

Adafruit 3.5" 320x480 Color TFT

Touchscreen Breakout

Created by lady ada

https://learn.adafruit.com/adafruit-3-5-color-320x480-tft-touchscreen-breakout

Last updated on 2023-08-29 02:36:43 PM EDT

©Adafruit Industries Page 1 of 63

5

7

10

13

21

26

29

30

33

40

Table of Contents

Overview

Pinouts

• SPI Mode

• 8-Bit Mode

Wiring & Test

• Assembling Header

• Prepare the header strip:

• Add the breakout board:

• Add the breakout board:

8-Bit Wiring & Test

• 8-Bit Wiring

• Part 1 - Power & backlight test

• Part 2 - Data Bus Lines

• 8-Bit Library Install

• Prepare TFTLCD Library

SPI Wiring & Test

• SPI Mode Jumpers

• Wiring

• Install Arduino Libraries

Bitmaps (SPI Mode)

Adafruit GFX library

Touchscreen

• Download Library

• Touchscreen Paint (SPI mode)

• Touchscreen Paint (8-Bit mode)

CircuitPython Displayio Quickstart

• Preparing the Breakout

• Required CircuitPython Libraries

• Code Example Additional Libraries

• CircuitPython Code Example

• Using Touch

• Where to go from here

Python Wiring and Setup

• Wiring

• ILI9341 and HX-8357-based Displays

• ST7789 and ST7735-based Displays

• SSD1351-based Displays

• SSD1331-based Display

• Setup

• Python Installation of RGB Display Library

• DejaVu TTF Font

• Pillow Library

©Adafruit Industries Page 2 of 63

48

61

62

Python Usage

• Turning on the Backlight

• Displaying an Image

• Drawing Shapes and Text

• Displaying System Information

Troubleshooting

Downloads

• Datasheets & Files

• Schematic and PCB Print

©Adafruit Industries Page 3 of 63

©Adafruit Industries Page 4 of 63

Overview

Add some jazz & pizazz to your project with a color touchscreen LCD. This TFT

display is big (3.5" diagonal) bright (6 white-LED backlight) and colorful! 480x320

pixels with individual RGB pixel control, this has way more resolution than a black and

white 128x64 display, and double our 2.8" TFT. As a bonus, this display has a resistive

touchscreen attached to it already, so you can detect finger presses anywhere on the

screen.

©Adafruit Industries Page 5 of 63

This display has a controller built into it with RAM buffering, so that almost no work is

done by the microcontroller. The display can be used in two modes: 8-bit or SPI. For

8-bit mode, you'll need 8 digital data lines and 4 or 5 digital control lines to read and

write to the display (12 lines total). SPI mode requires only 5 pins total (SPI data in,

data out, clock, select, and d/c) but is slower than 8-bit mode. In addition, 4 pins are

required for the touch screen (2 digital, 2 analog) or you can purchase and use our

resistive touchscreen controller (not included) to use I2C or SPI (http://adafru.it/1571).

Of course, we wouldn't just leave you with a datasheet and a "good luck!". For 8-bit

interface fans we've written a full open source graphics library that can draw pixels,

lines, rectangles, circles, text, and more (). For SPI users, we have a library as well (),

its separate from the 8-bit library since both versions are heavily optimized. We also

have a touch screen library that detects x, y and z (pressure) () and example code to

demonstrate all of it.

©Adafruit Industries Page 6 of 63

http://www.adafruit.com/products/1571
http://www.adafruit.com/products/1571
https://github.com/adafruit/TFTLCD-Library
https://github.com/adafruit/TFTLCD-Library
https://github.com/adafruit/Adafruit_HX8357_Library
https://github.com/adafruit/Touch-Screen-Library
https://github.com/adafruit/Touch-Screen-Library

Pinouts

The 3.5" TFT display on this breakout supports many different modes - so many that

the display itself has 50 pins. However, we think most people really only use 2

different modes, either "SPI" mode or 8-bit mode. Each 'side' of the display has all the

pins required for that mode. You can switch between modes, by rewiring the display,

but it cannot be used in two modes at the same time!

All logic pins, both 8-bit and SPI sides, are 3-5V logic level compatible, the 74LVX245

©Adafruit Industries Page 7 of 63

chips on the back perform fast level shifting so you can use either kind of logic levels.

If there's data output, the levels are at at 3.3V

SPI Mode

This is what we think will be a popular mode when speed is not of the utmost

importance. It doesn't use as many pins (only 4 to draw on the TFT if you skip the

MISO pin), is fairly flexible, and easy to port to various microcontrollers. It also allows

using a microSD card socket on the same SPI bus. However, its slower than parallel 8-

bit mode because you have to send each bit at a time instead of 8-bits at a time.

Tradeoffs!

GND - this is the power and signal ground pin

3-5V / Vin - this is the power pin, connect to 3-5VDC - it has reverse polarity

protection but try to wire it right!

3.3Vout - this is the 3.3V output from the onboard regulator

CLK - this is the SPI clock input pin

MISO - this is the SPI Microcontroller In Serial Out pin, its used for the SD card

mostly, and for debugging the TFT display. It isn't necessary for using the TFT

display which is write-only

MOSI - this is the SPI Microcontroller Out Serial In pin, it is used to send data

from the microcontroller to the SD card and/or TFT

CS - this is the TFT SPI chip select pin

D/C - this is the TFT SPI data or command selector pin

RST - this is the TFT reset pin. There's auto-reset circuitry on the breakout so

this pin is not required but it can be helpful sometimes to reset the TFT if your

setup is not always resetting cleanly. Connect to ground to reset the TFT

Lite - this is the PWM input for the backlight control. It is by default pulled high

(backlight on) you can PWM at any frequency or pull down to turn the backlight

off

Y+ X+ Y- X- these are the 4 resistive touch screen pads, which can be read with

analog pins to determine touch points. They are completely separated from the

TFT electrically (the overlay is glued on top)

IM2 IM1 IM0 - these are interface control set pins. In general these breakouts

aren't used, and instead the onboard jumpers are used to fix the interface to SPI

•

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 8 of 63

or 8-bit. However, we break these out for advanced use and also for our test

procedures

Card CS / CCS - this is the SD card chip select, used if you want to read from the

SD card.

Card Detect / CD - this is the SD card detect pin, it floats when a card is

inserted, and tied to ground when the card is not inserted. We don't use this in

our code but you can use this as a switch to detect if an SD card is in place

without trying to electrically query it. Don't forget to use a pullup on this pin if so!

8-Bit Mode

This mode is for when you have lots of pins and want more speed. In this mode we

send 8 bits at a time, so it needs way more pins, 12 or so (8 bits plus 4 control)!

GND - this is the power and signal ground pin

3-5V (Vin)- this is the power pin, connect to 3-5VDC - it has reverse polarity

protection but try to wire it right!

CS - this is the TFT 8-bit chip select pin (it is also tied to the SPI mode CS pin)

C/D - this is the TFT 8-bit data or command selector pin (it is also tied to the SPI

mode C/D pin)

WR - this is the TFT 8-bit write strobe pin. It is also connected to the SPI CLK pin

RD - this is the TFT 8-bit read strobe pin. You may not need this pin if you don't

want to read data from the display

RST - this is the TFT reset pin. There's auto-reset circuitry on the breakout so

this pin is not required but it can be helpful sometimes to reset the TFT if your

setup is not always resetting cleanly. Connect to ground to reset the TFT

Backlite - this is the PWM input for the backlight control. It is by default pulled

high (backlight on) you can PWM at any frequency or pull down to turn the

backlight off

Y+ X+ Y- X- these are the 4 resistive touch screen pads, which can be read with

analog pins to determine touch points. They are completely separated from the

TFT electrically (the overlay is glued on top)

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 9 of 63

D0 thru D7 - these are the 8 bits of parallel data sent to the TFT in 8-bit mode. D

0 is the least-significant-bit and D7 is the MSB

Wiring & Test

We tried to make this TFT breakout useful for both high-pin microcontrollers that can

handle 8-bit data transfer modes as well as low-pincount micros like the Arduino UNO

and Leonardo that are OK with SPI.

Essentially, the tradeoff is pins for speed. SPI is about 2-4 times slower than 8-bit

mode, but that may not matter for basic graphics!

In addition, SPI mode has the benefit of being able to use the onboard microSD card

socket for reading images. We don't have support for this in 8-bit mode so if you want

to have an all-in-one image viewer type application, use SPI!

