Adafruit 3.5" 320x480 Color TFT
Touchscreen Breakout
Created by lady ada

NS & T 2 0

3

/g8 S 0SIWy

@
o
ht
C
r
-
-
D
>
-

-
ot
>
2

(v'_
i
4
-

I ON9.
< AT S
-10GEIN RN

S3J .1
L D S

e memmEyg

II'I.Z'..

L B |

eapoge

v o u o T

https://learn.adafruit.com/adafruit-3-5-color-320x480-tft-touchscreen-breakout

Last updated on 2023-08-29 02:36:43 PM EDT

©Adafruit Industries Page 1 of 63

Table of Contents

Overview

Pinouts

« SPI Mode
. 8-Bit Mode

Wiring & Test

« Assembling Header

« Prepare the header strip:
« Add the breakout board:
« Add the breakout board:

8-Bit Wiring & Test

« 8-Bit Wiring

« Part 1 - Power & backlight test
« Part 2 - Data Bus Lines

- 8-Bit Library Install

« Prepare TFTLCD Library

SPI Wiring & Test

« SPI Mode Jumpers
« Wiring
« Install Arduino Libraries

Bitmaps (SPI Mode)
Adafruit GFX library

Touchscreen

« Download Library
« Touchscreen Paint (SPI mode)
» Touchscreen Paint (8-Bit mode)

CircuitPython Displayio Quickstart

« Preparing the Breakout

« Required CircuitPython Libraries

« Code Example Additional Libraries
« CircuitPython Code Example

« Using Touch

« Where to go from here

Python Wiring and Setup

« Wiring

« ILI9341 and HX-8357-based Displays

« ST7789 and ST7735-based Displays

« SSD1351-based Displays

« SSD1331-based Display

« Setup

« Python Installation of RGB Display Library
« DejaVu TTF Font

« Pillow Library

©Adafruit Industries

10

13

21

26

29

30

33

40

Page 2 of 63

Python Usage 48

« Turning on the Backlight

- Displaying an Image

« Drawing Shapes and Text

« Displaying System Information

Troubleshooting 61

Downloads 62

. Datasheets & Files
« Schematic and PCB Print

©Adafruit Industries Page 3 of 63

©Adafruit Industries Page 4 of 63

Overview

Add some jazz & pizazz to your project with a color touchscreen LCD. This TFT
display is big (3.5" diagonal) bright (6 white-LED backlight) and colorful! 480x320
pixels with individual RGB pixel control, this has way more resolution than a black and
white 128x64 display, and double our 2.8" TFT. As a bonus, this display has a resistive
touchscreen attached to it already, so you can detect finger presses anywhere on the
screen.

©Adafruit Industries Page 5 of 63

This display has a controller built into it with RAM buffering, so that almost no work is
done by the microcontroller. The display can be used in two modes: 8-bit or SPI. For
8-bit mode, you'll need 8 digital data lines and 4 or 5 digital control lines to read and
write to the display (12 lines total). SPI mode requires only 5 pins total (SPI data in,
data out, clock, select, and d/c) but is slower than 8-bit mode. In addition, 4 pins are
required for the touch screen (2 digital, 2 analog) or you can purchase and use our
resistive touchscreen controller (not included) to use 12C or SPI (http://adafru.it/1571).

Of course, we wouldn't just leave you with a datasheet and a "good luck!". For 8-bit
interface fans we've written a full open source graphics library that can draw pixels,
lines, rectangles, circles, text, and more (). For SPI users, we have a library as well (),
its separate from the 8-bit library since both versions are heavily optimized. We also
have a touch screen library that detects x, y and z (pressure) () and example code to
demonstrate all of it.

©Adafruit Industries Page 6 of 63

http://www.adafruit.com/products/1571
http://www.adafruit.com/products/1571
https://github.com/adafruit/TFTLCD-Library
https://github.com/adafruit/TFTLCD-Library
https://github.com/adafruit/Adafruit_HX8357_Library
https://github.com/adafruit/Touch-Screen-Library
https://github.com/adafruit/Touch-Screen-Library

J ON9

000000 |

on
gy 0/3 vin

TA-XFA+X | 158
a1

0Ea2a Y000

O
Q:
O
Q
Q
o}
O
o
O
O
O
O
(o)
O

Z09050%

~

o)

fHHl!MﬁHIHiﬂFHﬂHHIMHHHHH

Y U e ey

Q

Pinouts

OCard Detect

OCard cs < =B

«=p Close IM2

x- O
v+ O
-~ X+ O
cklite O
RST
20
WR. O
c/8.0
cs O
3-50 O
slkeno Q

¥
|

OlLite
| ORST
| oorsc

QCSs

OMosI

OnIso

OCLK

3.3V out

03-5v : D

{IGND &

Uaaiosy

o
=
U’og
T oo
— e
5wt
2 Y
S T
5§ W
- w®
e
ol
" Ca
i

=
o
-f-b
<3
~ X
D W
N
O
@
-
-
'T‘
it
-
—
D of
— 0O
0 B
n NE
ok
n w
nx
~ 0
nC
o ~
jCD
o
w
o
o

0/GE8XH . wa
[

9 syndur
Md (o4u0d G371

EEEERRERA]

1911e4ed adf-Bges 11G-8

The 3.5" TFT display on this breakout supports many different modes - so many that
the display itself has 50 pins. However, we think most people really only use 2
different modes, either "SPI" mode or 8-bit mode. Each 'side' of the display has all the
pins required for that mode. You can switch between modes, by rewiring the display,
but it cannot be used in two modes at the same time!

All logic pins, both 8-bit and SPI sides, are 3-5V logic level compatible, the 74LVX245

©Adafruit Industries Page 7 of 63

chips on the back perform fast level shifting so you can use either kind of logic levels.
If there's data output, the levels are at at 3.3V

SPI Mode

This is what we think will be a popular mode when speed is not of the utmost
importance. It doesn't use as many pins (only 4 to draw on the TFT if you skip the
MISO pin), is fairly flexible, and easy to port to various microcontrollers. It also allows
using a microSD card socket on the same SPI bus. However, its slower than parallel 8-
bit mode because you have to send each bit at a time instead of 8-bits at a time.
Tradeoffs!

Pouer with 3.3U-5V
Logic at 3.3U-5U

SPI Interface

o

-
v

(0]

-

o v
0o
VD
A
n M
0O
\S S

) 3.3V out

« GND - this is the power and signal ground pin

« 3-5V / Vin - this is the power pin, connect to 3-5VDC - it has reverse polarity
protection but try to wire it right!

« 3.3Vout - this is the 3.3V output from the onboard regulator

« CLK - this is the SPI clock input pin

« MISO - this is the SPI Microcontroller In Serial Out pin, its used for the SD card
mostly, and for debugging the TFT display. It isn't necessary for using the TFT
display which is write-only

« MOSI - this is the SPI Microcontroller Out Serial In pin, it is used to send data
from the microcontroller to the SD card and/or TFT

+ CS - this is the TFT SPI chip select pin

« D/C - this is the TFT SPI data or command selector pin

« RST - this is the TFT reset pin. There's auto-reset circuitry on the breakout so
this pin is not required but it can be helpful sometimes to reset the TFT if your
setup is not always resetting cleanly. Connect to ground to reset the TFT

. Lite - this is the PWM input for the backlight control. It is by default pulled high
(backlight on) you can PWM at any frequency or pull down to turn the backlight
off

« Y+ X+ Y- X- these are the 4 resistive touch screen pads, which can be read with
analog pins to determine touch points. They are completely separated from the
TFT electrically (the overlay is glued on top)

« IM2 IM1IMO - these are interface control set pins. In general these breakouts
aren't used, and instead the onboard jumpers are used to fix the interface to SPI

©Adafruit Industries Page 8 of 63

or 8-bit. However, we break these out for advanced use and also for our test
procedures

« Card CS / CCS - this is the SD card chip select, used if you want to read from the
SD card.

- Card Detect / CD - this is the SD card detect pin, it floats when a card is
inserted, and tied to ground when the card is not inserted. We don't use this in
our code but you can use this as a switch to detect if an SD card is in place
without trying to electrically query it. Don't forget to use a pullup on this pin if so!

8-Bit Mode

This mode is for when you have lots of pins and want more speed. In this mode we
send 8 bits at a time, so it needs way more pins, 12 or so (8 bits plus 4 control)!

Inputs o
8-bit 8@88-type parallel

« GND - this is the power and signal ground pin

« 3-5V (Vin)- this is the power pin, connect to 3-5VDC - it has reverse polarity
protection but try to wire it right!

« CS - this is the TFT 8-bit chip select pin (it is also tied to the SPI mode CS pin)

« C/D - this is the TFT 8-bit data or command selector pin (it is also tied to the SPI
mode C/D pin)

+« WR - this is the TFT 8-bit write strobe pin. It is also connected to the SPI CLK pin

« RD - this is the TFT 8-bit read strobe pin. You may not need this pin if you don't
want to read data from the display

« RST - this is the TFT reset pin. There's auto-reset circuitry on the breakout so
this pin is not required but it can be helpful sometimes to reset the TFT if your
setup is not always resetting cleanly. Connect to ground to reset the TFT

« Backlite - this is the PWM input for the backlight control. It is by default pulled
high (backlight on) you can PWM at any frequency or pull down to turn the
backlight off

« Y+ X+ Y- X- these are the 4 resistive touch screen pads, which can be read with
analog pins to determine touch points. They are completely separated from the
TFT electrically (the overlay is glued on top)

©Adafruit Industries Page 9 of 63

- DO thru D7 - these are the 8 bits of parallel data sent to the TFT in 8-bit mode. D
0 is the least-significant-bit and D7 is the MSB

Wiring & Test

We tried to make this TFT breakout useful for both high-pin microcontrollers that can
handle 8-bit data transfer modes as well as low-pincount micros like the Arduino UNO
and Leonardo that are OK with SPI.

Essentially, the tradeoff is pins for speed. SPI is about 2-4 times slower than 8-bit
mode, but that may not matter for basic graphics!

In addition, SPI mode has the benefit of being able to use the onboard microSD card

socket for reading images. We don't have support for this in 8-bit mode so if you want
to have an all-in-one image viewer type application, use SPI!

