
4DPi-32-II

Datasheet
Revision 2.19

Copyright © 2023 4D Systems

Content may change at any time. Please refer to the resource centre for latest documentation.

Contents

31. Description

42. Features

53. Pin Configuration and Summary

74. Connecting the Display to the Pi

74.1. Hardware Connection

84.2. Software Download/Installation

104.3. Calibrating the Touch Screen

114.4. Change the Display Orientation

124.5. SPI Frequency and Compression

134.6. Backlight Control

144.7. Parameters Listing

144.8. HDMI or 4DPi Output

154.9. DPI Adjustment

165. Display Module Part Numbers

166. Latest Kernel Versions

177. Mechanical Details

188. Schematic Diagram

199. Specifications

2110. Appendix 1 - Code Examples - Push Buttons

2110.1. Example for communicating to Push Buttons, for C language

2210.2. Example for communicating to Push Buttons, for Python language

2410.3. Example for Shutdown and Reset buttons, for C language

2610.4. Example for Shutdown and Reset buttons, for Python language

2811. Revision History

4D Systems DATASHEET Page 2 of 28

1. Description

The 4DPi-32-II (Revision 2.x Hardware) is a 3.2" Primary Display for the Raspberry Pi, which plugs

directly on top and displays the primary output like what is normally sent to the HDMI or Composite

output. It features an integrated Resistive Touch panel, enabling the 4DPi-32-II to function with the

Raspberry Pi without the need for a mouse.

Communication between the 4DPi-32-II and the Raspberry Pi is interfaced with a high-speed 48Mhz

SPI connection, which uses an onboard processor for direct command interpretation and SPI

communication compression, and features a customised DMA-enabled kernel. This combination

allows this display to output 25FPS when displaying a typical image/video and can achieve higher

depending on if the image can be compressed.

The 4DPi-32-II is designed to work with the Raspberry Pi Operating System (previously named

Raspbian) running on the Raspberry Pi, as that is the official Raspberry Pi operating system. It is also

compatible with Pixel.

4DPi-32-II Hardware states 4DPi-32 as the part number but is identifiable as the HW Rev of the PCB is 2.0
or above.

Raspberry Pi is a trademark of the Raspberry Pi Foundation, and all references to the words 'Raspberry Pi'
or the use of its logo/marks are strictly about the Raspberry Pi product, and how this product is
compatible with but is not associated with the Raspberry Pi Foundation in any way.

Note

•

•

4DPi-32-II Description

4D Systems DATASHEET Page 3 of 28

2. Features

Universal 3.2" Primary Display for the Raspberry Pi.

Compatible with Raspberry Pi A+, B+, Pi2, Pi3, Pi3 B+, Pi4, Pi Zero, Pi Zero W and Pi Zero 2 W.

Revision 2.x hardware is not compatible with older A or B models.

320x240 QVGA Resolution, RGB 65K true-to-life colours, TFT Screen with integrated 4-wire

Resistive Touch Panel.

Display full GUI output / primary output, just like a monitor connected to the Raspberry Pi

High -Speed 48MHz SPI connection to the Raspberry Pi, featuring SPI compression technology.

The typical frame rate of 25 Frames per second (FPS), is higher if the image can be compressed

further by the kernel. Lower if no compression is possible.

Powered directly off the Raspberry Pi, no external power supply is required.

On/Off or PWM controlled backlight, selectable by onboard jumper.

On board EEPROM for board identification, following the HAT standard.

Module dimensions: 57.3 x 92.4 x 20.5mm (including corner plates).

Weighing ~ 55g.

Display Viewing Area: 48.60 x 64.80mm

4x corner plates with 2.6mm holes for mechanical mounting.

RoHS and CE Compliant.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

4DPi-32-II Features

4D Systems DATASHEET Page 4 of 28

3. Pin Configuration and Summary

P1 Pinout (Raspberry Pi Connector – Female Connector)

Pin Symbol I/O Description

1 +5V P
+5V Supply Pin, connected to the main 5V supply of the
Raspberry Pi

2 +3.3V P
+3.3V Supply Pin, connected to the main 3.3V supply of the
Raspberry Pi.