Assembling Header

Either way, if you're using a breadboard, you'll need to solder header onto one or two

of the sides. The procedure is the same for both sides

•

©Adafruit Industries Page 10 of 63

Prepare the header strip:
Cut the strip to length if necessary. It will

be easier to solder if you insert it into a

breadboard - long pins down

Add the breakout board:
Place the breakout board over the pins so

that the short pins poke through the

breakout pads

©Adafruit Industries Page 11 of 63

https://learn.adafruit.com//assets/18875
https://learn.adafruit.com//assets/18875
https://learn.adafruit.com//assets/18876
https://learn.adafruit.com//assets/18876

Add the breakout board:
Place the breakout board over the pins so

that the short pins poke through the

breakout pads

©Adafruit Industries Page 12 of 63

https://learn.adafruit.com//assets/18877
https://learn.adafruit.com//assets/18877
https://learn.adafruit.com//assets/18878
https://learn.adafruit.com//assets/18878
https://learn.adafruit.com//assets/18879
https://learn.adafruit.com//assets/18879

You're done! Check your solder joints

visually and continue onto the next steps

8-Bit Wiring & Test

8-Bit Wiring

Wiring up the 8-bit mode is kind of a pain, so we really only recommend doing it for

UNO (which we show) and Mega (which we describe, and is pretty easy since its 8

pins in a row). Anything else, like a Leonardo or Micro, we strongly recommend going

with SPI mode since we don't have an example for that. Any other kind of 'Arduino

compatible' that isn't an Uno, try SPI first. The 8-bit mode is hand-tweaked in the Adaf

ruit_TFTLCD pin_magic.h file. Its really only for advanced users who are totally cool

with figuring out bitmasks for various ports & pins.

Really, we'll show how to do the UNO but anything else? go with SPI!

Part 1 - Power & backlight test

In these images we show using our 2.8" TFT but its the exact same pinout, just a tad

smaller!

Make sure you're soldering and connecting to the 8-bit side!

©Adafruit Industries Page 13 of 63

https://learn.adafruit.com//assets/18880
https://learn.adafruit.com//assets/18880

Begin by wiring up the 3-5VDC and GND pins.

Connect the 3-5V pin to 5V and GND to GND on your Arduino. I'm using the

breadboard rails but you can also just wire directly.

Power it up and you should see the white backlight come on

Part 2 - Data Bus Lines

Now that the backlight is working, we can get the TFT LCD working. There are many

pins required, and to keep the code running fairly fast, we have 'hardcoded' Arduino

©Adafruit Industries Page 14 of 63

digital pins #2-#9 for the 8 data lines.

However, they are not in that order! D0 and D1 go to digital #8 and #9, then D2-D7

connect to #2 thru #7. This is because Arduino pins #0 and #1 are used for serial data

so we can't use them

Begin by connecting D0 and D1 to digital #8 and 9 respectively as seen above. If

you're using a Mega, connect the TFT Data Pins D0-D1 to Mega pins #22-23, in that

order. Those Mega pins are on the 'double' header.

Now you can connect the remaining 6 pins over. Connect D2-D7 on the TFT pins to

digital 2 thru 7 in that order. If you're using a Mega, connect the TFT Data Pins D2-D7

to Mega pins #24-29, in that order. Those Mega pins are on the 'double' header.

©Adafruit Industries Page 15 of 63

In addition to the 8 data lines, you'll also need 4 or 5 control lines. These can later be

reassigned to any digital pins, they're just what we have in the tutorial by default.

Connect the third pin CS (Chip Select) to Analog 3

Connect the fourth pin C/D (Command/Data) to Analog 2

Connect the fifth pin WR (Write) to Analog 1

Connect the sixth pin RD (Read) to Analog 0

You can connect the seventh pin RST (Reset) to the Arduino Reset line if you'd like.

This will reset the panel when the Arduino is Reset. You can also use a digital pin for

the LCD reset if you want to manually reset. There's auto-reset circuitry on the board

•

•

•

•

©Adafruit Industries Page 16 of 63

so you probably don't need to use this pin at all and leave it disconnected

The RD pin is used to read the chip ID off the TFT. Later, once you get it all working,

you can remove this pin and the ID test, although we suggest keeping it since its

useful for debugging your wiring.

OK! Now we can run some code

8-Bit Library Install

We have example code ready to go for use with these TFTs. It's written for Arduino,

which should be portable to any microcontroller by adapting the C++ source.

Two libraries need to be downloaded and installed: the TFTLCD library () and the GFX

library. () You can install these libraries through the Arduino library manager.

Open up the Arduino library manager:

Search for the Adafruit GFX library and install it:

If using an older Arduino IDE (pre-1.8.10), also locate and install Adafruit_BusIO (newer

versions do this automatically).

Next, search for Adafruit TFTLCD and install it:

©Adafruit Industries Page 17 of 63

https://github.com/adafruit/TFTLCD-Library
https://github.com/adafruit/Adafruit-GFX-Library
https://github.com/adafruit/Adafruit-GFX-Library

We also have a great tutorial on Arduino library installation at:

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use ()

Prepare TFTLCD Library

In the Adafruit_TFTLCD Library folder, you may need to edit Adafruit_TFTLCD.h. On

about line 12, you will see

#define USE_ADAFRUIT_SHIELD_PINOUT

Make sure this line is commented out with a // in front (it should but if you're having

issues, its worth checking.

Next up, we originally designed this library for 320x240 TFTs. Since this is a 480x320,

we have to adjust the size the library is expecting. Open up Adafruit_TFTLCD.cpp

and find these lines:

Comment out the 240 and 320 lines, and uncomment the 320 and 480 lines:

©Adafruit Industries Page 18 of 63

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use

Save it, now you can upload the demo!

After restarting the Arduino software, you should see a new example folder called Ad

afruit_TFTLCD and inside, an example called graphicstest. Upload that sketch to your

Arduino.

©Adafruit Industries Page 19 of 63

You may need to press the Reset button to reset the Arduino and TFT. You should see

a collection of graphical tests draw out on the TFT.

(The images below shows SPI wiring but the graphical output should be similar!)

 If you're having difficulties, check the serial console.The first thing the sketch does is

read the driver code from the TFT. It should be 0x8357 (for the HX8357D controller

inside)

If you Unknown Driver Chip then it's probably something with your wiring, double

check and try again!

©Adafruit Industries Page 20 of 63

SPI Wiring & Test

SPI Mode Jumpers

Before you start, we'll need to tell the display to put us in SPI mode so it will know

which pins to listen to. To do that, we have to connect the IM2 pin to 3.3V. The easiest

way to do that is to solder closed the IM2 jumper on the back of the PCB. Turn over

the PCB and find the solder jumper:

Don't forget, we're using the SPI interface side of the PCB!

©Adafruit Industries Page 21 of 63

With your soldering iron, melt solder to close the jumper indicated IM2

©Adafruit Industries Page 22 of 63

If you really don't want to solder, you can also wire the breakout pin to the 3vo pin,

just make sure you don't tie it to 5V by accident! For that reason, we suggest going

with the solder-jumper route.

Wiring

Wiring up the display in SPI mode is much easier than 8-bit mode since there's way

fewer wires. Start by connecting the power pins

3-5V Vin connects to the Arduino 5V pin

GND connects to Arduino ground

CLK connects to SPI clock. On Arduino Uno/Duemilanove/328-based, thats Digit

al 13. On Mega's, its Digital 52 and on Leonardo/Due its ICSP-3 (See SPI

Connections for more details ())

MISO connects to SPI MISO. On Arduino Uno/Duemilanove/328-based, thats Dig

ital 12. On Mega's, its Digital 50 and on Leonardo/Due its ICSP-1 (See SPI

Connections for more details ())

MOSI connects to SPI MOSI. On Arduino Uno/Duemilanove/328-based, thats Dig

ital 11. On Mega's, its Digital 51 and on Leonardo/Due its ICSP-4 (See SPI

Connections for more details ())

CS connects to our SPI Chip Select pin. We'll be using Digital 10 but you can

later change this to any pin

D/C connects to our SPI data/command select pin. We'll be using Digital 9 but

you can later change this pin too.

•

•

•

•

•

•

•

©Adafruit Industries Page 23 of 63

http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/SPI

That's it! You do not need to connect the RST or other pins for now.

Install Arduino Libraries

We have example code ready to go for use with these TFTs. It's written for Arduino,

which should be portable to any microcontroller by adapting the C++ source.

Three libraries need to be installed using the Arduino Library Manager…this is the

preferred and modern way. From the Arduino “Sketch” menu, select “Include Library”

then “Manage Libraries…”

Type “gfx” in the search field to quickly find the first library — Adafruit_GFX:

©Adafruit Industries Page 24 of 63

If using an older Arduino IDE (pre-1.8.10), do the same for Adafruit_BusIO (newer

versions do this one automatically).

Repeat the search and install steps, looking for the Adafruit_HX8357 library.

After restarting the Arduino software, you should see a new example folder called Ad

afruit_HX8357 and inside, an example called graphicstest.

Upload the graphicstest sketch to your Arduino. You may need to press the Reset

button to reset the Arduino and TFT. You should see a collection of graphical tests

draw out on the TFT.

