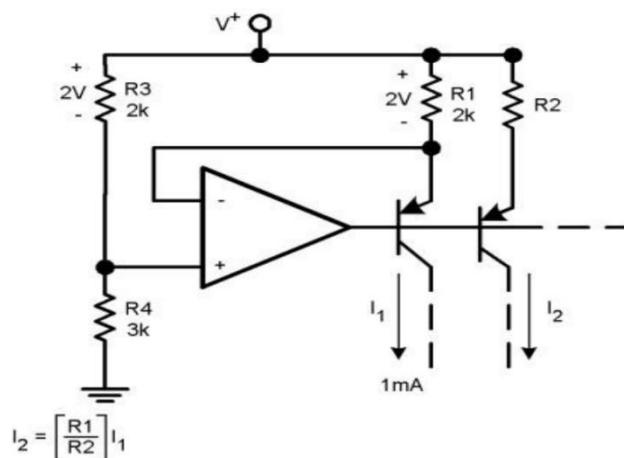


Fig.5 Fixed Current Source

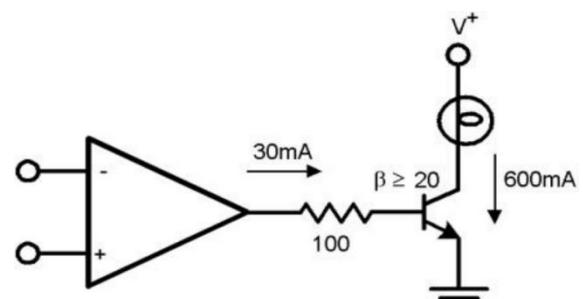


Fig.6 Lamp Driver

Typical Characteristics

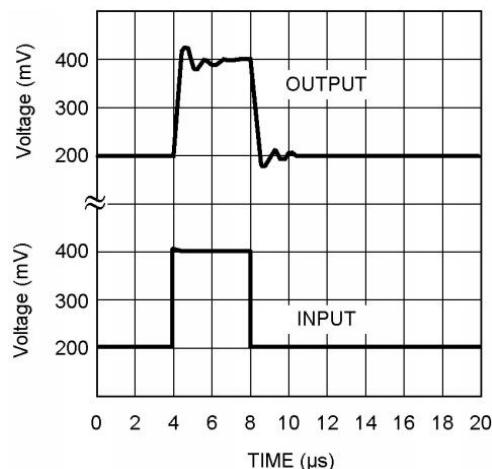


Fig.7 Small signal pulse response

Fig.8 Large signal pulse response

Fig.9 Supply Current vs. Supply Voltage

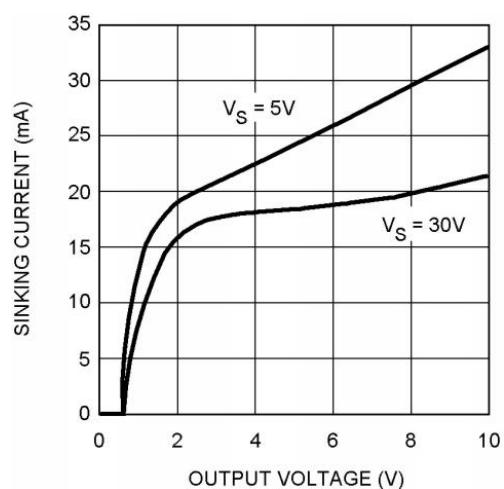


Fig.10 Sinking Current vs. Output Voltage

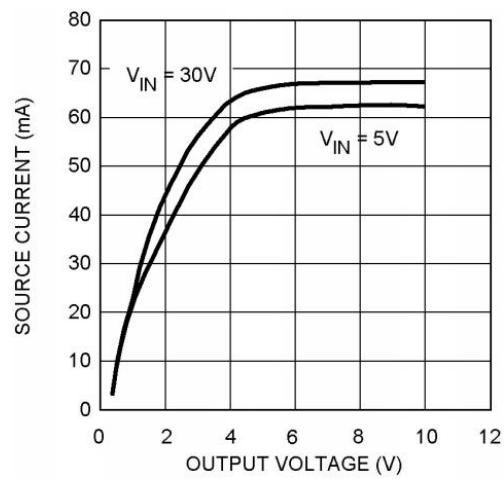


Fig.11 Source Current vs. Output Voltage

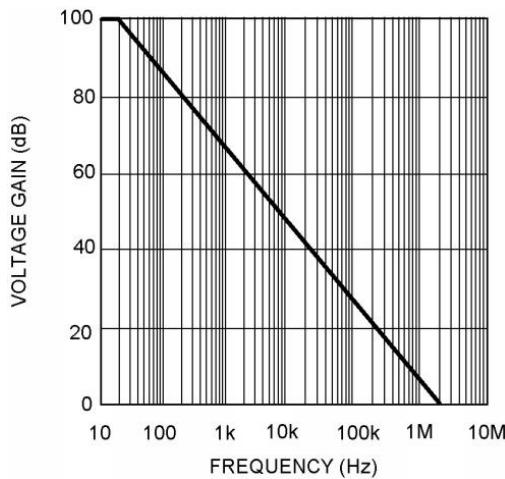
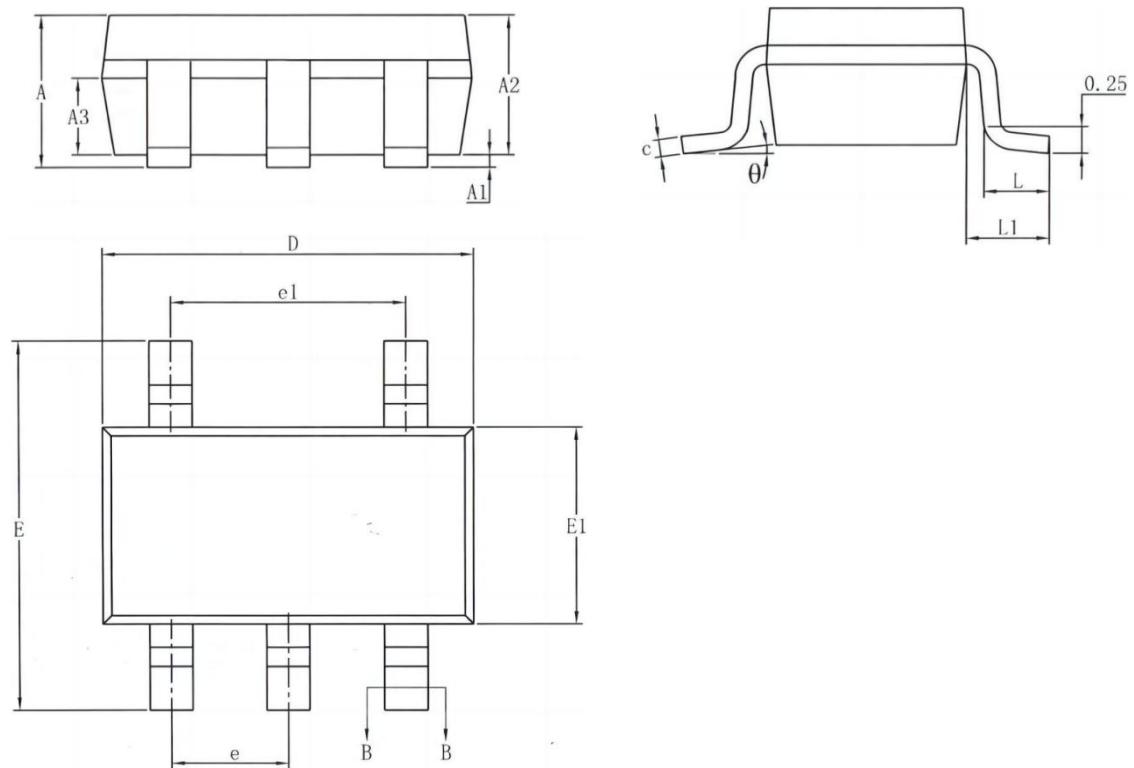



Fig.12 Open Loop Frequency Response

Package Information

SOT-23-5

Dimensions in mm

Symbol	Dimensions In Millimeters			Symbol	Dimensions In Millimeters		
	Min	Nom	Max		Min	Nom	Max
A	-	-	1.25	D	2.82	2.92	3.02
A1	0.04	-	0.10	E	2.60	2.80	3.00
A2	1.00	1.10	1.20	E1	1.50	1.60	1.70
A3	0.60	0.65	0.70	e	0.95 BSC		
b	0.33	-	0.41	e1	1.90 BSC		
b1	0.32	0.35	0.38	L	0.30	-	0.60
c	0.15	-	0.19	L1	0.60 REF		
c1	0.14	0.15	0.16	θ	0°	-	8°

Shikues Disclaimer

1. Accuracy of Information and Right to Modify

The information provided in this document is for reference only. Shikues reserves the right to make changes to this document and to the specifications of the products described herein at any time, without prior notice, for the purpose of improving reliability, function, design, or for any other reason. It is the customer's responsibility to obtain and verify the latest product information and specifications before making any final design, procurement, or usage decisions.

2. No Warranty

Shikues makes no express or implied warranties, representations, or guarantees regarding the suitability of its products for any particular purpose.

Shikues assumes no liability for any assistance provided or for the design of customer products. All products are supplied "as is."

3. Intended Use and Limitation of Liability

The products described in this document are intended for use in general-purpose electronic devices. They are neither designed nor tested nor authorized for use in transportation equipment or applications requiring high reliability. Unless expressly authorized in writing by Shikues, these products must not be used as critical components in life-support systems or any applications where failure could directly pose a risk to human life (including, but not limited to, medical devices, transportation systems, aerospace equipment, nuclear facilities, and safety-critical systems).

Shikues assumes no responsibility or liability for any consequences arising from the use of its products in unauthorized or unintended applications.

Neither Shikues nor its representatives shall be held liable for any resulting damages.

4. Intellectual Property

This document does not grant any express or implied license—whether by estoppel, implication, or otherwise—to use any intellectual property rights of Shikues.