3 5V P
+5V Supply Pin, connected to the main 5V supply of the
Raspberry Pi

4 SDA1 I/O I2C SDA1

5 GND P
Ground Pin, connected to the main system Ground of the
Raspberry Pi

6 SCL1 O I2C SCL1

7 GPIO14 I/O GPIO on the Raspberry Pi - unused

8 GPIO4 I/O GPIO on the Raspberry Pi - unused

9 GPIO15 I/O GPIO on the Raspberry Pi - unused

10 GND P
Ground Pin, connected to the main system Ground of the
Raspberry Pi

11 GPIO18 I/O
GPIO on the Raspberry Pi – Can be used for PWM Backlight,
else unused

12 PENIRQ I Interrupt for the touchscreen controller

13 GND P
Ground Pin, connected to the main system Ground of the
Raspberry Pi

14 KEYIRQ I Interrupt for the push buttons

15 GPIO23 I/O GPIO on the Raspberry Pi - unused

16 GPIO22 I/O GPIO on the Raspberry Pi - unused

17 GPIO24 I/O GPIO on the Raspberry Pi - unused

18 +3.3V P
+3.3V Supply Pin, connected to the main 3.3V supply of the
Raspberry Pi

19 GND P
Ground Pin, connected to the main system Ground of the
Raspberry Pi

4DPi-32-II Pin Configuration and Summary

4D Systems DATASHEET Page 5 of 28

Pin Symbol I/O Description

20 MOSI O SPI MOSI Pin

21 GPIO25 I/O GPIO on the Raspberry Pi - unused

22 MISO I SPI MISO Pin

23 SPI-CS0 O
SPI Chip Select 0 – Used for Xilinx Processor for Display, to
Raspberry Pi

24 SCK O SPI SCK Clock Pin

25 SPI-CS1 O SPI Chip Select 1 – unused

26 GND P
Ground Pin, connected to the main system Ground of the
Raspberry Pi

27 ID-SC O I2C ID EEPROM

28 ID-SD I/O I2C ID EEPROM

29 GND P
Ground Pin, connected to the main system Ground of the
Raspberry Pi

30 GPIO5 I/O GPIO on the Raspberry Pi - unused

31 GPIO12 I/O GPIO on the Raspberry Pi - unused

32 GPIO6 I/O GPIO on the Raspberry Pi - unused

33 GND P
Ground Pin, connected to the main system Ground of the
Raspberry Pi

34 GPIO13 I/O GPIO on the Raspberry Pi - unused

35 GPIO16 I/O GPIO on the Raspberry Pi - unused

36 GPIO19 I/O GPIO on the Raspberry Pi - unused

37 GPIO20 I/O GPIO on the Raspberry Pi - unused

38 GPIO26 I/O GPIO on the Raspberry Pi - unused

39 GPIO21 I/O GPIO on the Raspberry Pi - unused

40 GND P
Ground Pin, connected to the main system Ground of the
Raspberry Pi

I = Input, O = Output, P = Power

The onboard processor of the 4DPi-32-II uses one of the Chip Select(CS) pins on the Raspberry Pi's SPI Bus
(SPI-CS0). There is SPI-CS1 still available for use by the User.

The on-board Touch Screen Controller utilises the I2C bus (SDA1, SCL1) to communicate to the Raspberry
Pi. The SPI Bus can communicate with other devices also, so is not restricted only to the 4DPi's touch
controller.

Note

•

•

•

4DPi-32-II Pin Configuration and Summary

4D Systems DATASHEET Page 6 of 28

4. Connecting the Display to the Pi

4.1. Hardware Connection

The 4DPi-32-II is easily connected to a Raspberry Pi, by simply aligning the Female 40-way header

with the Raspberry PI's Male 40-way header, and connecting them - ensuring the aligning is correct

and all pins are seated fully and correctly.

If development is desired on the bench before the mounting of the display, please ensure some sort

of support is provided between the 4DPi-32-II and the Raspberry Pi so they do not touch

inadvertently.

Included in the box is a small double-sided sticky rubber pad. This is optional, however, can be

placed on the top of the Ethernet connector of the Raspberry Pi, to provide some support to the

display.

The 4DPi-32-II is supported only by the 40-way header, and therefore pressing on the touch screen may result
in the 4DPi-32-II moving towards the Raspberry Pi, and therefore the circuitry touching the Raspberry Pi. This
could result in damage to either product if a short circuit were to occur. It is therefore highly encouraged to
mount the display and attach the Pi to the mounted display.

Note

4DPi-32-II Connecting the Display to the Pi

4D Systems DATASHEET Page 7 of 28

4.2. Software Download/Installation

4D Systems has prepared a custom DMA-enabled kernel for use with the Raspberry Pi Operating

System (previously named Raspbian OS), which is available for download as a single package. This

can be installed over your existing OS installation, or it can be applied over a fresh image. We

recommend that you apply it over a fresh image.

If you are starting from a fresh image, start from Step 1, or else skip to step 3 if you already have an

OS image and want to apply this kernel to that. If you are not installing from a fresh image and you

encounter issues, we won't know the settings of your OS so please try and use a fresh image to

determine any modifications that conflict with our kernel release. If you are running an OS with a

Kernel version later than our Kernel Pack, you might encounter problems. Please contact support if

you have problems. If you already have a custom Kernel, then applying our Kernel Pack over your

custom Kernel will likely stop your previous modifications from working. You will need to build the

kernel from scratch using the steps below.