If you're having difficulties, check the serial console.The first thing the sketch does is

read the driver configuration from the TFT, you should see the same numbers as

below

If you did not connect up the MISO line to the TFT, you wont see the read

configuation bytes so please make sure you connect up the MISO line for easy

debugging! Once its all working, you can remove the MISO line

©Adafruit Industries Page 25 of 63

Bitmaps (SPI Mode)

There is a built-in microSD card slot on the FeatherWing, and we can use that to load

bitmap images! You will need a microSD card formatted FAT16 or FAT32 (they almost

always are by default), and an SD card reader on whatever computer you’re currently

reading this with.

It's really easy to draw bitmaps. Lets start by downloading this image of Adabot and

friends:

©Adafruit Industries Page 26 of 63

Download these two smaller images as well:

The files should be renamed (if needed) to “adabot.bmp”, “parrot.bmp” and “wales.bm

p”, respectively, and copied to the base directory of the microSD card (not inside a

folder).

(If it’s easier, you can also find these images in the “images” folder within the

Adafruit_ImageReader library folder.)

©Adafruit Industries Page 27 of 63

You'll need to connect up the CCS pin to Digital 5 on your Arduino and swap the D/C

and CS pins as well. See the Fritzing diagram below.

3.5"_TFT_Breakout.fzz

Insert the microSD card into the socket in the shield. Now select the sketch file→exam

ples→Adafruit_ImageReader→FeatherWingHX8357 and upload this example to your

Feather + Wing. You will see the your electronic friends appear! (Plus parrots…and if

you’re using one of the more powerful Feather boards, a whole lot of dragons.)

The Adafruit_ImageReader library, which is being used here to display .BMP images,

is fully explained in its own page of the Adafruit_GFX guide ().

©Adafruit Industries Page 28 of 63

https://cdn-learn.adafruit.com/assets/assets/000/078/330/original/3.5%22_TFT_Breakout.fzz?1563470215
https://learn.adafruit.com/adafruit-gfx-graphics-library/loading-images

Adafruit GFX library

The Adafruit_GFX library for Arduino provides a common syntax and set of graphics

functions for all of our TFT, LCD and OLED displays. This allows Arduino sketches to

easily be adapted between display types with minimal fuss…and any new features,

performance improvements and bug fixes will immediately apply across our complete

offering of color displays.

The GFX library is what lets you draw points, lines, rectangles, round-rects, triangles,

text, etc.

Check out our detailed tutorial here http://learn.adafruit.com/adafruit-gfx-graphics-

library ()

It covers the latest and greatest of the GFX library. The GFX library is used in both 8-

bit and SPI modes so the underlying commands (drawLine() for example) are identical!

©Adafruit Industries Page 29 of 63

http://learn.adafruit.com/adafruit-gfx-graphics-library
http://learn.adafruit.com/adafruit-gfx-graphics-library

Touchscreen

The LCD has a 3.5" 4-wire resistive touch screen glued onto it. You can use this for

detecting finger-presses, stylus', etc. You'll need 4 pins to talk to the touch panel, and

at least 2 must be analog inputs. The touch screen is a completely separate part from

the TFT, so be aware if you rotate the display or have the TFT off or reset, the touch

screen doesn't "know" about it - its just a couple resistors!

We have a demo for the touchscreen + TFT that lets you 'paint' simple graphics.

There's versions for both SPI and 8-bit mode and are included in the libraries. Just

make sure you have gone thru the TFT test procedure already since this builds on

that.

Download Library

Begin by grabbing our analog/resistive touchscreen library from github () (or just click

the download button)

Download Adafruit Touchscreen

Library

Remember, if you rotate the screen drawing with setRotation() you'll have to use

map() or similar to flip around the X/Y coordinates for the touchscreen as well! It

doesn't know about drawing rotation

©Adafruit Industries Page 30 of 63

https://github.com/adafruit/Touch-Screen-Library
https://github.com/adafruit/Touch-Screen-Library/archive/master.zip

Touchscreen Paint (SPI mode)

An additional 4 pins are required for the touchscreen. For the two analog pins, we'll

use A2 and A3. For the other two connections, you can pin any two digital pins but

we'll be using D8 and D7 since they are available.

Wire the additional 4 pins as follows:

Y+ to Arduino A2

X+ to Arduino D8

Y- to Arduino D7

X- to Arduino A3

Load up the breakoutTouchPaint example from the Adafruit_HX8357 library and try

drawing with your fingernail! You can select colors by touching the 'pallette' of colors

on the right

•

•

•

•

©Adafruit Industries Page 31 of 63

Touchscreen Paint (8-Bit mode)

Another 4 pins seems like a lot since already 12 are taken up with the TFT but you can

reuse some of the pins for the TFT LCD! This is because the resistance of the panel is

high enough that it doesn't interfere with the digital input/output and we can query

the panel in between TFT accesses, when the pins are not being used.

We'll be building on the wiring used in the previous drawing test for UNO

You can wire up the 4 touchscreen pins as follows. Starting from the top

Y- connects to digital #9 (also D1)

The next one down (X-) connects to Analog 2 (also C/D)

The next one over (Y+) connects to Analog 3 (also CS)

The last one (X+) connects to digital 8. (also D0)

The X- and Y+ pins pretty much have to connect to those analog pins (or to analog

4/5) but Y-/X+ can connect to any digital or analog pins.

The image below shows the wiring, its for the 2.8" TFT but its the same wiring setup

•

•

•

•

©Adafruit Industries Page 32 of 63

Load up the tftpaint example from the Adafruit_TFTLCD library and try drawing with

your fingernail! You can select colors by touching the 'pallette' of colors on the right

CircuitPython Displayio Quickstart

You will need a board capable of running CircuitPython such as the Metro M0 Express

or the Metro M4 Express. You can also use boards such as the Feather M0 Express or

the Feather M4 Express. We recommend either the Metro M4 or the Feather M4

Express because it's much faster and works better for driving a display. For this guide,

we will be using a Feather M4 Express. The steps should be about the same for the

Feather M0 Express or either of the Metros. If you haven't already, be sure to check

out our Feather M4 Express () guide.

Adafruit Feather M4 Express - Featuring

ATSAMD51

It's what you've been waiting for, the

Feather M4 Express featuring ATSAMD51.

This Feather is fast like a swift, smart like

an owl, strong like a ox-bird (it's half ox,...

https://www.adafruit.com/product/3857

For this guide, we'll assume you have a Feather M4 Express. The steps should be

about the same for the Feather M0 Express. To start, if you haven't already done so,

©Adafruit Industries Page 33 of 63

https://learn.adafruit.com/adafruit-feather-m4-express-atsamd51/assembly
https://www.adafruit.com/product/3857
https://www.adafruit.com/product/3857
https://www.adafruit.com/product/3857

follow the assembly instructions for the Feather M4 Express in our Feather M4

Express guide ().

Preparing the Breakout

Before using the TFT Breakout, you will need to solder the headers or some wires to

it. Be sure to check out the Adafruit Guide To Excellent Soldering (). Also, follow the S

PI Wiring & Test () page of this guide to be sure your display is setup for SPI. After

that, the breakout should be ready to go.

Required CircuitPython Libraries

To use this display with displayio , there is only one required library.

Adafruit_CircuitPython_HX8357

First, make sure you are running the latest version of Adafruit CircuitPython () for your

board.

Next, you'll need to install the necessary libraries to use the hardware--carefully

follow the steps to find and install these libraries from Adafruit's CircuitPython library

bundle (). Our introduction guide has a great page on how to install the library

bundle () for both express and non-express boards.

Remember for non-express boards, you'll need to manually install the necessary

libraries from the bundle:

adafruit_hx8357

Before continuing make sure your board's lib folder or root filesystem has the adafruit

_hx8357 file copied over.

Code Example Additional Libraries

For the Code Example, you will need an additional library. We decided to make use of

a library so the code didn't get overly complicated.

Adafruit_CircuitPython_Display_Text

•

©Adafruit Industries Page 34 of 63

https://learn.adafruit.com/adafruit-feather-m4-express-atsamd51/assembly
https://learn.adafruit.com/adafruit-feather-m4-express-atsamd51/assembly
https://learn.adafruit.com/adafruit-guide-excellent-soldering
https://learn.adafruit.com/adafruit-3-5-color-320x480-tft-touchscreen-breakout/spi-wiring-and-test
https://learn.adafruit.com/adafruit-3-5-color-320x480-tft-touchscreen-breakout/spi-wiring-and-test
https://github.com/adafruit/Adafruit_CircuitPython_HX8357/releases
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://github.com/adafruit/Adafruit_CircuitPython_Display_Text

Go ahead and install this in the same manner as the driver library by copying the adaf

ruit_display_text folder over to the lib folder on your CircuitPython device.