Assembling Header

Either way, if you're using a breadboard, you'll need to solder header onto one or two
of the sides. The procedure is the same for both sides

TAEXFARK

tgeo

o
bt
o)
o)
o)
o)
o
o
o
o
Ro
80
{e)

IIHIII!IIIII!IIIHIIHIIIIHﬂll!ll!l'lﬂl!lll

©Adafruit Industries Page 10 of 63

. S8 ss sssees eeesE sTEEs seERN

TR —

-

©Adafruit Industries

Prepare the header strip:

Cut the strip to length if necessary. It will
be easier to solder if you insert it into a
breadboard - long pins down

Add the breakout board:

Place the breakout board over the pins so
that the short pins poke through the
breakout pads

Page 11 of 63

https://learn.adafruit.com//assets/18875
https://learn.adafruit.com//assets/18875
https://learn.adafruit.com//assets/18876
https://learn.adafruit.com//assets/18876

fighij

abcde

2 A (-
L¥Llnhao =~

©Adafruit Industries

Add the breakout board:

Place the breakout board over the pins so
that the short pins poke through the

breakout pads

Page 12 of 63

https://learn.adafruit.com//assets/18877
https://learn.adafruit.com//assets/18877
https://learn.adafruit.com//assets/18878
https://learn.adafruit.com//assets/18878
https://learn.adafruit.com//assets/18879
https://learn.adafruit.com//assets/18879

wwn”mo—mﬂqunw@c:‘(\lﬂﬂ 3

HR _RST X+ Y4 XeY: 010‘0304059607 g

You're done! Check your solder joints
visually and continue onto the next steps

8-Bit Wiring & Test
8-Bit Wiring

Wiring up the 8-bit mode is kind of a pain, so we really only recommend doing it for
UNO (which we show) and Mega (which we describe, and is pretty easy since its 8
pins in a row). Anything else, like a Leonardo or Micro, we strongly recommend going
with SPI mode since we don't have an example for that. Any other kind of 'Arduino
compatible' that isn't an Uno, try SPI first. The 8-bit mode is hand-tweaked in the Adaf
ruit_TFTLCD pin_magic.h file. Its really only for advanced users who are totally cool
with figuring out bitmasks for various ports & pins.

Really, we'll show how to do the UNO but anything else? go with SPI!

Make sure you're soldering and connecting to the 8-bit side!

Q
oy
®
o3

Inputs
'8-bit 8088 type parallel

Part 1 - Power & backlight test

In these images we show using our 2.8" TFT but its the exact same pinout, just a tad
smaller!

©Adafruit Industries Page 13 of 63

https://learn.adafruit.com//assets/18880
https://learn.adafruit.com//assets/18880

Begin by wiring up the 3-5VDC and GND pins.

Connect the 3-5V pin to 5V and GND to GND on your Arduino. I'm using the
breadboard rails but you can also just wire directly.

ONINGY¥Y °

Power it up and you should see the white backlight come on

Part 2 - Data Bus Lines

Now that the backlight is working, we can get the TFT LCD working. There are many
pins required, and to keep the code running fairly fast, we have 'hardcoded' Arduino

©Adafruit Industries Page 14 of 63

digital pins #2-#9 for the 8 data lines.
However, they are not in that order! DO and D1 go to digital #8 and #9, then D2-D7
connect to #2 thru #7. This is because Arduino pins #0 and #1 are used for serial data

so we can't use them

Begin by connecting DO and D1 to digital #8 and 9 respectively as seen above. If
you're using a Mega, connect the TFT Data Pins DO-D1to Mega pins #22-23, in that
order. Those Mega pins are on the 'double' header.

ONINGHY - it

Now you can connect the remaining 6 pins over. Connect D2-D7 on the TFT pins to
digital 2 thru 7 in that order. If you're using a Mega, connect the TFT Data Pins D2-D7
to Mega pins #24-29, in that order. Those Mega pins are on the 'double' header.

©Adafruit Industries Page 15 of 63

>
=
o
c
-
=
-

In addition to the 8 data lines, you'll also need 4 or 5 control lines. These can later be
reassigned to any digital pins, they're just what we have in the tutorial by default.

« Connect the third pin CS (Chip Select) to Analog 3

« Connect the fourth pin C/D (Command/Data) to Analog 2
« Connect the fifth pin WR (Write) to Analog 1

« Connect the sixth pin RD (Read) to Analog O

You can connect the seventh pin RST (Reset) to the Arduino Reset line if you'd like.
This will reset the panel when the Arduino is Reset. You can also use a digital pin for
the LCD reset if you want to manually reset. There's auto-reset circuitry on the board

©Adafruit Industries Page 16 of 63

so you probably don't need to use this pin at all and leave it disconnected
The RD pin is used to read the chip ID off the TFT. Later, once you get it all working,
you can remove this pin and the ID test, although we suggest keeping it since its

useful for debugging your wiring.

OK! Now we can run some code

8-Bit Library Install

We have example code ready to go for use with these TFTs. It's written for Arduino,
which should be portable to any microcontroller by adapting the C++ source.

Two libraries need to be downloaded and installed: the TFTLCD library () and the GFX
library. () You can install these libraries through the Arduino library manager.

Open up the Arduino library manager:

File Edit [Sketch] Tools Help

Verify/Compile Ctrl+R
Upload Ctrl+U
Upload Using Programmer Ctrl+Shift+U

L

Manage Libraries...
demo

// Demd Export compiled Binary Ctrl+ Alt+S Add ZIP Library...

#includ Show Sketch Folder Ctrl+K Arduino libraries
#inciu;i Include Library) ArduinoHttpClient
#inclu -
Add File... ArduinoSound
AudioZero

// we light one pixel at a time, this is our
imeD + miwaln — Aa Rridne

Search for the Adafruit GFX library and install it:

Type All - Topic All - |adafruit gfy

Adafruit GFX Library by Adafruit

Adafruit GFX graphics core library, this is the 'core’ class that all our other graphics libraries derive from. Install this library in addition to the
display library for your hardware.

More info

Version 1.6.1 - Install

If using an older Arduino IDE (pre-1.8.10), also locate and install Adafruit_BuslO (newer
versions do this automatically).

Next, search for Adafruit TFTLCD and install it:

Type All - Topic All - |adafruit tftlcd

Adafruit TFTLCD Library by Adafruit
Adafruit 2.8" TFT display Library Adafruit 2.8" TFT display Library
More info

Install

©Adafruit Industries Page 17 of 63

https://github.com/adafruit/TFTLCD-Library
https://github.com/adafruit/Adafruit-GFX-Library
https://github.com/adafruit/Adafruit-GFX-Library

We also have a great tutorial on Arduino library installation at:
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use ()

Prepare TFTLCD Library

In the Adafruit_TFTLCD Library folder, you may need to edit Adafruit_TFTLCD.h. On
about line 12, you will see

#define USE_ADAFRUIT_SHIELD_PINOUT

Make sure this line is commented out with a // in front (it should but if you're having

issues, its worth checking.

Next up, we originally designed this library for 320x240 TFTs. Since this is a 480x320,
we have to adjust the size the library is expecting. Open up Adafruit_TFTLCD.cpp
and find these lines:

-

X Adafruit_TFTLCD.cpp - XEmacs

File Edit View Cmds Tools

e, M—

Options Buffers

C++

Help

D

Open

@ J S| 8<

Dired | Sawve | Print cut

BB &

Copy | Paste | Undo

g

Spell

ol

70
/o | =
Replace | Mail Info | Compile News

Adafruit TFTLCD.cpp |
#include
#include
#include

#include "pin magic.h"

//#define TFIWIDTH
//#define TFTHEIGHT

#define TFIWIDTH 240
#define TFTHEIGHT 320

"pins_arduino.h"
"wiring_ private.h"
"Adafruit TFTLCD.h"

320]
480

// LCD controller chip identifiers
#define ID 932X 0
#define ID 7575 1
#define ID 9341 2
#define ID HX8357D 3
#define ID UNKNOWN OxFF

#include "registers.h"

// Constructor for breakout board (configurable LCD control lines).

Id am Aei17 ssmm =hEa

Raw:T————- XEmacs: Adafruit TFTLCD.cpp

v

s2fmlmiAal A Tt mmmmmarawma A S amasmad

(C++/1 PenDel Font Abbrev)----L21--2%--

3 B B . . B ..

Comment out the 240 and 320 lines, and uncomment the 320 and 480 lines:

©Adafruit Industries

Page 18 of 63

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use

p
X Adafruit_TFTLCD.cpp - XEmacs

File Edit View C_n__\ds Iools Options Buffers C.

#include "Adafruit TFTLCD.h"
#include "pin magic.h"

#define TFIWIDTH 320
#define TFTHEIGHT 480

//#define TFIWIDTH 240
//#define TFTHEIGHT 320

// LCD controller chip identifiers
#define ID 932X 0

#define ID 7575 1

#define ID_9341 2

#define ID_HX8357D 3

#define ID UNKNOWN OxFF

include "registers.h"

Il ae mei17 ssma =i

Raw:T————- XEmacs: Adafruit TFTLCD.cpp

// Constructor for breakout board (configurable LCD control lines).

B I T v mmwm mma S mama

C++ Help
NMECIEERREEEERREE
Open | Dired | Save | Print cut Copy | Paste | Undo | Spell | Replace| Mail Info | Compile] Debug | News
Adafruit TFTLCD.cpp |
#include "pins_arduino.h" ;I
#include "wiring private.h" =1

v

-
(C++/1 PenDel Font Abbrev)----L34--2%--

Save it, now you can upload the demo!

After restarting the Arduino software, you should see a new example folder called Ad

afruit_TFTLCD and inside, an example called graphicstest. Upload that sketch to your

Arduino.