STEPS (recommendations):

Install a fresh operating system as discussed on the Raspberry Pi website. Enable SSH and Wi-Fi

as preferred.

Connect the 4DPi and insert the uSD card into the Raspberry Pi. You will need network

connectivity to proceed with the installation. A monitor, keyboard and mouse are required if not

using SSH. SSH can be configured in Step 1. Power on the Raspberry Pi and make sure it is

connected to your network.

Login to the Raspberry Pi using the standard 'pi' and 'raspberry' credentials or as configured in

Step 1. If SSH is not used, open the Terminal app.

You are welcome to perform a system update if prompted, but please take note that if you

install a newer kernel than what our Kernel Pack offers, then you could encounter problems.

Therefore, it's not advisable to update the system, as this could update the Kernel.

Typically, on modern versions of the Pi OS, this following step is not required or is done

automatically. However, it is here for reference. Expand the file system on the downloaded image

using raspi-config (submenu Expand Filesystem). After exiting raspi-config a reboot is needed.

Once rebooted, you need to do an apt-get upgrade , because doing this after applying the Kernel

Pack will render the 4DPi modifications disabled. Please note that doing an upgrade could

change your current Kernel which could make the version installed newer than the Kernel Pack

you are about to install next. The Kernel pack must be applied to a kernel very close (a newer

Kernel Pack is generally OK) if not identical to the kernel your OS is running, or there will be

issues.

Log into your Raspberry Pi again, you will need to download and install the Kernel Pack which

supports the 4DPi. The following step requires sudo root access.

1.

2.

3.

4.

5.

$ sudo raspi-config
$ sudo reboot

6.

7.

4DPi-32-II Software Download/Installation

4D Systems DATASHEET Page 8 of 28

https://www.raspberrypi.com/documentation/computers/getting-started.html#installing-the-operating-system

To download and install files, enter the following commands in terminal/shell/SSH to download

the kernel from the 4D Systems Server:

Then extract the kernel pack:

If you encounter issues running the above command, try adding --no-same-owner

The package selects the kernel required for the Raspberry Pi model, automatically. If you

want to check for the kernel packages released by 4D systems, proceed to the Latest Kernel

Versions section.

Reboot the Raspberry Pi by running the command

The desktop should begin to show on the 4DPi once the Raspberry Pi has booted.

Doing an apt-get upgrade after the Kernel Pack has been installed, will disable the 4DPi and its

modifications, as the modules and Kernel would be updated in this process. To reenable, be sure

to download the latest Kernel Pack (check this datasheet again if there has been an updated

version) and perform the same steps to get up and running again. Results may vary, and it's

always advisable to apply the 4DPi Kernel Pack to a fresh image, but this is not always possible.

ADVANCED USERS: If you need to make custom modifications to your Kernel, and want the

4DPi to function, you will need to build the Kernel from the source, and include the 4DPi files in

the process. The link to our source is on our website, along with the steps required to add in the

4DPi files so this can be enabled in menuconfig while building the Kernel.

8.

$ wget https://4dsystems.com.au/download/14644/ -O gen4-hats.tar.gz

•

$ sudo tar --keep-directory-symlink -xzvf gen4-hats.tar.gz -C /

•

$ sudo tar --no-same-owner --keep-directory-symlink -xzvf gen4-hats.tar.gz -C /

•

9.

sudo reboot now

10.

11.

An upgrade should only be done if the latest RPi OS kernel is supported by the latest 4D kernel pack.
Otherwise, installing the 4D kernel pack will downgrade the kernel and problems may occur.

Warning

12.

It is advisable to use the RPi OS release with a matching kernel version as one of the latest 4DPi packages
that you plan to use. If support for a newer version is not yet available, please raise a ticket for assistance.

RPi OS based on Debian Bullseye is not fully compatible with our kernel release. Please use the latest
Legacy version which is based on Debian Buster instead.

Note

•

•

4DPi-32-II Software Download/Installation

4D Systems DATASHEET Page 9 of 28

https://helpdesk.4dsystems.com.au

4.3. Calibrating the Touch Screen

Each 4DPi which is shipped from the 4D Systems factory is slightly different, in the sense that each

of the touch screens has a slightly different calibration. To get the best from your 4DPi, you will need

to calibrate the display, so it is as accurate as possible.

To calibrate the touch screen, the xinput_calibrator is required, and the following steps should be

carried out. Make sure the Desktop is not running before you start, quit the desktop if it is and return

to the terminal prompt.

Install xinput_calibrator (if not installed by default) by running this command in the terminal.

Install the event device input driver:

Rename 10-evdev.conf file to 45-evdev.conf.

Check if evdev.conf has a higher number than libinput.conf.

The user should get something like this:

Perform a reboot

Only resistive touch display modules could be calibrated.