CircuitPython Code Example

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

"""

This test will initialize the display using displayio and draw a solid green

background, a smaller purple rectangle, and some yellow text.

"""

import board

import terminalio

import displayio

from adafruit_display_text import label

from adafruit_hx8357 import HX8357

Release any resources currently in use for the displays

displayio.release_displays()

spi = board.SPI()

tft_cs = board.D9

tft_dc = board.D10

display_bus = displayio.FourWire(spi, command=tft_dc, chip_select=tft_cs)

display = HX8357(display_bus, width=480, height=320)

Make the display context

splash = displayio.Group()

display.show(splash)

color_bitmap = displayio.Bitmap(480, 320, 1)

color_palette = displayio.Palette(1)

color_palette[0] = 0x00FF00 # Bright Green

bg_sprite = displayio.TileGrid(color_bitmap, pixel_shader=color_palette, x=0, y=0)

splash.append(bg_sprite)

Draw a smaller inner rectangle

inner_bitmap = displayio.Bitmap(440, 280, 1)

inner_palette = displayio.Palette(1)

inner_palette[0] = 0xAA0088 # Purple

inner_sprite = displayio.TileGrid(inner_bitmap, pixel_shader=inner_palette, x=20,

y=20)

splash.append(inner_sprite)

Draw a label

text_group = displayio.Group(scale=3, x=137, y=160)

text = "Hello World!"

text_area = label.Label(terminalio.FONT, text=text, color=0xFFFF00)

text_group.append(text_area) # Subgroup for text scaling

splash.append(text_group)

while True:

 pass

©Adafruit Industries Page 35 of 63

Let's take a look at the sections of code one by one. We start by importing the board

so that we can initialize SPI , displayio , terminalio for the font, a label , and

the adafruit_hx8357 driver.

import board

import displayio

import terminalio

from adafruit_display_text import label

from adafruit_hx8357 import HX8357

Next we release any previously used displays. This is important because if the

Feather is reset, the display pins are not automatically released and this makes them

available for use again.

displayio.release_displays()

Next, we set the SPI object to the board's SPI with the easy shortcut function

board.SPI() . By using this function, it finds the SPI module and initializes using the

default SPI parameters. Next we set the Chip Select and Data/Command pins that will

be used.

spi = board.SPI()

tft_cs = board.D9

tft_dc = board.D10

In the next line, we set the display bus to FourWire which makes use of the SPI bus.

display_bus = displayio.FourWire(spi, command=tft_dc, chip_select=tft_cs)

Finally, we initialize the driver with a width of 480 and a height of 320. If we stopped

at this point and ran the code, we would have a terminal that we could type at and

have the screen update.

display = HX8357(display_bus, width=480, height=320)

©Adafruit Industries Page 36 of 63

Next we create a background splash image. We do this by creating a group that we

can add elements to and adding that group to the display. In this example, we are

limiting the maximum number of elements to 10, but this can be increased if you

would like. The display will automatically handle updating the group.

splash = displayio.Group(max_size=10)

display.show(splash)

After that we create a Bitmap which is like a canvas that we can draw on. In this case

we are creating the Bitmap to be the same size as the screen, but only have one

color. The Bitmaps can currently handle up to 256 different colors. We create a

Palette with one color and set that color to 0x00FF00 which happens to be green.

Colors are Hexadecimal values in the format of RRGGBB. Even though the Bitmaps

can only handle 256 colors at a time, you get to define what those 256 different

colors are.

color_bitmap = displayio.Bitmap(480, 320, 1)

color_palette = displayio.Palette(1)

color_palette[0] = 0x00FF00 # Bright Green

With all those pieces in place, we create a TileGrid by passing the bitmap and palette

and draw it at (0, 0) which represents the display's upper left.

bg_sprite = displayio.TileGrid(color_bitmap,

 pixel_shader=color_palette,

 x=0, y=0)

splash.append(bg_sprite)

This creates a solid green background which we will draw on top of.

©Adafruit Industries Page 37 of 63

Next we will create a smaller purple rectangle. The easiest way to do this is the create

a new bitmap that is a little smaller than the full screen with a single color and place it

in a specific location. In this case we will create a bitmap that is 20 pixels smaller on

each side. The screen is 480x320, so we'll want to subtract 40 from each of those

numbers.

We'll also want to place it at the position (20, 20) so that it ends up centered.

Draw a smaller inner rectangle

inner_bitmap = displayio.Bitmap(440, 280, 1)

inner_palette = displayio.Palette(1)

inner_palette[0] = 0xAA0088 # Purple

inner_sprite = displayio.TileGrid(inner_bitmap,

 pixel_shader=inner_palette,

 x=20, y=20)

splash.append(inner_sprite)

Since we are adding this after the first rectangle, it's automatically drawn on top.

Here's what it looks like now.

©Adafruit Industries Page 38 of 63

Next let's add a label that says "Hello World!" on top of that. We're going to use the

built-in Terminal Font and scale it up by a factor of three. To scale the label only, we

will make use of a subgroup, which we will then add to the main group.

Labels are centered vertically, so we'll place it at 160 for the Y coordinate, and around

137 pixels make it appear to be centered horizontally, but if you want to change the

text, change this to whatever looks good to you. Let's go with some yellow text, so

we'll pass it a value of 0xFFFF00 .

Draw a label

text_group = displayio.Group(max_size=10, scale=3, x=137, y=160)

text = "Hello World!"

text_area = label.Label(terminalio.FONT, text=text, color=0xFFFF00)

text_group.append(text_area) # Subgroup for text scaling

splash.append(text_group)

Finally, we place an infinite loop at the end so that the graphics screen remains in

place and isn't replaced by a terminal.

©Adafruit Industries Page 39 of 63

while True:

 pass

Using Touch

We won't be covering how to use the touchscreen with CircuitPython in this guide, but

the library required for enabling resistive touch is the Adafruit_CircuitPython_STMPE6

10 () library.

Where to go from here

Be sure to check out this excellent guide to CircuitPython Display Support Using

displayio ()

Python Wiring and Setup

Wiring

It's easy to use display breakouts with Python and the Adafruit CircuitPython RGB

Display () module. This module allows you to easily write Python code to control the

display.

We'll cover how to wire the display to your Raspberry Pi. First assemble your display.

©Adafruit Industries Page 40 of 63

https://github.com/adafruit/Adafruit_CircuitPython_STMPE610
https://github.com/adafruit/Adafruit_CircuitPython_STMPE610
https://learn.adafruit.com/circuitpython-display-support-using-displayio
https://learn.adafruit.com/circuitpython-display-support-using-displayio
https://github.com/adafruit/Adafruit_CircuitPython_RGB_Display
https://github.com/adafruit/Adafruit_CircuitPython_RGB_Display

Since there's dozens of Linux computers/boards you can use we will show wiring for

Raspberry Pi. For other platforms, please visit the guide for CircuitPython on Linux to

see whether your platform is supported ().

Connect the display as shown below to your Raspberry Pi.

ILI9341 and HX-8357-based Displays

2.2" Display

CLK connects to SPI clock. On the Raspberry Pi, thats SLCK

MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI

CS connects to our SPI Chip Select pin. We'll be using CE0

D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but this can be

changed later.

RST connects to our Reset pin. We'll be using GPIO 24 but this can be changed

later as well.

Vin connects to the Raspberry Pi's 3V pin

GND connects to the Raspberry Pi's ground

Note this is not a kernel driver that will let you have the console appear on the

TFT. However, this is handy when you can't install an fbtft driver, and want to use

the TFT purely from 'user Python' code!

You can only use this technique with Linux/computer devices that have hardware

SPI support, and not all single board computers have an SPI device so check

before continuing

•

•

•

•

•

•

•

©Adafruit Industries Page 41 of 63

https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

Download the Fritzing Diagram

2.4", 2.8", 3.2", and 3.5" Displays

These displays are set up to use the 8-bit data lines by default. We want to use them

for SPI. To do that, you'll need to either solder bridge some pads on the back or

connect the appropriate IM lines to 3.3V with jumper wires. Check the back of your

display for the correct solder pads or IM lines to put it in SPI mode.

Vin connects to the Raspberry Pi's 3V pin

GND connects to the Raspberry Pi's ground

CLK connects to SPI clock. On the Raspberry Pi, thats SLCK

MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI

CS connects to our SPI Chip Select pin. We'll be using CE0

D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but this can be

changed later.

RST connects to our Reset pin. We'll be using GPIO 24 but this can be changed

later as well.

Download the Fritzing Diagram

•

•

•

•

•

•

•

These larger displays are set to use 8-bit data lines by default and may need to

be modified to use SPI.