7

spitftbitmap | Arduino 1.0.5

Edit Sketch Tools Help

New Ctrl+N
Open... Ctrl+0
Sketchbook >
Examples 4
Close Ctrl+W

Save Ctrl+S

Save As... Ctrl+Shift+S
Upload Ctrl+U
Upload Using Programmer Ctrl+Shift+U
Page Setup Ctrl+Shift+P
Print Ctrl+P
Preferences Ctrl+Comma
Quit Ctrl+Q

// cannot be remapped to alternate pi
/7 Duenilanove, etc., pin 11 = MOSI,

#define TFT_DC 9
#define TFT_C35 10
Adafruit ILI9341 tft = Adafruit_ ILIS:

#define 5D_C5 4

void setup(void)
Serial.begin(9600);

tft.begin();
tft.fillScreen(ILI9341_BLUE) ;

Serial.print({"Initializing 5D card

©Adafruit Industries

Adafruit_NFCShield 2C »

Adafruit_nRF8001 »
Adafruit_OV7670 »
Adafruit_PCD8544 »
Adafruit_PN532 »

Adafruit_PS2_Touchpad »
Adafruit_PWMServoDriver »

Adafruit_RA8875 4
Adafruit_RGBLCDShield »
Adafruit_SharpMem >
Adafruit_SoftServo 4
Adafruit_SSD1305 »
Adafruit_SSD1306 »
Adafruit_SSD1325 >
Adafruit_SSD1331 4
Adafruit_SSD1351 »
Adafruit_ST7735 »
Adafruit_STMPE610 »
Adafruit_TCS34725 »
Adafruit_TEA5767 >
Adafruit_TFTLCD »
Adafruit_Thermal »
Adafruit_TLC5947 »
Adafruit_TLC59711 >
Adafruit_TMP006 »
Adafruit_TPA2016D2 »
Adafruit_Trellis »
Adafruit_VC0706 »
Adafruit_VS1053 »

tion

graphicstest
rotationtest
tftbmp
tftbmp_shield
tftpaint
tftpaint_shield

Page 19 of 63

You may need to press the Reset button to reset the Arduino and TFT. You should see

a collection of graphical tests draw out on the TFT.

(The images below shows SPI wiring but the graphical output should be similar!)

If you're having difficulties, check the serial console.The first thing the sketch does is
read the driver code from the TFT. It should be 0x8357 (for the HX8357D controller

inside)

s

(£ COM7

TFT LCD test

Using Adafruit 2.8" TFT Breakout Board Pinout
TFT size is 320x480

Found HX8357D LCD driver

Benchmark Time (microseconds)
Screen fill 2643472
Text 403576

Both NL &CR

v | 9600 baud

hd

If you Unknown Driver Chip then it's probably something with your wiring, double

check and try again!

©Adafruit Industries

Page 20 of 63

'S M
%] com7 E=EER T

TFT LCD test

Using Adafruit 2.8" TFT Breakout Board Pinout

TFT size is 320x480

Unknown LCD driver chip: 0

If using the Adafruit 2.8" TFT Arduino shield, the line:
#define USE_ADAFRUIT_SHIELD PINOUT

should appear in the library header (Adafruit_TFT.h).

If using the breakout board, it should NOT be #defined!

Alsc if using the breakout, double-check that all wiring

matches the tutorial.

BothNL&CR | (9600baud

Type All Topic All adafruit tftlcd

Adafruit TFTLCD Library by Adafruit
Adafruit 2.8" TFT display Library Adafruit 2.8* TFT display Library
More info

Install

SPI Wiring & Test

Don't forget, we're using the SPI interface side of the PCB!

Pouer with 3.3U-5V
Logic at 3.3U-5V

SPI Interface

et
v

@

-

o 0
oo
0V T
v~ A
T M
(SRS]
O

() 3.3V out

SPI Mode Jumpers

Before you start, we'll need to tell the display to put us in SPI mode so it will know
which pins to listen to. To do that, we have to connect the IM2 pin to 3.3V. The easiest
way to do that is to solder closed the IM2 jumper on the back of the PCB. Turn over
the PCB and find the solder jumper:

©Adafruit Industries Page 21 of 63

~ ___‘
9 3

Close IM2
for SPI

With your soldering iron, melt solder to close the jumper indicated IM2

Win 5.t
S

b

Close IM2
—For SPI

gszoce3 T8
"

©Adafruit Industries Page 22 of 63

ks

Close IM2

—For SPI

If you really don't want to solder, you can also wire the breakout pin to the 3vo pin,
just make sure you don't tie it to 5V by accident! For that reason, we suggest going
with the solder-jumper route.

Wiring

Wiring up the display in SPI mode is much easier than 8-bit mode since there's way
fewer wires. Start by connecting the power pins

« 3-5V Vin connects to the Arduino 5V pin

« GND connects to Arduino ground

« CLK connects to SPI clock. On Arduino Uno/Duemilanove/328-based, thats Digit
al 13. On Mega's, its Digital 52 and on Leonardo/Due its ICSP-3 (See SPI
Connections for more details ())

« MISO connects to SPI MISO. On Arduino Uno/Duemilanove/328-based, thats Dig
ital 12. On Mega's, its Digital 50 and on Leonardo/Due its ICSP-1 (See SPI
Connections for more details ()

« MOSI connects to SPI MOSI. On Arduino Uno/Duemilanove/328-based, thats Dig
ital 11. On Mega's, its Digital 51 and on Leonardo/Due its ICSP-4 (See SPI
Connections for more details ())

« CS connects to our SPI Chip Select pin. We'll be using Digital 10 but you can
later change this to any pin

« D/C connects to our SPI data/command select pin. We'll be using Digital 9 but
you can later change this pin too.

©Adafruit Industries Page 23 of 63

http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/SPI

That's it! You do not need to connect the RST or other pins for now.

Install Arduino Libraries

We have example code ready to go for use with these TFTs. It's written for Arduino,
which should be portable to any microcontroller by adapting the C++ source.

Three libraries need to be installed using the Arduino Library Manager...this is the
preferred and modern way. From the Arduino “Sketch” menu, select “Include Library”
then “Manage Libraries...”

File Edit Tools Help

Verify/Compile S Manage Libraries...
Upload :40)
Upload Using Programmer {+3U Add .ZIP Library...

Export compiled Binary og8sH

Arduino libraries

Show Sketch Folder $K ArduinoHttpClient
TR ArcuinoSound
Add File... Bridge
mple code is in the public domain. Esplora

Firmata

Type “gfx” in the search field to quickly find the first library — Adafruit_GFX:

©Adafruit Industries Page 24 of 63

[JON) Library Manager
Type All Topic All afx
Adafruit GFX Library by Adafruit

Adafruit GFX graphics core library, this is the 'core’ class that all our other graphics libraries derive from. Install this library in addition
to the display library for your hardware.
More info

Version 1.3.4 Install

Adafruit ImageReader Library by Adafruit v 1.0.1 INSTALLED
Companion library for Adafruit_GFX to load images from SD card. Install this library in addition to Adafruit_GFX and the display library for

If using an older Arduino IDE (pre-1.8.10), do the same for Adafruit_BuslO (newer
versions do this one automatically).

Repeat the search and install steps, looking for the Adafruit_HX8357 library.

After restarting the Arduino software, you should see a new example folder called Ad
afruit_HX8357 and inside, an example called graphicstest.

a B
graphicstest | Arduinc;]ﬁSZ Adafruit_BMP183 > a @ﬂg
= ———
Edit Sketch Tools Help Adafruit_ BMP183_Unified »
New Ctrl+N Adafruit_CAP1188 »
Open... Ctrl+0 Adafruit_CC3000 »
Sketchbook » Adafruit_CharacterOLED »
Examples » Adafruit_FastFloraPixel » ol
Close Ctrl+W Adafruit_Fingerprint »
Save Ctrl+S Adafruit_FloraPixel » 5
Save As... Ctrl+Shift+S Adafruit FONA baps
Upload CtrlsU Adafruit_FRAM_I2C y P o
Upload Using Programmer Ctrl+Shift+U Adafruit_FRAM_SPI Pl code, |
) Adafruit_FT6206 > b
Page Setup Ctrl+Shift+P Adafruit GP9002 5
Print Ctrl+P
" " Adafruit_GPS 8 U
Preferences Ctrl+Comma Adafruit_GSL168x » [ition
) Adafruit_ HMC5883_U 4
Quit Ctrl+Q } I
Adafruit_ HTU21DF >
#include <5PI.h>)
#include "Adafruit GFX.h" Adafruit_HX83408 -
#include "Adafruit HX8357.h" Adafruit_HX8357 » breakouttouchpaint
Adafruit_ILI9340 » graphicstest
// These are 'flexible' lines that c: Adafruit 119341 N ttbi
#define TFT C$ 10 A ST
#define TFT _DC 9 Adafruit_IL19488 4 |
#define TFT_RST 8 // RST can be set { Adafruit_INA) ino's reset |
Ad~feis 1220N [N

Upload the graphicstest sketch to your Arduino. You may need to press the Reset
button to reset the Arduino and TFT. You should see a collection of graphical tests
draw out on the TFT.

If you're having difficulties, check the serial console.The first thing the sketch does is
read the driver configuration from the TFT, you should see the same numbers as
below

If you did not connect up the MISO line to the TFT, you wont see the read

configuation bytes so please make sure you connect up the MISO line for easy
debugging! Once its all working, you can remove the MISO line

©Adafruit Industries Page 25 of 63

r N
1% cOM7 [EENEERT

HX8357D Test!

Display Power Mode: 0x9C
MADCTL Mode: 0xCO

Pixel Format: O0x5 |
Image Format: 0x0 r
Self Diagnostic: 0xCO I
Benchmark Time (microseconds)
Screen fill

I

I 5 autoscran BothNL&CR v | (9600baud |
= = J

Bitmaps (SPI Mode)

There is a built-in microSD card slot on the FeatherWing, and we can use that to load
bitmap images! You will need a microSD card formatted FAT16 or FAT32 (they almost
always are by default), and an SD card reader on whatever computer you’re currently
reading this with.

It's really easy to draw bitmaps. Lets start by downloading this image of Adabot and
friends:

©Adafruit Industries Page 26 of 63

” o«

The files should be renamed (if needed) to “adabot.bomp”, “parrot.bomp” and “wales.bm
p”, respectively, and copied to the base directory of the microSD card (not inside a
folder).

(If it’s easier, you can also find these images in the “images” folder within the
Adafruit_ImageReader library folder.)

©Adafruit Industries Page 27 of 63

You'll need to connect up the CCS pin to Digital 5 on your Arduino and swap the D/C
and CS pins as well. See the Fritzing diagram below.

fritzing

3.5" _TFT_Breakout.fzz

Insert the microSD card into the socket in the shield. Now select the sketch file=exam
ples=Adafruit_ImageReader—=FeatherWingHX8357 and upload this example to your
Feather + Wing. You will see the your electronic friends appear! (Plus parrots...and if
you’re using one of the more powerful Feather boards, a whole lot of dragons.)

@ ©890000900990000099000 ®

The Adafruit_ImageReader library, which is being used here to display .BMP images,
is fully explained in its own page of the Adafruit_GFX guide ().

©Adafruit Industries Page 28 of 63

https://cdn-learn.adafruit.com/assets/assets/000/078/330/original/3.5%22_TFT_Breakout.fzz?1563470215
https://learn.adafruit.com/adafruit-gfx-graphics-library/loading-images

Adafruit GFX library

The Adafruit_GFX library for Arduino provides a common syntax and set of graphics
functions for all of our TFT, LCD and OLED displays. This allows Arduino sketches to
easily be adapted between display types with minimal fuss...and any new features,
performance improvements and bug fixes will immediately apply across our complete
offering of color displays.