Note

1.

sudo apt-get install xinput-calibrator

2.

sudo apt-get install xserver-xorg-input-evdev

3.

sudo mv /usr/share/X11/xorg.conf.d/10-evdev.conf /usr/share/X11/xorg.conf.d/45-evdev.conf

4.

ls /usr/share/X11/xorg.conf.d/

•

10-quirks.conf 40-libinput.conf 45-evdev.conf 99-fbturbo.conf

5.

sudo reboot now

4DPi-32-II Calibrating the Touch Screen

4D Systems DATASHEET Page 10 of 28

Reconnect to SSH and run xinput calibrator.

Perform the calibration and copy results. The result should be something like this:

You may test the changes after xinput calibrator ends. To make the changes permanent, paste

the results to /etc/X11/xorg.conf.d/99-calibration.conf .

Save the file and perform a reboot

The Display should now be calibrated.

4.4. Change the Display Orientation

To change the display orientation, simply edit the /boot/cmdline.txt file

Add the parameter below after the console parts in the parameter list:

And change this to have the value of 0, 90, 180 or 270. It should look something like this:

Save the file and restart your Raspberry Pi.

The touch screen will automatically remap the alignment thanks to the custom kernel.

After changing the Display Orientation, you need to calibrate again the screen.

6.

DISPLAY=:0.0 xinput_calibrator

•

Section "InputClass"
Identifier "calibration"
MatchProduct "AR1020 Touchscreen"
Option "Calibration" "98 4001 175 3840"
Option "SwapAxes" "0"

EndSection

7.

sudo nano /etc/X11/xorg.conf.d/99-calibration.conf

8.

sudo reboot now

9.

4d_hats.rotate = 90

console=serial0,115200 console=tty1 4d_hats.rotate=90 root= (etc etc)

4DPi-32-II Change the Display Orientation

4D Systems DATASHEET Page 11 of 28

4.5. SPI Frequency and Compression

The 4DPi can be adjusted to work with a range of SPI Frequencies and levels of compression,

depending on the requirements of the product/project.

Increasing the frequency can result in a higher Frame Rate (FPS), however, will use more power and

processor time. Increasing the level of compression can also result in a higher FPS but may cause the

display to corrupt. By default, an SPI Frequency of 48Mhz is used, with a Compression level of 7.

The following parameters are the defaults in the /boot/cmdline.txt file and can be edited to adjust

the Frequency and Compression level.

Setting compress to 1 will enable the kernel to control the level of compression based on the

frequency selected. This however is not guaranteed to have a good result and may require manually

setting the compression level of corruption on the display is experienced.

If corruption or display anomalies occur at any given compression level, try to lower it by 1 value and

check if this has improved.

4d_hats.sclk=48000000
4d_hats.compress=7

Changing the frequency and compression requires a restart of the Raspberry Pi.

Note

4DPi-32-II SPI Frequency and Compression

4D Systems DATASHEET Page 12 of 28

4.6. Backlight Control

The backlight is controllable in two possible ways. One is using simple on/off control, which is done

by sending a GPIO command to the onboard processor, which then turns the backlight on and off.

The other is using a DMA-PWM output from the Raspberry PI and controlling the backlight

brightness.

The control of the backlight is selected using the Jumper J1, selecting ON/OFF or DMA control. For

the simple ON/OFF control GPIO18 is used.

The backlight brightness can be controlled from the terminal or a bash script.

Executing the following command will control the backlight.

To turn the backlight OFF:

To turn the backlight ON:

To control the backlight using DMA-PWM, ensure that the Jumper J1 is on PWM.

The following command can be used to set the backlight from 0 to 100%.

The above will set the backlight to 100%. Simply change the 'echo 31' to anything from 0 to 31.

•

sudo sh -c 'echo 0 > /sys/class/backlight/4d-hats/brightness'

•

sudo sh -c 'echo 1 > /sys/class/backlight/4d-hats/brightness'

•

sudo sh -c 'echo 31 > /sys/class/backlight/4d-hats/brightness'

4DPi-32-II Backlight Control

4D Systems DATASHEET Page 13 of 28

4.7. Parameters Listing

The following is a list of all the custom parameters used by the 4DPi.

rotate: Screen rotation 0/90/180/270 (int)

compress: SPI compression 0/1/2/3/4/5/6/7 (int)

sclk: SPI clock frequency (long)

Valid SPI Frequency values (4d-hats.sclk):

Values can be almost anything. This has been tested up to 64Mhz. Common values would

include 64000000 (64MHz), 48000000 (Default), 32000000, 24000000 etc.

Valid Compression values (4d-hats.compress):

0 (compression off)

1 (compression on, auto set based on sclk value)

2 (lowest), 3, 4, 5, 6, 7 (highest compression)

These parameters can be set or read from the /boot/cmdline.txt file, and they can be read from the /

sys/module/4d_hats/parameters/ directory.