©Adafruit Industries Page 42 of 63

https://cdn-learn.adafruit.com/assets/assets/000/084/669/original/2.2_TFT.fzz?1574277335
https://cdn-learn.adafruit.com/assets/assets/000/084/670/original/2.8_TFT.fzz?1574277361

ST7789 and ST7735-based Displays

1.3", 1.54", and 2.0" IPS TFT Display

Vin connects to the Raspberry Pi's 3V pin

GND connects to the Raspberry Pi's ground

CLK connects to SPI clock. On the Raspberry Pi, thats SLCK

MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI

CS connects to our SPI Chip Select pin. We'll be using CE0

RST connects to our Reset pin. We'll be using GPIO 24 but this can be changed

later.

D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but this can be

changed later as well.

Download the Fritzing Diagram

0.96", 1.14", and 1.44" Displays

Vin connects to the Raspberry Pi's 3V pin

GND connects to the Raspberry Pi's ground

CLK connects to SPI clock. On the Raspberry Pi, thats SLCK

MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI

CS connects to our SPI Chip Select pin. We'll be using CE0

RST connects to our Reset pin. We'll be using GPIO 24 but this can be changed

later.

D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but this can be

changed later as well.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 43 of 63

https://cdn-learn.adafruit.com/assets/assets/000/084/671/original/2.0_TFT.fzz?1574277392

Download the Fritzing Diagram

1.8" Display

GND connects to the Raspberry Pi's ground

Vin connects to the Raspberry Pi's 3V pin

RST connects to our Reset pin. We'll be using GPIO 24 but this can be changed

later.

D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but this can be

changed later as well.

CS connects to our SPI Chip Select pin. We'll be using CE0

MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI

CLK connects to SPI clock. On the Raspberry Pi, thats SLCK

LITE connects to the Raspberry Pi's 3V pin. This can be used to separately

control the backlight.

•

•

•

•

•

•

•

•

©Adafruit Industries Page 44 of 63

https://cdn-learn.adafruit.com/assets/assets/000/084/672/original/1.44_TFT.fzz?1574277409

Download the Fritzing Diagram

SSD1351-based Displays

1.27" and 1.5" OLED Displays

GND connects to the Raspberry Pi's ground

Vin connects to the Raspberry Pi's 3V pin

CLK connects to SPI clock. On the Raspberry Pi, thats SLCK

MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI

CS connects to our SPI Chip Select pin. We'll be using CE0

RST connects to our Reset pin. We'll be using GPIO 24 but this can be changed

later.

D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but this can be

changed later as well.

•

•

•

•

•

•

•

©Adafruit Industries Page 45 of 63

https://cdn-learn.adafruit.com/assets/assets/000/084/673/original/1.8_TFT.fzz?1574277427

Download the Fritzing Diagram

SSD1331-based Display

0.96" OLED Display

MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI

CLK connects to SPI clock. On the Raspberry Pi, thats SLCK

D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but this can be

changed later.

RST connects to our Reset pin. We'll be using GPIO 24 but this can be changed

later as well.

CS connects to our SPI Chip Select pin. We'll be using CE0

Vin connects to the Raspberry Pi's 3V pin

GND connects to the Raspberry Pi's ground

•

•

•

•

•

•

•

©Adafruit Industries Page 46 of 63

https://cdn-learn.adafruit.com/assets/assets/000/084/674/original/1.5_OLED.fzz?1574277454

Download the Fritzing Diagram

Setup

You'll need to install the Adafruit_Blinka library that provides the CircuitPython

support in Python. This may also require enabling SPI on your platform and verifying

you are running Python 3. Since each platform is a little different, and Linux changes

often, please visit the CircuitPython on Linux guide to get your computer ready ()!

Python Installation of RGB Display Library

Once that's done, from your command line run the following command:

sudo pip3 install adafruit-circuitpython-rgb-display

If your default Python is version 3 you may need to run 'pip' instead. Just make sure

you aren't trying to use CircuitPython on Python 2.x, it isn't supported!

If you have previously installed the Kernel Driver with the PiTFT Easy Setup, you

will need to remove it first in order to run this example.

•

©Adafruit Industries Page 47 of 63

https://cdn-learn.adafruit.com/assets/assets/000/096/092/original/0.96_OLED.fzz?1603118637
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

If that complains about pip3 not being installed, then run this first to install it:

sudo apt-get install python3-pip

DejaVu TTF Font

Raspberry Pi usually comes with the DejaVu font already installed, but in case it didn't,

you can run the following to install it:

sudo apt-get install fonts-dejavu

This package was previously calls ttf-dejavu, so if you are running an older version of

Raspberry Pi OS, it may be called that.

Pillow Library

We also need PIL, the Python Imaging Library, to allow graphics and using text with

custom fonts. There are several system libraries that PIL relies on, so installing via a

package manager is the easiest way to bring in everything:

sudo apt-get install python3-pil

If you installed the PIL through PIP, you may need to install some additional libraries:

sudo apt-get install libopenjp2-7 libtiff5 libatlas-base-dev

That's it. You should be ready to go.

Python Usage

Now that you have everything setup, we're going to look over three different

examples. For the first, we'll take a look at automatically scaling and cropping an

image and then centering it on the display.

•

•

•

•

If you have previously installed the Kernel Driver with the PiTFT Easy Setup, you

will need to remove it first in order to run this example.

©Adafruit Industries Page 48 of 63

Turning on the Backlight

On some displays, the backlight is controlled by a separate pin such as the 1.3" TFT

Bonnet with Joystick. On such displays, running the below code will likely result in the

display remaining black. To turn on the backlight, you will need to add a small snippet

of code. If your backlight pin number differs, be sure to change it in the code:

Turn on the Backlight

backlight = DigitalInOut(board.D26)

backlight.switch_to_output()

backlight.value = True

Displaying an Image

Here's the full code to the example. We will go through it section by section to help

you better understand what is going on. Let's start by downloading an image of

Blinka. This image has enough border to allow resizing and cropping with a variety of

display sizes and rations to still look good.

Make sure you save it as blinka.jpg and place it in the same folder as your script.

Here's the code we'll be loading onto the Raspberry Pi. We'll go over the interesting

parts.

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

"""

Be sure to check the learn guides for more usage information.

This example is for use on (Linux) computers that are using CPython with

Adafruit Blinka to support CircuitPython libraries. CircuitPython does

not support PIL/pillow (python imaging library)!

Author(s): Melissa LeBlanc-Williams for Adafruit Industries

©Adafruit Industries Page 49 of 63

"""

import digitalio

import board

from PIL import Image, ImageDraw

from adafruit_rgb_display import ili9341

from adafruit_rgb_display import st7789 # pylint: disable=unused-import

from adafruit_rgb_display import hx8357 # pylint: disable=unused-import

from adafruit_rgb_display import st7735 # pylint: disable=unused-import

from adafruit_rgb_display import ssd1351 # pylint: disable=unused-import

from adafruit_rgb_display import ssd1331 # pylint: disable=unused-import

Configuration for CS and DC pins (these are PiTFT defaults):

cs_pin = digitalio.DigitalInOut(board.CE0)

dc_pin = digitalio.DigitalInOut(board.D25)

reset_pin = digitalio.DigitalInOut(board.D24)

Config for display baudrate (default max is 24mhz):

BAUDRATE = 24000000

Setup SPI bus using hardware SPI:

spi = board.SPI()

pylint: disable=line-too-long

Create the display:

disp = st7789.ST7789(spi, rotation=90, # 2.0" ST7789

disp = st7789.ST7789(spi, height=240, y_offset=80, rotation=180, # 1.3", 1.54"

ST7789

disp = st7789.ST7789(spi, rotation=90, width=135, height=240, x_offset=53,

y_offset=40, # 1.14" ST7789

disp = st7789.ST7789(spi, rotation=90, width=172, height=320, x_offset=34, #

1.47" ST7789

disp = st7789.ST7789(spi, rotation=270, width=170, height=320, x_offset=35, #

1.9" ST7789

disp = hx8357.HX8357(spi, rotation=180, # 3.5" HX8357

disp = st7735.ST7735R(spi, rotation=90, # 1.8" ST7735R

disp = st7735.ST7735R(spi, rotation=270, height=128, x_offset=2, y_offset=3, #

1.44" ST7735R

disp = st7735.ST7735R(spi, rotation=90, bgr=True, width=80, # 0.96" MiniTFT

Rev A ST7735R

disp = st7735.ST7735R(spi, rotation=90, invert=True, width=80, # 0.96" MiniTFT

Rev B ST7735R

x_offset=26, y_offset=1,

disp = ssd1351.SSD1351(spi, rotation=180, # 1.5" SSD1351

disp = ssd1351.SSD1351(spi, height=96, y_offset=32, rotation=180, # 1.27" SSD1351

disp = ssd1331.SSD1331(spi, rotation=180, # 0.96" SSD1331

disp = ili9341.ILI9341(

 spi,

 rotation=90, # 2.2", 2.4", 2.8", 3.2" ILI9341

 cs=cs_pin,

 dc=dc_pin,

 rst=reset_pin,

 baudrate=BAUDRATE,

)

pylint: enable=line-too-long

Create blank image for drawing.