The GFX library is what lets you draw points, lines, rectangles, round-rects, triangles,
text, etc.

Check out our detailed tutorial here http://learn.adafruit.com/adafruit-gfx-graphics-
library ()

It covers the latest and greatest of the GFX library. The GFX library is used in both 8-
bit and SPI modes so the underlying commands (drawLine() for example) are identical!

©Adafruit Industries Page 29 of 63

http://learn.adafruit.com/adafruit-gfx-graphics-library
http://learn.adafruit.com/adafruit-gfx-graphics-library

Touchscreen

The LCD has a 3.5" 4-wire resistive touch screen glued onto it. You can use this for
detecting finger-presses, stylus', etc. You'll need 4 pins to talk to the touch panel, and
at least 2 must be analog inputs. The touch screen is a completely separate part from
the TFT, so be aware if you rotate the display or have the TFT off or reset, the touch
screen doesn't "know" about it - its just a couple resistors!

We have a demo for the touchscreen + TFT that lets you 'paint' simple graphics.
There's versions for both SPI and 8-bit mode and are included in the libraries. Just
make sure you have gone thru the TFT test procedure already since this builds on
that.

Remember, if you rotate the screen drawing with setRotation() you'll have to use
map() or similar to flip around the X/Y coordinates for the touchscreen as well! It
doesn't know about drawing rotation

Download Library

Begin by grabbing our analog/resistive touchscreen library from github () (or just click
the download button)

Download Adafruit Touchscreen

Library

©Adafruit Industries Page 30 of 63

https://github.com/adafruit/Touch-Screen-Library
https://github.com/adafruit/Touch-Screen-Library/archive/master.zip

Touchscreen Paint (SPI mode)

An additional 4 pins are required for the touchscreen. For the two analog pins, we'll
use A2 and A3. For the other two connections, you can pin any two digital pins but
we'll be using D8 and D7 since they are available.

Wire the additional 4 pins as follows:

« Y+ to Arduino A2
« X+ to Arduino D8
« Y- to Arduino D7
« X-to Arduino A3

+¥X 91110

k)
»
a3
>
]
o
¢
=
z

-¥X

\

WI__Zu1

ATVAX
0'2. A

w N

> > NP
3aVH ~ 22 ONINGY'

NEPOTVNY

>
wn

{ 10 OV-10SEIN

&

Load up the breakoutTouchPaint example from the Adafruit_HX8357 library and try

drawing with your fingernail! You can select colors by touching the 'pallette' of colors
on the right

©Adafruit Industries Page 31 of 63

Touchscreen Paint (8-Bit mode)

Another 4 pins seems like a lot since already 12 are taken up with the TFT but you can
reuse some of the pins for the TFT LCD! This is because the resistance of the panel is
high enough that it doesn't interfere with the digital input/output and we can query
the panel in between TFT accesses, when the pins are not being used.

We'll be building on the wiring used in the previous drawing test for UNO

You can wire up the 4 touchscreen pins as follows. Starting from the top

« Y- connects to digital #9 (also D1)

« The next one down (X-) connects to Analog 2 (also C/D)
- The next one over (Y+) connects to Analog 3 (also CS)

« The last one (X+) connects to digital 8. (also DO)

The X- and Y+ pins pretty much have to connect to those analog pins (or to analog
4/5) but Y-/X+ can connect to any digital or analog pins.

The image below shows the wiring, its for the 2.8" TFT but its the same wiring setup

©Adafruit Industries Page 32 of 63

Load up the tftpaint example from the Adafruit_TFTLCD library and try drawing with
your fingernail! You can select colors by touching the 'pallette' of colors on the right

CircuitPython Displayio Quickstart

You will need a board capable of running CircuitPython such as the Metro MO Express
or the Metro M4 Express. You can also use boards such as the Feather MO Express or
the Feather M4 Express. We recommend either the Metro M4 or the Feather M4
Express because it's much faster and works better for driving a display. For this guide,
we will be using a Feather M4 Express. The steps should be about the same for the
Feather MO Express or either of the Metros. If you haven't already, be sure to check
out our Feather M4 Express () guide.

Adafruit Feather M4 Express - Featuring
ATSAMD51

It's what you've been waiting for, the
Feather M4 Express featuring ATSAMD51.
This Feather is fast like a swift, smart like
an owl, strong like a ox-bird (it's half ox,...
https://www.adafruit.com/product/3857

For this guide, we'll assume you have a Feather M4 Express. The steps should be
about the same for the Feather MO Express. To start, if you haven't already done so,

©Adafruit Industries Page 33 of 63

https://learn.adafruit.com/adafruit-feather-m4-express-atsamd51/assembly
https://www.adafruit.com/product/3857
https://www.adafruit.com/product/3857
https://www.adafruit.com/product/3857

follow the assembly instructions for the Feather M4 Express in our Feather M4
Express guide ().

Preparing the Breakout

Before using the TFT Breakout, you will need to solder the headers or some wires to
it. Be sure to check out the Adafruit Guide To Excellent Soldering (). Also, follow the S
Pl Wiring & Test () page of this guide to be sure your display is setup for SPI. After

that, the breakout should be ready to go.

Required CircuitPython Libraries

To use this display with displayio, there is only one required library.

Adafruit_CircuitPython_HX8357

First, make sure you are running the latest version of Adafruit CircuitPython () for your
board.

Next, you'll need to install the necessary libraries to use the hardware--carefully
follow the steps to find and install these libraries from Adafruit's CircuitPython library

bundle (). Our introduction guide has a great page on how to install the library

bundle () for both express and non-express boards.

Remember for non-express boards, you'll need to manually install the necessary
libraries from the bundle:

. adafruit_hx8357

Before continuing make sure your board's lib folder or root filesystem has the adafruit
hx8357 file copied over.

Code Example Additional Libraries

For the Code Example, you will need an additional library. We decided to make use of
a library so the code didn't get overly complicated.

Adafruit_CircuitPython_Display_Text

©Adafruit Industries Page 34 of 63

https://learn.adafruit.com/adafruit-feather-m4-express-atsamd51/assembly
https://learn.adafruit.com/adafruit-feather-m4-express-atsamd51/assembly
https://learn.adafruit.com/adafruit-guide-excellent-soldering
https://learn.adafruit.com/adafruit-3-5-color-320x480-tft-touchscreen-breakout/spi-wiring-and-test
https://learn.adafruit.com/adafruit-3-5-color-320x480-tft-touchscreen-breakout/spi-wiring-and-test
https://github.com/adafruit/Adafruit_CircuitPython_HX8357/releases
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://github.com/adafruit/Adafruit_CircuitPython_Display_Text

Go ahead and install this in the same manner as the driver library by copying the adaf
ruit_display_text folder over to the lib folder on your CircuitPython device.

CircuitPython Code Example

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

This test will initialize the display using displayio and draw a solid green
background, a smaller purple rectangle, and some yellow text.

import board

import terminalio

import displayio

from adafruit display_ text import label
from adafruit hx8357 import HX8357

Release any resources currently in use for the displays
displayio.release displays()

spi = board.SPI()
tft cs = board.D9
tft dc = board.D10

display bus = displayio.FourWire(spi, command=tft dc, chip select=tft cs)
display = HX8357(display bus, width=480, height=320)

Make the display context
splash = displayio.Group()
display.show(splash)

color bitmap = displayio.Bitmap(480, 320, 1)
color palette = displayio.Palette(1)
color palette[0] = OxOOFFOO # Bright Green

bg sprite = displayio.TileGrid(color bitmap, pixel shader=color palette, x=0, y=0)
splash.append(bg sprite)

Draw a smaller inner rectangle

inner bitmap = displayio.Bitmap(440, 280, 1)

inner palette = displayio.Palette(1)

inner palette[0] = OxAA0088 # Purple

inner sprite = displayio.TileGrid(inner _bitmap, pixel shader=inner palette, x=20,
y=20)

splash.append(inner_sprite)

Draw a label

text group = displayio.Group(scale=3, x=137, y=160)

text = "Hello World!"

text area = label.Label(terminalio.FONT, text=text, color=0xFFFF0O)
text group.append(text area) # Subgroup for text scaling
splash.append(text group)

while True:
pass

©Adafruit Industries Page 35 of 63

Let's take a look at the sections of code one by one. We start by importing the board
so that we can initialize SPI, displayio, terminalio for the font,a label, and
the adafruit hx8357 driver.

import board

import displayio

import terminalio

from adafruit display text import label
from adafruit hx8357 import HX8357

Next we release any previously used displays. This is important because if the
Feather is reset, the display pins are not automatically released and this makes them
available for use again.

displayio.release displays()

Next, we set the SPI object to the board's SPI with the easy shortcut function
board.SPI() . By using this function, it finds the SPI module and initializes using the
default SPI parameters. Next we set the Chip Select and Data/Command pins that will
be used.

spi = board.SPI()
tft cs board.D9
tft dc board.D10

In the next line, we set the display bus to FourWire which makes use of the SPI bus.

display bus = displayio.FourWire(spi, command=tft dc, chip select=tft cs)
Finally, we initialize the driver with a width of 480 and a height of 320. If we stopped
at this point and ran the code, we would have a terminal that we could type at and

have the screen update.

display = HX8357(display bus, width=480, height=320)

©Adafruit Industries Page 36 of 63

20304050607

=00010

Next we create a background splash image. We do this by creating a group that we
can add elements to and adding that group to the display. In this example, we are
limiting the maximum number of elements to 10, but this can be increased if you
would like. The display will automatically handle updating the group.

splash = displayio.Group(max size=10)
display.show(splash)

After that we create a Bitmap which is like a canvas that we can draw on. In this case
we are creating the Bitmap to be the same size as the screen, but only have one
color. The Bitmaps can currently handle up to 256 different colors. We create a
Palette with one color and set that color to OXOOFFOO which happens to be green.
Colors are Hexadecimal values in the format of RRGGBB. Even though the Bitmaps
can only handle 256 colors at a time, you get to define what those 256 different
colors are.

color bitmap = displayio.Bitmap(480, 320, 1)
color palette = displayio.Palette(1)
color _palette[0] = OxOQOFFOO # Bright Green

With all those pieces in place, we create a TileGrid by passing the bitmap and palette
and draw itat (0, 0) which represents the display's upper left.

bg sprite = displayio.TileGrid(color bitmap,
pixel shader=color palette,
x=0, y=0)

splash.append(bg sprite)

This creates a solid green background which we will draw on top of.