For example:

Will display the current rotation saved.

4.8. HDMI or 4DPi Output

To switch the X Windows output being displayed on 4DPi or HDMI output, X can be launched using

either of the following commands:

Alternatively, these commands do the same thing:

cat /sys/module/4d_hats/parameters/rotate

startx -- -layout TFT
startx -- -layout HDMI

FRAMEBUFFER=/dev/fb1 startx
startx

4DPi-32-II Parameters Listing

4D Systems DATASHEET Page 14 of 28

4.9. DPI Adjustment

It is possible to change the DPI output of the 4DPi in the same way as other LXDE-based systems.

Login as pi and open terminal

Check the current DPI settings by running this command:

The current dpi is listed next to the Xft.dpi listing.

You can change the DPI by doing this.

Edit the following file, and then merge it:

Add this line to the file: Xft.dpi: 75 .

This will set the DPI to 75.

Save and exit the file.

Merge it so the value gets used, by doing the following:

You can now check the DPI settings.

Reboot the Pi, and your changes should take effect.

Changing the DPI can make the screen blurry, so take care when adjusting these values. If you get to

a point where it is unreadable, SSH into your Pi and change the value back to something reasonable.

Ideally, DPI is set based on your resolution, however, for small-resolution displays, it can be desirable

to make the DPI smaller so you can fit more on the screen.

•

•

xrdb -query -all

•

•

•

nano ~/.Xresources

•

•

•

•

xrdb -merge ~/.Xresources

•

xrdb -query -all

•

4DPi-32-II DPI Adjustment

4D Systems DATASHEET Page 15 of 28

5. Display Module Part Numbers

The following is a breakdown of the part numbers and what they mean.

Example:

4DPi-32-II

4DPi - Display Family

32 - Display size (3.2")

II - Hardware Revision 2.0 and higher

6. Latest Kernel Versions

Here is the list of the kernel patches released by 4D systems.

Latest releases:

gen4-hats_5-10-103.tar.gz

gen4-hats_5-15-32_32bit.tar.gz (refer to the 2nd point from the note below)

Previous releases:

gen4-hats_5-10-76-4DPi.tar.gz

gen4-hats_5-10-63.tar.gz

gen4-hats_5-4-68.tar.gz

gen4-hats_4-19-57-v7l+_v1.0.tar.gz

gen4-hats_4-14-34_v1.1.tar.gz

gen4-hats_4-9-80_v1.1.tar.gz

gen4-hats_4-9-59_v1.2.tar.gz

•

•

•

•

•

•

•

•

•

•

It is highly advisable to use a Raspberry Pi OS release with matching kernel version (first 2 numbers and
3rd number need to be less than or equal) as the Kernel Pack you decide to use. Please refer to step 1
under the Software Download/Installation section regarding current recommendations.

For example, if your OS uses Kernel 5.4.60, then applying our 5.4.68 Kernel Pack is a good match.

Example 2, If your OS uses 5.4.79, or 5.5.10, then applying the 5.4.68 Kernel Pack likely would not be the
best idea as it would be a downgrade, and some things may not function correctly.

This kernel package is versions higher than the recommended latest Buster (legacy) version release. This
was built to be able to update the Buster version to a matching kernel version of the Bullseye release. To
match the kernel, you can use the command: sudo rpi-update <git hash>

Git hash must be the commit in the Raspberry Pi Firmware Files repository with the same kernel version
as the 4DPi package.

Some older kernel releases may be available upon request. Please contact 4D Systems Support Team for
more information.

Note

1.

2.

3.

4DPi-32-II Display Module Part Numbers

4D Systems DATASHEET Page 16 of 28

https://4dsystems.com.au/download/14344/
https://4dsystems.com.au/download/14644/
https://4dsystems.com.au/download/14649/
https://4dsystems.com.au/download/9392/
https://4dsystems.com.au/download/9393/
https://4dsystems.com.au/download/9394/
https://4dsystems.com.au/download/9398/
https://4dsystems.com.au/download/14648/
https://4dsystems.com.au/download/14645/
https://github.com/raspberrypi/rpi-firmware/commits/master
https://helpdesk.4dsystems.com.au/hc/en-au

7. Mechanical Details

4DPi-32-II Mechanical Details

4D Systems DATASHEET Page 17 of 28

https://resources.4dsystems.com.au/datasheets/4dpi/pdf/4DPi-32/4DPi-32_drawing_R_2_0.pdf
https://resources.4dsystems.com.au/datasheets/4dpi/pdf/4DPi-32/4DPi-32_drawing_R_2_0.pdf
https://resources.4dsystems.com.au/datasheets/4dpi/pdf/4DPi-32/4DPi-32_drawing_R_2_0.pdf