Make sure to create image with mode 'RGB' for full color.

if disp.rotation % 180 == 90:

 height = disp.width # we swap height/width to rotate it to landscape!

 width = disp.height

else:

 width = disp.width # we swap height/width to rotate it to landscape!

 height = disp.height

image = Image.new("RGB", (width, height))

Get drawing object to draw on image.

draw = ImageDraw.Draw(image)

©Adafruit Industries Page 50 of 63

Draw a black filled box to clear the image.

draw.rectangle((0, 0, width, height), outline=0, fill=(0, 0, 0))

disp.image(image)

image = Image.open("blinka.jpg")

Scale the image to the smaller screen dimension

image_ratio = image.width / image.height

screen_ratio = width / height

if screen_ratio < image_ratio:

 scaled_width = image.width * height // image.height

 scaled_height = height

else:

 scaled_width = width

 scaled_height = image.height * width // image.width

image = image.resize((scaled_width, scaled_height), Image.BICUBIC)

Crop and center the image

x = scaled_width // 2 - width // 2

y = scaled_height // 2 - height // 2

image = image.crop((x, y, x + width, y + height))

Display image.

disp.image(image)

So we start with our usual imports including a couple of Pillow modules and the

display drivers. That is followed by defining a few pins here. The reason we chose

these is because they allow you to use the same code with the PiTFT if you chose to

do so.

import digitalio

import board

from PIL import Image, ImageDraw

import adafruit_rgb_display.ili9341 as ili9341

import adafruit_rgb_display.st7789 as st7789

import adafruit_rgb_display.hx8357 as hx8357

import adafruit_rgb_display.st7735 as st7735

import adafruit_rgb_display.ssd1351 as ssd1351

import adafruit_rgb_display.ssd1331 as ssd1331

Configuration for CS and DC pins

cs_pin = digitalio.DigitalInOut(board.CE0)

dc_pin = digitalio.DigitalInOut(board.D25)

reset_pin = digitalio.DigitalInOut(board.D24)

Next we'll set the baud rate from the default 24 MHz so that it works on a variety of

displays. The exception to this is the SSD1351 driver, which will automatically limit it to

16MHz even if you pass 24MHz. We'll set up out SPI bus and then initialize the display.

We wanted to make these examples work on as many displays as possible with very

few changes. The ILI9341 display is selected by default. For other displays, go ahead

and comment out these lines:

disp = ili9341.ILI9341(

 spi,

 rotation=90, # 2.2", 2.4", 2.8", 3.2" ILI9341

©Adafruit Industries Page 51 of 63

and uncomment the line appropriate for your display and possibly the line below in

the case of longer initialization sequences. The displays have a rotation property so

that it can be set in just one place.

#disp = st7789.ST7789(spi, rotation=90, # 2.0" ST7789

#disp = st7789.ST7789(spi, height=240, y_offset=80, rotation=180, # 1.3", 1.54"

ST7789

#disp = st7789.ST7789(spi, rotation=90, width=135, height=240, x_offset=53,

y_offset=40, # 1.14" ST7789

#disp = hx8357.HX8357(spi, rotation=180, # 3.5" HX8357

#disp = st7735.ST7735R(spi, rotation=90, # 1.8" ST7735R

#disp = st7735.ST7735R(spi, rotation=270, height=128, x_offset=2, y_offset=3, #

1.44" ST7735R

#disp = st7735.ST7735R(spi, rotation=90, bgr=True, width=80, # 0.96" MiniTFT

Rev A ST7735R

#disp = st7735.ST7735R(spi, rotation=90, invert=True, width=80, # 0.96" MiniTFT

Rev B ST7735R

#x_offset=26, y_offset=1,#disp = ssd1351.SSD1351(spi,

rotation=180, # 1.5" SSD1351

#disp = ssd1351.SSD1351(spi, height=96, y_offset=32, rotation=180, # 1.27" SSD1351

#disp = ssd1331.SSD1331(spi, rotation=180, # 0.96" SSD1331

disp = ili9341.ILI9341(

 spi,

 rotation=90, # 2.2", 2.4", 2.8", 3.2" ILI9341

 cs=cs_pin,

 dc=dc_pin,

 rst=reset_pin,

 baudrate=BAUDRATE

)

Next we read the current rotation setting of the display and if it is 90 or 270 degrees,

we need to swap the width and height for our calculations, otherwise we just grab the

width and height. We will create an image with our dimensions and use that to create

a draw object. The draw object will have all of our drawing functions.

Create blank image for drawing.

Make sure to create image with mode 'RGB' for full color.

if disp.rotation % 180 == 90:

 height = disp.width # we swap height/width to rotate it to landscape!

 width = disp.height

else:

 width = disp.width # we swap height/width to rotate it to landscape!

 height = disp.height

image = Image.new('RGB', (width, height))

Get drawing object to draw on image.

draw = ImageDraw.Draw(image)

Next we clear whatever is on the screen by drawing a black rectangle. This isn't

strictly necessary since it will be overwritten by the image, but it kind of sets the

stage.

Draw a black filled box to clear the image.

draw.rectangle((0, 0, width, height), outline=0, fill=(0, 0, 0))

disp.image(image)

©Adafruit Industries Page 52 of 63

Next we open the Blinka image, which we've named blinka.jpg, which assumes it is in

the same directory that you are running the script from. Feel free to change it if it

doesn't match your configuration.

image = Image.open("blinka.jpg")

Here's where it starts to get interesting. We want to scale the image so that it matches

either the width or height of the display, depending on which is smaller, so that we

have some of the image to chop off when we crop it. So we start by calculating the

width to height ration of both the display and the image. If the height is the closer of

the dimensions, we want to match the image height to the display height and let it be

a bit wider than the display. Otherwise, we want to do the opposite.

Once we've figured out how we're going to scale it, we pass in the new dimensions

and using a Bicubic rescaling method, we reassign the newly rescaled image back to

image . Pillow has quite a few different methods to choose from, but Bicubic does a

great job and is reasonably fast.

Scale the image to the smaller screen dimension

image_ratio = image.width / image.height

screen_ratio = width / height

if screen_ratio < image_ratio:

 scaled_width = image.width * height // image.height

 scaled_height = height

else:

 scaled_width = width

 scaled_height = image.height * width // image.width

image = image.resize((scaled_width, scaled_height), Image.BICUBIC)

Next we want to figure the starting x and y points of the image where we want to

begin cropping it so that it ends up centered. We do that by using a standard

centering function, which is basically requesting the difference of the center of the

display and the center of the image. Just like with scaling, we replace the image

variable with the newly cropped image.

Crop and center the image

x = scaled_width // 2 - width // 2

y = scaled_height // 2 - height // 2

image = image.crop((x, y, x + width, y + height))

Finally, we take our image and display it. At this point, the image should have the

exact same dimensions at the display and fill it completely.

disp.image(image)

©Adafruit Industries Page 53 of 63

Drawing Shapes and Text

In the next example, we'll take a look at drawing shapes and text. This is very similar

to the displayio example, but it uses Pillow instead. Here's the code for that.

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

"""

This demo will draw a few rectangles onto the screen along with some text

on top of that.

This example is for use on (Linux) computers that are using CPython with

Adafruit Blinka to support CircuitPython libraries. CircuitPython does

not support PIL/pillow (python imaging library)!

Author(s): Melissa LeBlanc-Williams for Adafruit Industries

"""

import digitalio

import board

from PIL import Image, ImageDraw, ImageFont

from adafruit_rgb_display import ili9341

from adafruit_rgb_display import st7789 # pylint: disable=unused-import

from adafruit_rgb_display import hx8357 # pylint: disable=unused-import

from adafruit_rgb_display import st7735 # pylint: disable=unused-import

from adafruit_rgb_display import ssd1351 # pylint: disable=unused-import

from adafruit_rgb_display import ssd1331 # pylint: disable=unused-import

First define some constants to allow easy resizing of shapes.