©Adafruit Industries Page 37 of 63

Next we will create a smaller purple rectangle. The easiest way to do this is the create
a new bitmap that is a little smaller than the full screen with a single color and place it
in a specific location. In this case we will create a bitmap that is 20 pixels smaller on
each side. The screen is 480x320, so we'll want to subtract 40 from each of those
numbers.

We'll also want to place it at the position (20, 20) so thatit ends up centered.

Draw a smaller inner rectangle

inner bitmap = displayio.Bitmap(440, 280, 1)

inner palette = displayio.Palette(1)

inner palette[0] = 0xAAGO88 # Purple

inner sprite = displayio.TileGrid(inner_ bitmap,
pixel shader=inner palette,
x=20, y=20)

splash.append(inner sprite)

Since we are adding this after the first rectangle, it's automatically drawn on top.
Here's what it looks like now.

©Adafruit Industries Page 38 of 63

Next let's add a label that says "Hello World!" on top of that. We're going to use the
built-in Terminal Font and scale it up by a factor of three. To scale the label only, we
will make use of a subgroup, which we will then add to the main group.

Labels are centered vertically, so we'll place it at 160 for the Y coordinate, and around
137 pixels make it appear to be centered horizontally, but if you want to change the
text, change this to whatever looks good to you. Let's go with some yellow text, so
we'll pass it a value of OxXFFFFOO .

Draw a label

text group = displayio.Group(max_size=10, scale=3, x=137, y=160)
text = "Hello World!"

text area = label.lLabel(terminalio.FONT, text=text, color=0xFFFF00)
text _group.append(text area) # Subgroup for text scaling
splash.append(text group)

Finally, we place an infinite loop at the end so that the graphics screen remains in
place and isn't replaced by a terminal.

©Adafruit Industries Page 39 of 63

Hello World!

while True:
pass

Using Touch

We won't be covering how to use the touchscreen with CircuitPython in this guide, but
the library required for enabling resistive touch is the Adafruit_CircuitPython_STMPEG6
E () library.

Where to go from here

Be sure to check out this excellent guide to CircuitPython Display Support Using
displayio ()

Python Wiring and Setup
Wiring

It's easy to use display breakouts with Python and the Adafruit CircuitPython RGB
Display () module. This module allows you to easily write Python code to control the
display.

We'll cover how to wire the display to your Raspberry Pi. First assemble your display.

©Adafruit Industries Page 40 of 63

https://github.com/adafruit/Adafruit_CircuitPython_STMPE610
https://github.com/adafruit/Adafruit_CircuitPython_STMPE610
https://learn.adafruit.com/circuitpython-display-support-using-displayio
https://learn.adafruit.com/circuitpython-display-support-using-displayio
https://github.com/adafruit/Adafruit_CircuitPython_RGB_Display
https://github.com/adafruit/Adafruit_CircuitPython_RGB_Display

Since there's dozens of Linux computers/boards you can use we will show wiring for
Raspberry Pi. For other platforms, please visit the guide for CircuitPython on Linux to
see whether your platform is supported ().

Connect the display as shown below to your Raspberry Pi.

Note this is not a kernel driver that will let you have the console appear on the
TFT. However, this is handy when you can't install an fbtft driver, and want to use

the TFT purely from 'user Python' code!

IL1I9341 and HX-8357-based Displays
2.2" Display

« CLK connects to SPI clock. On the Raspberry Pi, thats SLCK

« MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI

« CS connects to our SPI Chip Select pin. We'll be using CEO

« D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but this can be
changed later.

« RST connects to our Reset pin. We'll be using GPIO 24 but this can be changed
later as well.

« Vin connects to the Raspberry Pi's 3V pin

« GND connects to the Raspberry Pi's ground

8 b

“e e

2.2" TFT
320x240

D I I

M/

-
SESD T S (ESE

fritzing

©Adafruit Industries Page 41 of 63

https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

Download the Fritzing Diagram

2.4" 2.8" 3.2", and 3.5" Displays

These displays are set up to use the 8-bit data lines by default. We want to use them
for SPI. To do that, you'll need to either solder bridge some pads on the back or
connect the appropriate IM lines to 3.3V with jumper wires. Check the back of your
display for the correct solder pads or IM lines to put it in SPI mode.

« Vin connects to the Raspberry Pi's 3V pin

« GND connects to the Raspberry Pi's ground

« CLK connects to SPI clock. On the Raspberry Pi, thats SLCK

« MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI

« CS connects to our SPI Chip Select pin. We'll be using CEO

« D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but this can be
changed later.

« RST connects to our Reset pin. We'll be using GPIO 24 but this can be changed
later as well.

2.8" TFT
320x240

fritzing

Download the Fritzing Diagram

©Adafruit Industries Page 42 of 63

https://cdn-learn.adafruit.com/assets/assets/000/084/669/original/2.2_TFT.fzz?1574277335
https://cdn-learn.adafruit.com/assets/assets/000/084/670/original/2.8_TFT.fzz?1574277361

ST7789 and ST7735-based Displays

1.3",1.54", and 2.0" IPS TFT Display

« Vin connects to the Raspberry Pi's 3V pin

« GND connects to the Raspberry Pi's ground

« CLK connects to SPI clock. On the Raspberry Pi, thats SLCK

« MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI

« CS connects to our SPI Chip Select pin. We'll be using CEO

« RST connects to our Reset pin. We'll be using GPIO 24 but this can be changed
later.

« D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but this can be
changed later as well.

L

..

.

.

>
L) A2
i
»
» N
P ©:) g
LR = b
s & g uo
. 3

%. i

. .

0ZEX0¥Z
141 Sdi

fritzing

Download the Fritzing Diagram

0.96" 114", and 1.44" Displays

« Vin connects to the Raspberry Pi's 3V pin

« GND connects to the Raspberry Pi's ground

« CLK connects to SPI clock. On the Raspberry Pi, thats SLCK

« MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI

« CS connects to our SPI Chip Select pin. We'll be using CEO

« RST connects to our Reset pin. We'll be using GPIO 24 but this can be changed
later.

« D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but this can be
changed later as well.

©Adafruit Industries Page 43 of 63

https://cdn-learn.adafruit.com/assets/assets/000/084/671/original/2.0_TFT.fzz?1574277392

o ‘?0
=2
=
)

-
;- myUmyy
fritzing
Download the Fritzing Diagram
1.8" Display

+ GND connects to the Raspberry Pi's ground

- Vin connects to the Raspberry Pi's 3V pin

« RST connects to our Reset pin. We'll be using GPIO 24 but this can be changed
later.

« D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but this can be
changed later as well.

« CS connects to our SPI Chip Select pin. We'll be using CEO

« MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI

« CLK connects to SPI clock. On the Raspberry Pi, thats SLCK

« LITE connects to the Raspberry Pi's 3V pin. This can be used to separately
control the backlight.

©Adafruit Industries Page 44 of 63

https://cdn-learn.adafruit.com/assets/assets/000/084/672/original/1.44_TFT.fzz?1574277409

R ———

DSI (DISPLAY)

8¢2TX091
141 .8°T

ETHERNET

fritzing

Download the Fritzing Diagram

SSD1351-based Displays

1.27" and 1.5" OLED Displays

« GND connects to the Raspberry Pi's ground

« Vin connects to the Raspberry Pi's 3V pin

« CLK connects to SPI clock. On the Raspberry Pi, thats SLCK

+ MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI

« CS connects to our SPI Chip Select pin. We'll be using CEO

« RST connects to our Reset pin. We'll be using GPIO 24 but this can be changed
later.

« D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but this can be
changed later as well.

©Adafruit Industries Page 45 of 63

https://cdn-learn.adafruit.com/assets/assets/000/084/673/original/1.8_TFT.fzz?1574277427

R——— > % & 4370 894 92TX92T TSETASS w5°1

128x128

[a)
w
=
@]
in
—

NESNERNNNEEERES

Y/

KTEI TR E) - 2 .0

. .
;
= . ®o 000 0 ®e 0o 00 0 >®
o . » S LI]
. '
LA

ETHERNET S B R R R I L A)

U ql

fritzing

Download the Fritzing Diagram

SSD1331-based Display

0.96" OLED Display

« MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI

« CLK connects to SPI clock. On the Raspberry Pi, thats SLCK

« D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but this can be
changed later.

« RST connects to our Reset pin. We'll be using GPIO 24 but this can be changed
later as well.

« CS connects to our SPI Chip Select pin. We'll be using CEO

« Vin connects to the Raspberry Pi's 3V pin

+ GND connects to the Raspberry Pi's ground

©Adafruit Industries Page 46 of 63

https://cdn-learn.adafruit.com/assets/assets/000/084/674/original/1.5_OLED.fzz?1574277454

R

DSI (DISPLAY) . >

0.96" OLED

(Y¥3UVI) ISD

fritzing

Download the Fritzing Diagram

Setup

You'll need to install the Adafruit_Blinka library that provides the CircuitPython
support in Python. This may also require enabling SPI on your platform and verifying
you are running Python 3. Since each platform is a little different, and Linux changes
often, please visit the CircuitPython on Linux guide to get your computer ready ()!

Python Installation of RGB Display Library

Once that's done, from your command line run the following command:

« sudo pip3 install adafruit-circuitpython-rgb-display

If your default Python is version 3 you may need to run 'pip' instead. Just make sure
you aren't trying to use CircuitPython on Python 2.x, it isn't supported!

©Adafruit Industries Page 47 of 63

https://cdn-learn.adafruit.com/assets/assets/000/096/092/original/0.96_OLED.fzz?1603118637
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

If that complains about pip3 not being installed, then run this first to install it:

« sudo apt-get install python3-pip

DejaVu TTF Font

Raspberry Pi usually comes with the DejaVu font already installed, but in case it didn't,
you can run the following to install it:

« sudo apt-get install fonts-dejavu

This package was previously calls ttf-dejavu, so if you are running an older version of
Raspberry Pi OS, it may be called that.

Pillow Library

We also need PIL, the Python Imaging Library, to allow graphics and using text with
custom fonts. There are several system libraries that PIL relies on, so installing via a
package manager is the easiest way to bring in everything:

« sudo apt-get install python3-pil

If you installed the PIL through PIP, you may need to install some additional libraries:

. sudo apt-get install libopenjp2-7 libtiff5 libatlas-base-dev

That's it. You should be ready to go.