8. Schematic Diagram

4DPi-32-II Schematic Diagram

4D Systems DATASHEET Page 18 of 28

https://resources.4dsystems.com.au/datasheets/4dpi/pdf/4DPi-32/4DPi-32-REV2.0.pdf
https://resources.4dsystems.com.au/datasheets/4dpi/pdf/4DPi-32/4DPi-32-REV2.0.pdf
https://resources.4dsystems.com.au/datasheets/4dpi/pdf/4DPi-32/4DPi-32-REV2.0.pdf

9. Specifications

Absolute Maximum Ratings

Operating ambient temperature -15°C to +65°C

Storage temperature -30°C to +70°C

Stresses above those listed here may cause permanent damage to the device. This is a stress rating only and
functional operation of the device at those or any other conditions above those indicated in the
recommended operation listings of this specification is not implied. Exposure to maximum rating conditions
for extended periods may affect device reliability.

Note

Recommended Operating Conditions

Parameter Conditions Min Typ Max Units

Supply Voltage
(+3.3V)

Stable external supply
required

3.0 3.3 4.0 V

Supply Voltage
(+5V)

Stable external supply
required

4.5 5.0 5.5 V

Operating
Temperature

-10 -- +60 °C

Global Characteristics Based on Operating Conditions

Parameter Conditions Min Typ Max Units

Supply Current
(ICC)

3.3V Supply -- 100 -- mA

Backlight
Current (ICC)

5V Supply -- 150 -- mA

Display
Endurance

Hours of operation, measured to when
the display is 50% original brightness

-- 20000 -- H

PERFORMANCE

Parameter Conditions Min Typ Max Units

Frame Rate
(FPS)

Video Playback, Full Screen, 320x240. A higher FPS can
be achieved if the display outputs lots of blocks of the
same colour. See the SPI Frequency and Compression
section

-- 25 -- FPS

4DPi-32-II Specifications

4D Systems DATASHEET Page 19 of 28

LCD DISPLAY INFORMATION

Parameter Conditions Specification

Display Type TFT Transmissive LCD

Display Sizes 3.2" Diagonal

Display Resolution 240 x 320 (Portrait View)

Display Brightness 5V Supply, gen4-uLCD-32D 200 cd/m2 (typical)

5V Supply, gen4-uLCD-32D-CLB 194 cd/m2 (typical)

5V Supply, gen4-uLCD-32DT 160 cd/m2 (typical)

5V Supply,gen4-uLCD-32DCT-
CLB

190 cd/m2 (typical)

Display Contrast Ratio Typical 500:1

Display Viewing
Angles

Above Centre 35 Degrees

Below Centre 55 Degrees

Left of Centre 55 Degrees

Right of Centre 55 Degrees

Display Viewing
Direction

6 O'clock Display (Optimal viewing is from below when in
Portrait mode)

Display Backlighting White LED Backlighting 1x6 Parallel LED's

Pixel Pitch 0.2025 x 0.2025 (Square pixels)

Pixel Density
Number of pixels in 1 row in
25.44 mm

127 DPI/PPI

Ordering Information

Order Code: 4DPi-32-II

Packaging: Module sealed in a 4D Systems box

4DPi-32-II Specifications

4D Systems DATASHEET Page 20 of 28

10. Appendix 1 - Code Examples - Push Buttons

10.1. Example for communicating to Push Buttons, for C language

// test program to read state of buttons on 4D Systems 4DPi displays

#include <stdio.h>
#include <sys/types.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>
#include <sys/ioctl.h>

#define LCD4DPI_GET_KEYS _IOR('K', 1, unsigned char *)

void print_keys(int fd)
{

unsigned char keys;

if (ioctl(fd, LCD4DPI_GET_KEYS, &keys) == -1)
{

perror("_apps ioctl get");
}
else
{

printf("Keys : %2x\n", keys);
}

}

int main(int argc, char *argv[])
{

char *file_name = "/dev/fb1";
int fd;

fd = open(file_name, O_RDWR);
if (fd == -1)
{

perror("_apps open");
return 2;

}

print_keys(fd);
printf("Ioctl Number: (dec)%d (hex)%x\n", LCD4DPI_GET_KEYS, LCD4DPI_GET_KEYS);

close (fd);
return 0;