BORDER = 20

FONTSIZE = 24

Configuration for CS and DC pins (these are PiTFT defaults):

cs_pin = digitalio.DigitalInOut(board.CE0)

dc_pin = digitalio.DigitalInOut(board.D25)

reset_pin = digitalio.DigitalInOut(board.D24)

Config for display baudrate (default max is 24mhz):

©Adafruit Industries Page 54 of 63

BAUDRATE = 24000000

Setup SPI bus using hardware SPI:

spi = board.SPI()

pylint: disable=line-too-long

Create the display:

disp = st7789.ST7789(spi, rotation=90, # 2.0" ST7789

disp = st7789.ST7789(spi, height=240, y_offset=80, rotation=180, # 1.3", 1.54"

ST7789

disp = st7789.ST7789(spi, rotation=90, width=135, height=240, x_offset=53,

y_offset=40, # 1.14" ST7789

disp = st7789.ST7789(spi, rotation=90, width=172, height=320, x_offset=34, #

1.47" ST7789

disp = st7789.ST7789(spi, rotation=270, width=170, height=320, x_offset=35, #

1.9" ST7789

disp = hx8357.HX8357(spi, rotation=180, # 3.5" HX8357

disp = st7735.ST7735R(spi, rotation=90, # 1.8" ST7735R

disp = st7735.ST7735R(spi, rotation=270, height=128, x_offset=2, y_offset=3, #

1.44" ST7735R

disp = st7735.ST7735R(spi, rotation=90, bgr=True, width=80, # 0.96" MiniTFT

Rev A ST7735R

disp = st7735.ST7735R(spi, rotation=90, invert=True, width=80, # 0.96" MiniTFT

Rev B ST7735R

x_offset=26, y_offset=1,

disp = ssd1351.SSD1351(spi, rotation=180, # 1.5" SSD1351

disp = ssd1351.SSD1351(spi, height=96, y_offset=32, rotation=180, # 1.27" SSD1351

disp = ssd1331.SSD1331(spi, rotation=180, # 0.96" SSD1331

disp = ili9341.ILI9341(

 spi,

 rotation=90, # 2.2", 2.4", 2.8", 3.2" ILI9341

 cs=cs_pin,

 dc=dc_pin,

 rst=reset_pin,

 baudrate=BAUDRATE,

)

pylint: enable=line-too-long

Create blank image for drawing.

Make sure to create image with mode 'RGB' for full color.

if disp.rotation % 180 == 90:

 height = disp.width # we swap height/width to rotate it to landscape!

 width = disp.height

else:

 width = disp.width # we swap height/width to rotate it to landscape!

 height = disp.height

image = Image.new("RGB", (width, height))

Get drawing object to draw on image.

draw = ImageDraw.Draw(image)

Draw a green filled box as the background

draw.rectangle((0, 0, width, height), fill=(0, 255, 0))

disp.image(image)

Draw a smaller inner purple rectangle

draw.rectangle(

 (BORDER, BORDER, width - BORDER - 1, height - BORDER - 1), fill=(170, 0, 136)

)

Load a TTF Font

font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf",

FONTSIZE)

Draw Some Text

text = "Hello World!"

(font_width, font_height) = font.getsize(text)

draw.text(

©Adafruit Industries Page 55 of 63

 (width // 2 - font_width // 2, height // 2 - font_height // 2),

 text,

 font=font,

 fill=(255, 255, 0),

)

Display image.

disp.image(image)

Just like in the last example, we'll do our imports, but this time we're including the

ImageFont Pillow module because we'll be drawing some text this time.

import digitalio

import board

from PIL import Image, ImageDraw, ImageFont

import adafruit_rgb_display.ili9341 as ili9341

Next we'll define some parameters that we can tweak for various displays. The BORDE

R will be the size in pixels of the green border between the edge of the display and

the inner purple rectangle. The FONTSIZE will be the size of the font in points so that

we can adjust it easily for different displays.

BORDER = 20

FONTSIZE = 24

Next, just like in the previous example, we will set up the display, setup the rotation,

and create a draw object. If you have are using a different display than the ILI9341, go

ahead and adjust your initializer as explained in the previous example. After that, we

will setup the background with a green rectangle that takes up the full screen. To get

green, we pass in a tuple that has our Red, Green, and Blue color values in it in that

order which can be any integer from 0 to 255 .

draw.rectangle((0, 0, width, height), fill=(0, 255, 0))

disp.image(image)

Next we will draw an inner purple rectangle. This is the same color value as our

example in displayio quickstart, except the hexadecimal values have been converted

to decimal. We use the BORDER parameter to calculate the size and position that we

want to draw the rectangle.

draw.rectangle((BORDER, BORDER, width - BORDER - 1, height - BORDER - 1),

 fill=(170, 0, 136))

Next we'll load a TTF font. The DejaVuSans.ttf font should come preloaded on

your Pi in the location in the code. We also make use of the FONTSIZE parameter

that we discussed earlier.

©Adafruit Industries Page 56 of 63

Load a TTF Font

font = ImageFont.truetype('/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf',

FONTSIZE)

Now we draw the text Hello World onto the center of the display. You may recognize

the centering calculation was the same one we used to center crop the image in the

previous example. In this example though, we get the font size values using the gets

ize() function of the font object.

Draw Some Text

text = "Hello World!"

(font_width, font_height) = font.getsize(text)

draw.text((width//2 - font_width//2, height//2 - font_height//2),

 text, font=font, fill=(255, 255, 0))

Finally, just like before, we display the image.

disp.image(image)

Displaying System Information

In this last example we'll take a look at getting the system information and displaying

it. This can be very handy for system monitoring. Here's the code for that example:

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

"""

This will show some Linux Statistics on the attached display. Be sure to adjust

to the display you have connected. Be sure to check the learn guides for more

usage information.

©Adafruit Industries Page 57 of 63

This example is for use on (Linux) computers that are using CPython with

Adafruit Blinka to support CircuitPython libraries. CircuitPython does

not support PIL/pillow (python imaging library)!

"""

import time

import subprocess

import digitalio

import board

from PIL import Image, ImageDraw, ImageFont

from adafruit_rgb_display import ili9341

from adafruit_rgb_display import st7789 # pylint: disable=unused-import

from adafruit_rgb_display import hx8357 # pylint: disable=unused-import

from adafruit_rgb_display import st7735 # pylint: disable=unused-import

from adafruit_rgb_display import ssd1351 # pylint: disable=unused-import

from adafruit_rgb_display import ssd1331 # pylint: disable=unused-import

Configuration for CS and DC pins (these are PiTFT defaults):

cs_pin = digitalio.DigitalInOut(board.CE0)

dc_pin = digitalio.DigitalInOut(board.D25)

reset_pin = digitalio.DigitalInOut(board.D24)

Config for display baudrate (default max is 24mhz):

BAUDRATE = 24000000

Setup SPI bus using hardware SPI:

spi = board.SPI()

pylint: disable=line-too-long

Create the display:

disp = st7789.ST7789(spi, rotation=90, # 2.0" ST7789

disp = st7789.ST7789(spi, height=240, y_offset=80, rotation=180, # 1.3", 1.54"

ST7789

disp = st7789.ST7789(spi, rotation=90, width=135, height=240, x_offset=53,

y_offset=40, # 1.14" ST7789

disp = st7789.ST7789(spi, rotation=90, width=172, height=320, x_offset=34, #

1.47" ST7789

disp = st7789.ST7789(spi, rotation=270, width=170, height=320, x_offset=35, #

1.9" ST7789

disp = hx8357.HX8357(spi, rotation=180, # 3.5" HX8357

disp = st7735.ST7735R(spi, rotation=90, # 1.8" ST7735R

disp = st7735.ST7735R(spi, rotation=270, height=128, x_offset=2, y_offset=3, #

1.44" ST7735R

disp = st7735.ST7735R(spi, rotation=90, bgr=True, width=80, # 0.96" MiniTFT

Rev A ST7735R

disp = st7735.ST7735R(spi, rotation=90, invert=True, width=80, # 0.96" MiniTFT

Rev B ST7735R

x_offset=26, y_offset=1,

disp = ssd1351.SSD1351(spi, rotation=180, # 1.5" SSD1351

disp = ssd1351.SSD1351(spi, height=96, y_offset=32, rotation=180, # 1.27" SSD1351

disp = ssd1331.SSD1331(spi, rotation=180, # 0.96" SSD1331

disp = ili9341.ILI9341(

 spi,

 rotation=90, # 2.2", 2.4", 2.8", 3.2" ILI9341

 cs=cs_pin,

 dc=dc_pin,

 rst=reset_pin,

 baudrate=BAUDRATE,

)

pylint: enable=line-too-long

Create blank image for drawing.

Make sure to create image with mode 'RGB' for full color.

if disp.rotation % 180 == 90:

 height = disp.width # we swap height/width to rotate it to landscape!

 width = disp.height

else:

 width = disp.width # we swap height/width to rotate it to landscape!

©Adafruit Industries Page 58 of 63

 height = disp.height

image = Image.new("RGB", (width, height))

Get drawing object to draw on image.

draw = ImageDraw.Draw(image)

Draw a black filled box to clear the image.

draw.rectangle((0, 0, width, height), outline=0, fill=(0, 0, 0))

disp.image(image)

First define some constants to allow easy positioning of text.

padding = -2

x = 0

Load a TTF font. Make sure the .ttf font file is in the

same directory as the python script!