Python Usage

Now that you have everything setup, we're going to look over three different
examples. For the first, we'll take a look at automatically scaling and cropping an
image and then centering it on the display.

©Adafruit Industries Page 48 of 63

Turning on the Backlight

On some displays, the backlight is controlled by a separate pin such as the 1.3" TFT
Bonnet with Joystick. On such displays, running the below code will likely result in the
display remaining black. To turn on the backlight, you will need to add a small snippet
of code. If your backlight pin number differs, be sure to change it in the code:

Turn on the Backlight

backlight = DigitalInOut(board.D26)
backlight.switch to output()
backlight.value = True

Displaying an Image

Here's the full code to the example. We will go through it section by section to help
you better understand what is going on. Let's start by downloading an image of
Blinka. This image has enough border to allow resizing and cropping with a variety of
display sizes and rations to still look good.

Make sure you save it as blinka.jpg and place it in the same folder as your script.
Here's the code we'll be loading onto the Raspberry Pi. We'll go over the interesting
parts.

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

Be sure to check the learn guides for more usage information.

This example is for use on (Linux) computers that are using CPython with
Adafruit Blinka to support CircuitPython libraries. CircuitPython does
not support PIL/pillow (python imaging library)!

Author(s): Melissa LeBlanc-Williams for Adafruit Industries

©Adafruit Industries Page 49 of 63

import digitalio

import board

from PIL import Image, ImageDraw

from adafruit rgb display import i1i9341

from adafruit rgb display import st7789 # pylint: disable=unused-import
from adafruit rgb display import hx8357 # pylint: disable=unused-import
from adafruit rgb display import st7735 # pylint: disable=unused-import
from adafruit rgb display import ssd1351 # pylint: disable=unused-import
from adafruit rgb display import ssd1331 # pylint: disable=unused-import

Configuration for CS and DC pins (these are PiTFT defaults):
cs pin = digitalio.DigitalInOut(board.CEQ)

dc_pin = digitalio.DigitalInOut(board.D25)

reset pin = digitalio.DigitalInOut(board.D24)

Config for display baudrate (default max is 24mhz):
BAUDRATE = 24000000

Setup SPI bus using hardware SPI:
spi = board.SPI()

pylint: disable=line-too-long
Create the display:

disp = st7789.ST7789(spi, rotation=90,
disp = st7789.ST7789(spi, height=240, y offset=80, rotation=180,
ST7789

2.0" ST7789
1.3", 1.54"

disp = st7789.ST7789(spi, rotation=90, width=135, height=240, x offset=53,

y offset=40, # 1.14" ST7789
47" ST7789

.9" ST7789
disp = hx8357.HX8357(spi, rotation=180,

HrRrHHFEHERPHF—H

disp = st7735.ST7735R(spi, rotation=90, bgr=True, width=80,
Rev A ST7735R

disp = st7735.ST7735R(spi, rotation=90, invert=True, width=80,
Rev B ST7735R

x _offset=26, y offset=1,

disp = st7789.ST7789(spi, rotation=90, width=172, height=320, x offset=34, #

disp = st7789.ST7789(spi, rotation=270, width=170, height=320, x offset=35, #

3.5" HX8357
1.8" ST7735R

disp = st7735.ST7735R(spi, rotation=90,
disp = st7735.ST7735R(spi, rotation=270, height=128, x offset=2, y offset=3, #
.44" ST7735R

0.96" MiniTFT

0.96" MiniTFT

1.5" SSD1351

0.96" SSD1331

disp = ssd1351.SSD1351(spi, rotation=180,
disp = ssd1351.SSD1351(spi, height=96, y offset=32, rotation=180, # 1.27" SSD1351
disp = ssd1331.SSD1331(spi, rotation=180,
disp = 11i9341.ILI9341(
spi,
rotation=90, # 2.2", 2.4", 2.8", 3.2" ILI9341
cs=Ccs_pin,
dc=dc_pin,

rst=reset pin,
baudrate=BAUDRATE,

)
pylint: enable=line-too-long

Create blank image for drawing.
Make sure to create image with mode 'RGB' for full color.
if disp.rotation % 180 == 90:

height = disp.width # we swap height/width to rotate it to landscape!

width = disp.height
else:

width = disp.width # we swap height/width to rotate it to landscape!

height = disp.height
image = Image.new("RGB", (width, height))

Get drawing object to draw on image.
draw = ImageDraw.Draw(image)

©Adafruit Industries

Page 50 of 63

Draw a black filled box to clear the image.
draw.rectangle((0, 0, width, height), outline=0, fill=(0, 0, 0))
disp.image(image)

image = Image.open("blinka.jpg")

Scale the image to the smaller screen dimension
image ratio = image.width / image.height
screen ratio = width / height
if screen_ratio < image ratio:
scaled width = image.width * height // image.height
scaled height = height
else:
scaled width = width
scaled height = image.height * width // image.width
image = image.resize((scaled width, scaled height), Image.BICUBIC)

Crop and center the image

x = scaled_width // 2 - width // 2

y = scaled height // 2 - height // 2

image = image.crop((x, y, x + width, y + height))

Display image.
disp.image(image)

So we start with our usual imports including a couple of Pillow modules and the
display drivers. That is followed by defining a few pins here. The reason we chose
these is because they allow you to use the same code with the PiTFT if you chose to
do so.

import digitalio

import board

from PIL import Image, ImageDraw

import adafruit rgb display.ili9341 as il1i9341
import adafruit rgb display.st7789 as st7789
import adafruit rgb display.hx8357 as hx8357
import adafruit rgb display.st7735 as st7735
import adafruit rgb display.ssd1351 as ssd1351
import adafruit rgb display.ssd1331 as ssd1331

Configuration for CS and DC pins

cs_pin = digitalio.DigitalInOQut(board.CEO)
dc_pin = digitalio.DigitalInOut(board.D25)
reset pin = digitalio.DigitalInOut(board.D24)

Next we'll set the baud rate from the default 24 MHz so that it works on a variety of
displays. The exception to this is the SSD1351 driver, which will automatically limit it to
16MHz even if you pass 24MHz. We'll set up out SPI bus and then initialize the display.

We wanted to make these examples work on as many displays as possible with very
few changes. The ILI9341 display is selected by default. For other displays, go ahead
and comment out these lines:

disp = i1i9341.ILI9341(
spi,
rotation=90, # 2.2", 2.4", 2.8", 3.2" ILI9341

©Adafruit Industries Page 51 of 63

and uncomment the line appropriate for your display and possibly the line below in
the case of longer initialization sequences. The displays have a rotation property so
that it can be set in just one place.

#disp = st7789.ST7789(spi, rotation=90, # 2.0" ST7789
#disp = st7789.ST7789(spi, height=240, y offset=80, rotation=180, # 1.3", 1.54"
ST7789

#disp = st7789.ST7789(spi, rotation=90, width=135, height=240, x offset=53,
y offset=40, # 1.14" ST7789

#disp = hx8357.HX8357(spi, rotation=180, # 3.5" HX8357
#disp = st7735.ST7735R(spi, rotation=90, # 1.8" ST7735R
#disp = st7735.ST7735R(spi, rotation=270, height=128, x offset=2, y offset=3, #
1.44" ST7735R

#disp = st7735.ST7735R(spi, rotation=90, bgr=True, width=80, # 0.96" MiniTFT
Rev A ST7735R

#disp = st7735.ST7735R(spi, rotation=90, invert=True, width=80, # 0.96" MiniTFT

Rev B ST7735R
#x_offset=26, y offset=1,#disp = ssd1351.SSD1351(spi,

rotation=180, # 1.5" SSD1351
#disp = s5d1351.SSD1351(spi, height=96, y offset=32, rotation=180, # 1.27" SSD1351
#disp = ssd1331.SSD1331(spi, rotation=180, # 0.96" SSD1331
disp = 11i9341.ILI9341(

spi,

rotation=90, # 2.2", 2.4", 2.8", 3.2" ILI9341

Ccs=Cs_pin,

dc=dc_pin,

rst=reset pin,
baudrate=BAUDRATE

Next we read the current rotation setting of the display and if it is 90 or 270 degrees,
we need to swap the width and height for our calculations, otherwise we just grab the
width and height. We will create an image with our dimensions and use that to create
a draw object. The draw object will have all of our drawing functions.

Create blank image for drawing.

Make sure to create image with mode 'RGB' for full color.

if disp.rotation % 180 == 90:
height = disp.width # we swap height/width to rotate it to landscape!
width = disp.height

else:
width = disp.width # we swap height/width to rotate it to landscape!
height = disp.height

image = Image.new('RGB', (width, height))

Get drawing object to draw on image.
draw = ImageDraw.Draw(image)

Next we clear whatever is on the screen by drawing a black rectangle. This isn't
strictly necessary since it will be overwritten by the image, but it kind of sets the
stage.

Draw a black filled box to clear the image.
draw.rectangle((0, 0, width, height), outline=0, fill=(0, 0, 0))
disp.image(image)

©Adafruit Industries Page 52 of 63

Next we open the Blinka image, which we've named blinka.jpg, which assumes it is in
the same directory that you are running the script from. Feel free to change it if it
doesn't match your configuration.

image = Image.open("blinka.jpg")

Here's where it starts to get interesting. We want to scale the image so that it matches
either the width or height of the display, depending on which is smaller, so that we
have some of the image to chop off when we crop it. So we start by calculating the
width to height ration of both the display and the image. If the height is the closer of
the dimensions, we want to match the image height to the display height and let it be
a bit wider than the display. Otherwise, we want to do the opposite.

Once we've figured out how we're going to scale it, we pass in the new dimensions
and using a Bicubic rescaling method, we reassign the newly rescaled image back to
image . Pillow has quite a few different methods to choose from, but Bicubic does a
great job and is reasonably fast.

Scale the image to the smaller screen dimension
image ratio = image.width / image.height
screen_ratio = width / height
if screen ratio < image ratio:
scaled width = image.width * height // image.height
scaled height = height
else:
scaled width = width
scaled height = image.height * width // image.width
image = image.resize((scaled width, scaled height), Image.BICUBIC)

Next we want to figure the starting x and y points of the image where we want to
begin cropping it so that it ends up centered. We do that by using a standard
centering function, which is basically requesting the difference of the center of the
display and the center of the image. Just like with scaling, we replace the image
variable with the newly cropped image.