}

4DPi-32-II Appendix 1 - Code Examples - Push Buttons

4D Systems DATASHEET Page 21 of 28

10.2. Example for communicating to Push Buttons, for Python language

#!/usr/bin/python

import array, fcntl
from time import sleep

test program to read state of buttons on 4D Systems 4DPi displays

LCD4DPI_GET_KEYS = -2147202303

_IOC_NRBITS = 8
_IOC_TYPEBITS = 8
_IOC_SIZEBITS = 14
_IOC_DIRBITS = 2
_IOC_DIRMASK = (1 << _IOC_DIRBITS) - 1
_IOC_NRMASK = (1 << _IOC_NRBITS) - 1
_IOC_TYPEMASK = (1 << _IOC_TYPEBITS) - 1
_IOC_NRSHIFT = 0
_IOC_TYPESHIFT = _IOC_NRSHIFT+_IOC_NRBITS
_IOC_SIZESHIFT = _IOC_TYPESHIFT+_IOC_TYPEBITS
_IOC_DIRSHIFT = _IOC_SIZESHIFT+_IOC_SIZEBITS
_IOC_NONE = 0
_IOC_WRITE = 1
_IOC_READ = 2

def _IOC(dir, type, nr, size):
print 'dirshift {}, typeshift {}, nrshift {}, sizeshift {}'.format(_IOC_DIRSHIFT,

_IOC_TYPESHIFT, _IOC_NRSHIFT, _IOC_SIZESHIFT)
ioc = (dir << _IOC_DIRSHIFT) | (type << _IOC_TYPESHIFT) | (nr << _IOC_NRSHIFT) | (size <<

_IOC_SIZESHIFT)
if ioc > 2147483647: ioc -= 4294967296
return ioc

#def _IO(type, nr):
return _IOC(_IOC_NONE, type, nr, 0)

def _IOR(type,nr,size):
return _IOC(_IOC_READ, type, nr, size)

#def _IOW(type,nr,size):
return _IOC(_IOC_WRITE, type, nr, sizeof(size))

LCD4DPI_GET_KEYS = _IOR(ord('K'), 1, 4)
buf = array.array('h',[0])

print 'Press Top & Bottom buttons simultaneously to exit'

with open('/dev/fb1', 'rw') as fd:

while True:
fcntl.ioctl(fd, LCD4DPI_GET_KEYS, buf, 1) # execute ioctl call to read the keys
keys = buf[0]

if not keys & 0b00001:
print "KEY1" ,

if not keys & 0b00010:
print "KEY2" ,

if not keys & 0b00100:

4DPi-32-II Example for communicating to Push Buttons, for Python language

4D Systems DATASHEET Page 22 of 28

print "KEY3" ,
if not keys & 0b01000:
print "KEY4" ,

if not keys & 0b10000:
print "KEY5" ,

if keys != 0b11111:
print

if keys == 0b01110: # exit if top and bottom pressed
break

sleep(0.1)

4DPi-32-II Example for communicating to Push Buttons, for Python language

4D Systems DATASHEET Page 23 of 28

10.3. Example for Shutdown and Reset buttons, for C language

// test program to Shutdown or Restart Pi using buttons on 4D Systems 4DPi displays

#include <stdio.h>
#include <sys/types.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>
#include <sys/ioctl.h>

#define LCD4DPI_GET_KEYS _IOR('K', 1, unsigned char *)

int get_keys(int fd, unsigned char *keys)
{

if (ioctl(fd, LCD4DPI_GET_KEYS, keys) == -1)
{

perror("_apps ioctl get");
return 1;
}
*keys &= 0b11111;
return 0;

}

int main(int argc, char *argv[])
{

char *file_name = "/dev/fb1";
int fd;
unsigned char key_status;

fd = open(file_name, O_RDWR);
if (fd == -1)
{

perror("_apps open");
return 2;

}

key_status = 0b11111;
while(key_status & 0b00001) // press key 1 to exit
{

if(get_keys(fd, &key_status) != 0)
break;

// printf("key_status: %x\n", key_status);

if(!(key_status & 0b10000))
{

system("sudo shutdown -h now");
break;

}

if(!(key_status & 0b01000))
{

system("sudo reboot");
break;

}

sleep(0.1);
}

4DPi-32-II Example for Shutdown and Reset buttons, for C language

4D Systems DATASHEET Page 24 of 28

close(fd);
return 0;

}

4DPi-32-II Example for Shutdown and Reset buttons, for C language

4D Systems DATASHEET Page 25 of 28

10.4. Example for Shutdown and Reset buttons, for Python language

#!/usr/bin/python

import array, fcntl, os
from time import sleep
test program to Shutdown or Restart Pi using buttons on 4D Systems 4DPi displays

#LCD4DPI_GET_KEYS = -2147202303

_IOC_NRBITS = 8
_IOC_TYPEBITS = 8
_IOC_SIZEBITS = 14
_IOC_DIRBITS = 2

_IOC_DIRMASK = (1 << _IOC_DIRBITS) - 1
_IOC_NRMASK = (1 << _IOC_NRBITS) - 1
_IOC_TYPEMASK = (1 << _IOC_TYPEBITS) - 1

_IOC_NRSHIFT = 0
_IOC_TYPESHIFT = _IOC_NRSHIFT+_IOC_NRBITS
_IOC_SIZESHIFT = _IOC_TYPESHIFT+_IOC_TYPEBITS
_IOC_DIRSHIFT = _IOC_SIZESHIFT+_IOC_SIZEBITS