Some other nice fonts to try: http://www.dafont.com/bitmap.php

font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", 24)

while True:

 # Draw a black filled box to clear the image.

 draw.rectangle((0, 0, width, height), outline=0, fill=0)

 # Shell scripts for system monitoring from here:

 # https://unix.stackexchange.com/questions/119126/command-to-display-memory-

usage-disk-usage-and-cpu-load

 cmd = "hostname -I | cut -d' ' -f1"

 IP = "IP: " + subprocess.check_output(cmd, shell=True).decode("utf-8")

 cmd = "top -bn1 | grep load | awk '{printf \"CPU Load: %.2f\", $(NF-2)}'"

 CPU = subprocess.check_output(cmd, shell=True).decode("utf-8")

 cmd = "free -m | awk 'NR==2{printf \"Mem: %s/%s MB %.2f%%\",

$3,$2,$3*100/$2 }'"

 MemUsage = subprocess.check_output(cmd, shell=True).decode("utf-8")

 cmd = 'df -h | awk \'$NF=="/"{printf "Disk: %d/%d GB %s", $3,$2,$5}\''

 Disk = subprocess.check_output(cmd, shell=True).decode("utf-8")

 cmd = "cat /sys/class/thermal/thermal_zone0/temp | awk '{printf \"CPU Temp: %.

1f C\", $(NF-0) / 1000}'" # pylint: disable=line-too-long

 Temp = subprocess.check_output(cmd, shell=True).decode("utf-8")

 # Write four lines of text.

 y = padding

 draw.text((x, y), IP, font=font, fill="#FFFFFF")

 y += font.getsize(IP)[1]

 draw.text((x, y), CPU, font=font, fill="#FFFF00")

 y += font.getsize(CPU)[1]

 draw.text((x, y), MemUsage, font=font, fill="#00FF00")

 y += font.getsize(MemUsage)[1]

 draw.text((x, y), Disk, font=font, fill="#0000FF")

 y += font.getsize(Disk)[1]

 draw.text((x, y), Temp, font=font, fill="#FF00FF")

 # Display image.

 disp.image(image)

 time.sleep(0.1)

Just like the last example, we'll start by importing everything we imported, but we're

adding two more imports. The first one is time so that we can add a small delay and

the other is subprocess so we can gather some system information.

import time

import subprocess

import digitalio

import board

©Adafruit Industries Page 59 of 63

from PIL import Image, ImageDraw, ImageFont

import adafruit_rgb_display.ili9341 as ili9341

Next, just like in the first two examples, we will set up the display, setup the rotation,

and create a draw object. If you have are using a different display than the ILI9341, go

ahead and adjust your initializer as explained in the previous example.

Just like in the first example, we're going to draw a black rectangle to fill up the

screen. After that, we're going to set up a couple of constants to help with positioning

text. The first is the padding and that will be the Y-position of the top-most text and

the other is x which is the X-Position and represents the left side of the text.

First define some constants to allow easy positioning of text.

padding = -2

x = 0

Next, we load a font just like in the second example.

font = ImageFont.truetype('/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf', 24)

Now we get to the main loop and by using while True: , it will loop until Control+C

is pressed on the keyboard. The first item inside here, we clear the screen, but notice

that instead of giving it a tuple like before, we can just pass 0 and it will draw black.

draw.rectangle((0, 0, width, height), outline=0, fill=0)

Next, we run a few scripts using the subprocess function that get called to the

Operating System to get information. The in each command is passed through awk in

order to be formatted better for the display. By having the OS do the work, we don't

have to. These little scripts came from https://unix.stackexchange.com/

questions/119126/command-to-display-memory-usage-disk-usage-and-cpu-

load

cmd = "hostname -I | cut -d\' \' -f1"

IP = "IP: "+subprocess.check_output(cmd, shell=True).decode("utf-8")

cmd = "top -bn1 | grep load | awk '{printf \"CPU Load: %.2f\", $(NF-2)}'"

CPU = subprocess.check_output(cmd, shell=True).decode("utf-8")

cmd = "free -m | awk 'NR==2{printf \"Mem: %s/%s MB %.2f%%\", $3,$2,$3*100/$2 }'"

MemUsage = subprocess.check_output(cmd, shell=True).decode("utf-8")

cmd = "df -h | awk '$NF==\"/\"{printf \"Disk: %d/%d GB %s\", $3,$2,$5}'"

Disk = subprocess.check_output(cmd, shell=True).decode("utf-8")

cmd = "cat /sys/class/thermal/thermal_zone0/temp | awk \'{printf \"CPU Temp: %.1f

C\", $(NF-0) / 1000}\'" # pylint: disable=line-too-long

Temp = subprocess.check_output(cmd, shell=True).decode("utf-8")

Now we display the information for the user. Here we use yet another way to pass

color information. We can pass it as a color string using the pound symbol, just like we

©Adafruit Industries Page 60 of 63

would with HTML. With each line, we take the height of the line using getsize()

and move the pointer down by that much.

y = padding

draw.text((x, y), IP, font=font, fill="#FFFFFF")

y += font.getsize(IP)[1]

draw.text((x, y), CPU, font=font, fill="#FFFF00")

y += font.getsize(CPU)[1]

draw.text((x, y), MemUsage, font=font, fill="#00FF00")

y += font.getsize(MemUsage)[1]

draw.text((x, y), Disk, font=font, fill="#0000FF")

y += font.getsize(Disk)[1]

draw.text((x, y), Temp, font=font, fill="#FF00FF")

Finally, we write all the information out to the display using disp.image() . Since we

are looping, we tell Python to sleep for 0.1 seconds so that the CPU never gets too

busy.

disp.image(image)

time.sleep(.1)

Troubleshooting

Display does not work on initial power but does work

after a reset.

The display driver circuit needs a small amount of time to be ready after initial

power. If your code tries to write to the display too soon, it may not be ready. It will

work on reset since that typically does not cycle power. If you are having this issue,

try adding a small amount of delay before trying to write to the display.

©Adafruit Industries Page 61 of 63

In Arduino, use delay() to add a few milliseconds before calling tft.begin(). Adjust

the amount of delay as needed to see how little you can get away with for your

specific setup.

Downloads

Datasheets & Files

Datasheet for the HX8357D chipset controller ()

Datasheet for the 3.5" TFT display (raw) ()

EagleCAD PCB files on GitHub ()

Fritzing object in Adafruit Fritzing library ()

Schematic and PCB Print

•

•

•

•

©Adafruit Industries Page 62 of 63

http://www.adafruit.com/datasheets/HX8357-D_DS_April2012.pdf
http://www.adafruit.com/datasheets/Adafruit35inTFT.pdf
https://github.com/adafruit/3.5inch-TFT-Breakout-PCB
https://github.com/adafruit/Fritzing-Library

©Adafruit Industries Page 63 of 63

	Adafruit 3.5" 320x480 Color TFT Touchscreen Breakout
	Table of Contents
	Overview
	Pinouts
	Wiring & Test
	8-Bit Wiring & Test
	SPI Wiring & Test
	Bitmaps (SPI Mode)
	Adafruit GFX library
	Touchscreen
	CircuitPython Displayio Quickstart
	Python Wiring and Setup
	Python Usage
	Troubleshooting
	Downloads

	Overview
	Pinouts
	SPI Mode
	8-Bit Mode
	Wiring & Test
	Assembling Header
	Prepare the header strip:
	Add the breakout board:
	Add the breakout board:

	8-Bit Wiring & Test
	8-Bit Wiring
	Part 1 - Power & backlight test
	Part 2 - Data Bus Lines

	8-Bit Library Install
	Prepare TFTLCD Library
	SPI Wiring & Test
	SPI Mode Jumpers
	Wiring
	Install Arduino Libraries
	Bitmaps (SPI Mode)
	Adafruit GFX library
	Touchscreen
	Download Library
	Touchscreen Paint (SPI mode)
	Touchscreen Paint (8-Bit mode)
	CircuitPython Displayio Quickstart
	Preparing the Breakout
	Required CircuitPython Libraries
	Code Example Additional Libraries

	CircuitPython Code Example
	Using Touch

	Where to go from here
	Python Wiring and Setup
	Wiring
	ILI9341 and HX-8357-based Displays
	2.2" Display
	2.4", 2.8", 3.2", and 3.5" Displays

	ST7789 and ST7735-based Displays
	1.3", 1.54", and 2.0" IPS TFT Display
	0.96", 1.14", and 1.44" Displays
	1.8" Display

	SSD1351-based Displays
	1.27" and 1.5" OLED Displays

	SSD1331-based Display
	0.96" OLED Display

	Setup
	Python Installation of RGB Display Library
	DejaVu TTF Font
	Pillow Library

	Python Usage
	Turning on the Backlight
	Displaying an Image
	Drawing Shapes and Text
	Displaying System Information

	Troubleshooting
	Display does not work on initial power but does work after a reset.

	Downloads
	Datasheets & Files
	Schematic and PCB Print