Crop and center the image

x = scaled width // 2 - width // 2

y = scaled height // 2 - height // 2

image = image.crop((x, y, x + width, y + height))

Finally, we take our image and display it. At this point, the image should have the
exact same dimensions at the display and fill it completely.

disp.image(image)

©Adafruit Industries Page 53 of 63

Drawing Shapes and Text

In the next example, we'll take a look at drawing shapes and text. This is very similar
to the displayio example, but it uses Pillow instead. Here's the code for that.

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

This demo will draw a few rectangles onto the screen along with some text
on top of that.

This example is for use on (Linux) computers that are using CPython with
Adafruit Blinka to support CircuitPython libraries. CircuitPython does
not support PIL/pillow (python imaging library)!

Author(s): Melissa LeBlanc-Williams for Adafruit Industries

import digitalio

import board

from PIL import Image, ImageDraw, ImageFont

from adafruit rgb display import i1i9341

from adafruit rgb display import st7789 # pylint: disable=unused-import
from adafruit rgb display import hx8357 # pylint: disable=unused-import
from adafruit rgb display import st7735 # pylint: disable=unused-import
from adafruit rgb display import ssd1351 # pylint: disable=unused-import
from adafruit rgb display import ssd1331 # pylint: disable=unused-import

First define some constants to allow easy resizing of shapes.
BORDER = 20
FONTSIZE = 24

Configuration for CS and DC pins (these are PiTFT defaults):
Ccs_pin = digitalio.DigitalInOQut(board.CEQ)

dc pin = digitalio.DigitalInOut(board.D25)

reset pin = digitalio.DigitalInOut(board.D24)

Config for display baudrate (default max is 24mhz):

©Adafruit Industries Page 54 of 63

BAUDRATE = 24000000

Setup SPI bus using hardware SPI:
spi = board.SPI()

pylint: disable=line-too-long
Create the display:

disp = st7789.ST7789(spi, rotation=90, # 2.0" ST7789
disp = st7789.ST7789(spi, height=240, y offset=80, rotation=180, # 1.3", 1.54"
ST7789

disp = st7789.ST7789(spi, rotation=90, width=135, height=240, x offset=53,
y offset=40, # 1.14" ST7789

disp = st7789.ST7789(spi, rotation=90, width=172, height=320, x offset=34,
1.47" ST7789

disp = st7789.ST7789(spi, rotation=270, width=170, height=320, x offset=35,
1.9" ST7789

disp = hx8357.HX8357(spi, rotation=180, # 3.5" HX8357

disp = st7735.ST7735R(spi, rotation=90, # 1.8" ST7735R
disp = st7735.ST7735R(spi, rotation=270, height=128, x offset=2, y offset=3,
1.44" ST7735R

disp = st7735.ST7735R(spi, rotation=90, bgr=True, width=80, # 0.96" MiniTFT
Rev A ST7735R

disp = st7735.ST7735R(spi, rotation=90, invert=True, width=80, # 0.96" MiniTFT

Rev B ST7735R
x _offset=26, y offset=1,

disp = ssd1351.SSD1351(spi, rotation=180, # 1.5" SSD1351
disp = ssd1351.SSD1351(spi, height=96, y offset=32, rotation=180, # 1.27" SSD1351
disp = ssd1331.SSD1331(spi, rotation=180, # 0.96" SSD1331
disp = 11i9341.ILI9341(

spi,

rotation=90, # 2.2", 2.4", 2.8", 3.2" ILI9341

cs=Ccs_pin,

dc=dc_pin,

rst=reset pin,
baudrate=BAUDRATE,

)
pylint: enable=line-too-long

Create blank image for drawing.

Make sure to create image with mode 'RGB' for full color.

if disp.rotation % 180 == 90:
height = disp.width # we swap height/width to rotate it to landscape!
width = disp.height

else:
width = disp.width # we swap height/width to rotate it to landscape!
height = disp.height

image = Image.new("RGB", (width, height))

Get drawing object to draw on image.
draw = ImageDraw.Draw(image)

Draw a green filled box as the background
draw.rectangle((0, 0, width, height), fill=(0, 255, 0))
disp.image(image)

Draw a smaller inner purple rectangle
draw.rectangle(

(BORDER, BORDER, width - BORDER - 1, height - BORDER - 1), fill=(170, 0, 136)
)

Load a TTF Font
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf",
FONTSIZE)

Draw Some Text

text = "Hello World!"

(font width, font height) = font.getsize(text)
draw. text(

©Adafruit Industries Page 55 of 63

(width // 2 - font width // 2, height // 2 - font _height // 2),
text,
font=font,
fill=(255, 255, 0),
)

Display image.
disp.image(image)

Just like in the last example, we'll do our imports, but this time we're including the
ImageFont Pillow module because we'll be drawing some text this time.

import digitalio

import board

from PIL import Image, ImageDraw, ImageFont
import adafruit rgb display.ili9341 as il1i9341

Next we'll define some parameters that we can tweak for various displays. The BORDE
R will be the size in pixels of the green border between the edge of the display and
the inner purple rectangle. The FONTSIZE will be the size of the font in points so that
we can adjust it easily for different displays.

BORDER = 20
FONTSIZE = 24

Next, just like in the previous example, we will set up the display, setup the rotation,
and create a draw object. If you have are using a different display than the ILI9341, go
ahead and adjust your initializer as explained in the previous example. After that, we
will setup the background with a green rectangle that takes up the full screen. To get
green, we pass in a tuple that has our Red, Green, and Blue color values in it in that
order which can be any integer from 0 to 255.

draw.rectangle((0, 0, width, height), fill=(0, 255, 0))
disp.image(image)

Next we will draw an inner purple rectangle. This is the same color value as our
example in displayio quickstart, except the hexadecimal values have been converted
to decimal. We use the BORDER parameter to calculate the size and position that we
want to draw the rectangle.

draw.rectangle((BORDER, BORDER, width - BORDER - 1, height - BORDER - 1),
fill=(170, 0, 136))

Next we'll load a TTF font. The DejaVuSans.ttf font should come preloaded on

your Pi in the location in the code. We also make use of the FONTSIZE parameter
that we discussed earlier.

©Adafruit Industries Page 56 of 63

Load a TTF Font
font = ImageFont.truetype('/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf"',
FONTSIZE)

Now we draw the text Hello World onto the center of the display. You may recognize
the centering calculation was the same one we used to center crop the image in the
previous example. In this example though, we get the font size values using the gets
ize() function of the font object.

Draw Some Text

text = "Hello World!"

(font width, font height) = font.getsize(text)

draw.text((width//2 - font width//2, height//2 - font height//2),
text, font=font, fill=(255, 255, 0))

Finally, just like before, we display the image.

disp.image(image)

®

o
hWC
| &
m
=S
=
c
=
-

JevEBITNI/N 141 ,2°C BZEXBHZ

Displaying System Information

In this last example we'll take a look at getting the system information and displaying
it. This can be very handy for system monitoring. Here's the code for that example:

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

This will show some Linux Statistics on the attached display. Be sure to adjust
to the display you have connected. Be sure to check the learn guides for more
usage information.

©Adafruit Industries Page 57 of 63

This example is for use on (Linux) computers that are using CPython with
Adafruit Blinka to support CircuitPython libraries. CircuitPython does
not support PIL/pillow (python imaging library)!

import time
import subprocess
import digitalio
import board
PIL import Image, ImageDraw, ImageFont

from
from
from
from
from
from
from

adafruit rgb display
adafruit rgb _display
adafruit rgb display
adafruit rgb display
adafruit rgb display
adafruit rgb display

import
import
import
import
import
import

il1i9341

st7789 # pylint: disable=unused-import
hx8357 # pylint: disable=unused-import
st7735 # pylint: disable=unused-import
ssd1351 # pylint: disable=unused-import
ssd1331 # pylint: disable=unused-import

Configuration for CS and DC pins (these are PiTFT defaults):
Ccs _pin = digitalio.DigitalInOQut(board.CEO)

dc_pin = digitalio.DigitalInOut(board.D25)

reset pin = digitalio.DigitalInOut(board.D24)

Config for display baudrate (default max is 24mhz):
BAUDRATE = 24000000

Setup SPI bus using hardware SPI:

spi =

board.SPI()

pylint: disable=line-too
Create the display:

disp = st7789.ST7789(spi
disp =

ST7789

disp = st7789.ST7789(spi

disp = st7789.ST7789(spi
1.47" ST7789

disp = st7789.ST7789(spi
1.9" ST7789

disp = hx8357.HX8357(spi
disp = st7735.ST7735R(sp
disp = st7735.ST7735R(sp
1.44" ST7735R

#

disp = st7735.ST7735R(sp

Rev A ST7735R
disp = st7735.ST7735R(sp
Rev B ST7735R
x _offset=26, y offset=1,

-long

, rotation=90, # 2.0" ST7789

st7789.S5T7789(spi, height=240, y offset=80, rotation=180, # 1.3", 1.54"

, rotation=90, width=135, height=240, x offset=53,
y offset=40, # 1.14" ST7789
, rotation=90, width=172, height=320, x offset=34, #

, rotation=270, width=170, height=320, x offset=35, #

, rotation=180, # 3.5" HX8357

i, rotation=90, # 1.8" ST7735R
i, rotation=270, height=128, x offset=2, y offset=3, #
i, rotation=90, bgr=True, width=80, # 0.96" MiniTFT
i, rotation=90, invert=True, width=80, # 0.96" MiniTFT

disp = ssd1351.SSD1351(spi, rotation=180, # 1.5" SSD1351
disp = ssd1351.SSD1351(spi, height=96, y offset=32, rotation=180, # 1.27" SSD1351
disp = ssd1331.SSD1331(spi, rotation=180, # 0.96" SSD1331
disp = 11i9341.ILI9341(

spi,

rotation=90, # 2.2", 2.4", 2.8", 3.2" ILI9341

Ccs=Ccs_pin,

dc=dc_pin,

rst=reset pin,
baudrate=BAUDRATE,

)

pylint: enable=line-too-long

Create blank image for drawing.

Make sure to create image with mode 'RGB' for full color.
if disp.rotation % 180 ==
height = disp.width # we swap height/width to rotate it to landscape!
width = disp.height

else:

o

90:

width = disp.width # we swap height/width to rotate it to landscape!

©Adafruit Industries

Page 58 of 63

height = disp.height
image = Image.new("RGB", (width, height))

Get drawing object to draw on image.
draw = ImageDraw.Draw(image)

Draw a black filled box to clear the image.
draw.rectangle((0, 0, width, height), outline=0, fill=(0, 0, 0))
disp.image(image)

First define some constants to allow easy positioning of text.
padding = -2
x =0

Load a TTF font. Make sure the .ttf font file is in the

same directory as the python script!