_IOC_NONE = 0
_IOC_WRITE = 1
_IOC_READ = 2

def _IOC(dir, type, nr, size):
print 'dirshift {}, typeshift {}, nrshift {}, sizeshift {}'.format(_IOC_DIRSHIFT,

_IOC_TYPESHIFT, _IOC_NRSHIFT, _IOC_SIZESHIFT)
ioc = (dir << _IOC_DIRSHIFT) | (type << _IOC_TYPESHIFT) | (nr << _IOC_NRSHIFT) | (size <<

_IOC_SIZESHIFT)
if ioc > 2147483647: ioc -= 4294967296
return ioc

#def _IO(type, nr):
return _IOC(_IOC_NONE, type, nr, 0)

def _IOR(type,nr,size):
return _IOC(_IOC_READ, type, nr, size)

#def _IOW(type,nr,size):
return _IOC(_IOC_WRITE, type, nr, sizeof(size))

LCD4DPI_GET_KEYS = _IOR(ord('K'), 1, 4)
#print 'ssd {} {:12} {:0>8x} {:0>32b}'.format(ssd1289, hex(ssd1289), ssd1289, ssd1289)
buf = array.array('h',[0])

with open('/dev/fb1', 'rw') as fd:

while True:
fcntl.ioctl(fd, LCD4DPI_GET_KEYS, buf, 1) # execute ioctl call to read the keys
keys = buf[0]

if not keys & 0b00001:
break

if not keys & 0b10000:
os.system("sudo shutdown -h now")

4DPi-32-II Example for Shutdown and Reset buttons, for Python language

4D Systems DATASHEET Page 26 of 28

break
if not keys & 0b01000:
os.system("sudo reboot")
break

sleep(0.1)

4DPi-32-II Example for Shutdown and Reset buttons, for Python language

4D Systems DATASHEET Page 27 of 28

11. Revision History

Hardware Revision

Revision Number Date Description

2.0 09/22/2015 Initial Public Release Version

Datasheet Revision

Revision
Number

Date Description

2.0 09/28/2015 Initial Public Release Version

2.1 12/17/2015 Cosmetic changes on the datasheet

2.2 03/10/2016 Cosmetic changes on the datasheet

2.3 04/11/2016 Update of 4d kernel image and Cosmetic changes on the datasheet

2.4 05/24/2016 Update of 4d kernel image and Cosmetic changes on the datasheet

2.5 10/21/2016 Update of 4d kernel image and Cosmetic changes on the datasheet

2.6 01/11/2017 Update of 4d kernel image and Cosmetic changes on the datasheet

2.7 08/01/2017 Update of 4d kernel image and Cosmetic changes on the datasheet

2.8 03/07/2018 Update of 4d kernel image and Cosmetic changes on the datasheet

2.9 03/23/2018 Update of 4d kernel image and Cosmetic changes on the datasheet

2.10 03/28/2018 Cosmetic changes on the datasheet

2.11 04/11/2018 Cosmetic changes on the datasheet

2.12 07/14/2018 Update of 4d kernel image and cosmetic changes on the datasheet

2.13 03/16/2019 Cosmetic changes on the datasheet

2.14 02/08/2019
Cosmetic Changes to gen4 Primary Displays for Raspberry Pi and addition of the
Latest Kernel Versions

2.15 14/04/2020
Cosmetic Changes to gen4 Primary Displays for Raspberry Pi and addition of the
Latest Kernel Versions

2.16 08/27/2020 Added notes regarding using matching kernel versions

2.17 28/06/2021 Updated instructions to contain the latest known information

2.18 17/06/2022 Updated latest kernel versions and instructions

2.19 06/01/2023 Modified datasheet for web-based documentation

4DPi-32-II Revision History

4D Systems DATASHEET Page 28 of 28

	Description
	Features
	Pin Configuration and Summary
	Connecting the Display to the Pi
	Hardware Connection
	Software Download/Installation
	Calibrating the Touch Screen
	Change the Display Orientation
	SPI Frequency and Compression
	Backlight Control
	Parameters Listing
	HDMI or 4DPi Output
	DPI Adjustment

	Display Module Part Numbers
	Latest Kernel Versions
	Mechanical Details
	Schematic Diagram
	Specifications
	Appendix 1 - Code Examples - Push Buttons
	Example for communicating to Push Buttons, for C language
	Example for communicating to Push Buttons, for Python language
	Example for Shutdown and Reset buttons, for C language
	Example for Shutdown and Reset buttons, for Python language

	Revision History