Some other nice fonts to try: http://www.dafont.com/bitmap.php

font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", 24)

while True:
Draw a black filled box to clear the image.
draw.rectangle((0, 0, width, height), outline=0, fill=0)

Shell scripts for system monitoring from here:

https://unix.stackexchange.com/questions/119126/command-to-display-memory -
usage-disk-usage-and-cpu-load

cmd = "hostname -I | cut -d' ' -fl1"

IP = "IP: " + subprocess.check output(cmd, shell=True).decode("utf-8")

cmd = "top -bnl | grep load | awk '{printf \"CPU Load: %.2f\", $(NF-2)}'"

CPU = subprocess.check output(cmd, shell=True).decode("utf-8")

cmd "free -m | awk 'NR==2{printf \"Mem: %s/%s MB %.2f%%\",
$3,$2,$3*100/$2 }'"

MemUsage = subprocess.check output(cmd, shell=True).decode("utf-8")

cmd = 'df -h | awk \'$NF=="/"{printf "Disk: %d/%d GB %s", $3,%$2,$5}\""'

Disk = subprocess.check output(cmd, shell=True).decode("utf-8")

cmd = "cat /sys/class/thermal/thermal zoneO/temp | awk '{printf \"CPU Temp: %.
1f C\", $(NF-0) / 1000}'" # pylint: disable=line-too-long

Temp = subprocess.check output(cmd, shell=True).decode("utf-8")

Write four lines of text.

y = padding

draw.text((x, y), IP, font=font, fill="#FFFFFF")

y += font.getsize(IP)[1]

draw.text((x, y), CPU, font=font, fill="#FFFF00")
y += font.getsize(CPU)[1]

draw.text((x, y), MemUsage, font=font, fill="#OQOFFO0")
y += font.getsize(MemUsage)[1l]

draw.text((x, y), Disk, font=font, fill="#0000FF")
y += font.getsize(Disk)[1]

draw.text((x, y), Temp, font=font, fill="#FFOOFF")

Display image.
disp.image(image)
time.sleep(0.1)

Just like the last example, we'll start by importing everything we imported, but we're
adding two more imports. The first one is time so that we can add a small delay and
the otheris subprocess so we can gather some system information.

import time
import subprocess
import digitalio
import board

©Adafruit Industries Page 59 of 63

from PIL import Image, ImageDraw, ImageFont
import adafruit rgb display.ili9341 as i1i9341

Next, just like in the first two examples, we will set up the display, setup the rotation,
and create a draw object. If you have are using a different display than the ILI9341, go
ahead and adjust your initializer as explained in the previous example.

Just like in the first example, we're going to draw a black rectangle to fill up the
screen. After that, we're going to set up a couple of constants to help with positioning
text. The first is the padding and that will be the Y-position of the top-most text and
the other is x which is the X-Position and represents the left side of the text.

First define some constants to allow easy positioning of text.
padding = -2
x =0

Next, we load a font just like in the second example.

font = ImageFont.truetype('/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf', 24)

Now we get to the main loop and by using while True: , it will loop until Control+C
is pressed on the keyboard. The first item inside here, we clear the screen, but notice
that instead of giving it a tuple like before, we can just pass 0 and it will draw black.

draw.rectangle((0, 0, width, height), outline=0, fill=0)

Next, we run a few scripts using the subprocess function that get called to the
Operating System to get information. The in each command is passed through awk in
order to be formatted better for the display. By having the OS do the work, we don't
have to. These little scripts came from https://unix.stackexchange.com/
questions/119126/command-to-display-memory-usage-disk-usage-and-cpu-
load

cmd "hostname -I | cut -d\' \' -f1"
IP = "IP: "+subprocess.check output(cmd, shell=True).decode("utf-8")

cmd = "top -bnl | grep load | awk '{printf \"CPU Load: %.2f\", $(NF-2)}'"
CPU = subprocess.check output(cmd, shell=True).decode("utf-8")
cmd = "free -m | awk 'NR==2{printf \"Mem: %s/%s MB %.2f%%\", $3,%$2,$3*100/$2 }'"

MemUsage = subprocess.check output(cmd, shell=True).decode("utf-8")

cmd = "df -h | awk '$NF==\"/\"{printf \"Disk: %d/%d GB %s\", $3,$2,$5}'"

Disk = subprocess.check output(cmd, shell=True).decode("utf-8")

cmd = "cat /sys/class/thermal/thermal zone®/temp | awk \'{printf \"CPU Temp: %.1f
C\", $(NF-0) / 1000}\'" # pylint: disable=line-too-long

Temp = subprocess.check output(cmd, shell=True).decode("utf-8")

Now we display the information for the user. Here we use yet another way to pass
color information. We can pass it as a color string using the pound symbol, just like we

©Adafruit Industries Page 60 of 63

would with HTML. With each line, we take the height of the line using getsize()

and move the pointer down by that much.

y = padding

draw.text((x, y), IP, font=font, fill="#FFFFFF")

y += font.getsize(IP)[1]

draw.text((x, y), CPU, font=font, fill="#FFFF00")

y += font.getsize(CPU)[1]

draw.text((x, y), MemUsage, font=font, fill=

y += font.getsize(MemUsage)[1]

draw.text((x, y), Disk, font=font, fill="#0000FF")

y += font.getsize(Disk)[1]

draw.text((x, y), Temp, font=font, fill="#FFOOFF")

Finally, we write all the information out to the display using disp.image()

"#0OOFFOO")

. Since we

are looping, we tell Python to sleep for 0.1 seconds so that the CPU never gets too

busy.

disp.image(image)
time.sleep(.1)

$20S ISOM)S
. 12099
83 0SIM ‘14

374

2.
»
33
B
g J
2

‘NI(l

NS

Q!D -

ninJjepe
IBHEBITNN/N LAl 42°C BZEXBHT

Troubleshooting

Display does not work on initial power but does work

after a reset.

The display driver circuit needs a small amount of time to be ready after initial
power. If your code tries to write to the display too soon, it may not be ready. It will
work on reset since that typically does not cycle power. If you are having this issue,

try adding a small amount of delay before trying to write to the display.

©Adafruit Industries

Page 61 of 63

In Arduino, use delay() to add a few milliseconds before calling tft.begin(). Adjust
the amount of delay as needed to see how little you can get away with for your
specific setup.

Downloads

Datasheets & Files

« Datasheet for the HX8357D chipset controller ()
» Datasheet for the 3.5" TFT display (raw) ()

« EagleCAD PCB files on GitHub ()

« Fritzing object in Adafruit Fritzing library ()

Schematic and PCB Print

1 2 3 7 5 3
© N (o]
=C [:
A LCO PSS = o=l = = =
A LEHE 4 t A
LCOTaE = A
i s ? T 1 S
o 4 \:‘ ’
o o 1
B o lj]
v i
4] ?
- Db+
.g i oo =
- i o0 A A
hd 1
o :E g Lcon = D D 1
c v % % ¥ T c
cn S N -
7 |
=
O: E
2] 1
A | A SO & MMC
: ., 000
J W B ens adafruit 5O~ P
g ; " 3.5in 48@x32@ rev B
be ' B o 8/18/2014 2:35:42 PH | Sheet: 1/1
o Drauing: >AUTHOR Adafruit Industries
1 2 T 3 73 B 5 1 5

©Adafruit Industries Page 62 of 63

http://www.adafruit.com/datasheets/HX8357-D_DS_April2012.pdf
http://www.adafruit.com/datasheets/Adafruit35inTFT.pdf
https://github.com/adafruit/3.5inch-TFT-Breakout-PCB
https://github.com/adafruit/Fritzing-Library

NG) ST 0 N =751
[= = = N= = =, . 0 o
« O
u
LCD“Data\.1/0 Touchscyeeno':'U LCD| control PWR
. Inputs

Bi—directional g i+| gesa—tgpe parallel

adafruit

Clpe M2
SPI

for

48@x320 TFT LCD-Breakout| Board
i—ryire Resistive Touchscreen
: Pouwer with 3.3U-5U

Logic |at 3.3U-5V

SPI Interface

= Q
[Y
o

s

yCard

+ - (2 I =)
& > Q

YEard-—Detect
C

©Adafruit Industries Page 63 of 63

	Adafruit 3.5" 320x480 Color TFT Touchscreen Breakout
	Table of Contents
	Overview
	Pinouts
	Wiring & Test
	8-Bit Wiring & Test
	SPI Wiring & Test
	Bitmaps (SPI Mode)
	Adafruit GFX library
	Touchscreen
	CircuitPython Displayio Quickstart
	Python Wiring and Setup
	Python Usage
	Troubleshooting
	Downloads

	Overview
	Pinouts
	SPI Mode
	8-Bit Mode
	Wiring & Test
	Assembling Header
	Prepare the header strip:
	Add the breakout board:
	Add the breakout board:

	8-Bit Wiring & Test
	8-Bit Wiring
	Part 1 - Power & backlight test
	Part 2 - Data Bus Lines

	8-Bit Library Install
	Prepare TFTLCD Library
	SPI Wiring & Test
	SPI Mode Jumpers
	Wiring
	Install Arduino Libraries
	Bitmaps (SPI Mode)
	Adafruit GFX library
	Touchscreen
	Download Library
	Touchscreen Paint (SPI mode)
	Touchscreen Paint (8-Bit mode)
	CircuitPython Displayio Quickstart
	Preparing the Breakout
	Required CircuitPython Libraries
	Code Example Additional Libraries

	CircuitPython Code Example
	Using Touch

	Where to go from here
	Python Wiring and Setup
	Wiring
	ILI9341 and HX-8357-based Displays
	2.2" Display
	2.4", 2.8", 3.2", and 3.5" Displays

	ST7789 and ST7735-based Displays
	1.3", 1.54", and 2.0" IPS TFT Display
	0.96", 1.14", and 1.44" Displays
	1.8" Display

	SSD1351-based Displays
	1.27" and 1.5" OLED Displays

	SSD1331-based Display
	0.96" OLED Display

	Setup
	Python Installation of RGB Display Library
	DejaVu TTF Font
	Pillow Library

	Python Usage
	Turning on the Backlight
	Displaying an Image
	Drawing Shapes and Text
	Displaying System Information

	Troubleshooting
	Display does not work on initial power but does work after a reset.

	Downloads
	Datasheets & Files
	Schematic and PCB Print

