4DPi1-32-11

Datasheet

Revision 2.19
Copyright © 2023 4D Systems

Content may change at any time. Please refer to the resource centre for latest documentation.

Contents

1. Description 3
2. Features 4
3. Pin Configuration and Summary 5
4. Connecting the Display to the Pi 7
4.1. Hardware Connection 7
4.2. Software Download/Installation 8
4.3, Calibrating the Touch Screen 10
4.4. Change the Display Orientation 1
4.5, SPI Frequency and Compression 12
4.6. Backlight Control 13
4.7. Parameters Listing 14
4.8. HDMI or 4DPi Output 14
4.9. DPI Adjustment 15
5. Display Module Part Numbers 16
6. Latest Kernel Versions 16
7. Mechanical Details 17
8. Schematic Diagram 18
9. Specifications 19
10. Appendix 1- Code Examples - Push Buttons 21
10.1. Example for communicating to Push Buttons, for C language 21
10.2. Example for communicating to Push Buttons, for Python language 22
10.3. Example for Shutdown and Reset buttons, for C language 24
10.4. Example for Shutdown and Reset buttons, for Python language 26
11. Revision History 28

4D Systems DATASHEET Page 2 of 28

4DPi-32-11 Description

1. Description

The 4DPi-32-11 (Revision 2.x Hardware) is a 3.2" Primary Display for the Raspberry Pi, which plugs
directly on top and displays the primary output like what is normally sent to the HDMI or Composite
output. It features an integrated Resistive Touch panel, enabling the 4DPi-32-1l to function with the
Raspberry Pi without the need for a mouse.

Communication between the 4DPi-32-1l and the Raspberry Pi is interfaced with a high-speed 48Mhz
SPI connection, which uses an onboard processor for direct command interpretation and SPI
communication compression, and features a customised DMA-enabled kernel. This combination
allows this display to output 25FPS when displaying a typical image/video and can achieve higher
depending on if the image can be compressed.

The 4DPi-32-11 is designed to work with the Raspberry Pi Operating System (previously named
Raspbian) running on the Raspberry Pi, as that is the official Raspberry Pi operating system. It is also
compatible with Pixel.

/ Note

- 4DPi-32-1l Hardware states 4DPi-32 as the part number but is identifiable as the HW Rev of the PCB is 2.0
or above.

- Raspberry Pi is a trademark of the Raspberry Pi Foundation, and all references to the words 'Raspberry Pi'
or the use of its logo/marks are strictly about the Raspberry Pi product, and how this product is
compatible with but is not associated with the Raspberry Pi Foundation in any way.

4D Systems DATASHEET Page 3 of 28

4DPi-32-11 Features

2. Features

- Universal 3.2" Primary Display for the Raspberry Pi.

- Compatible with Raspberry Pi A+, B+, Pi2, Pi3, Pi3 B+, Pi4, Pi Zero, Pi Zero W and Pi Zero 2 W.
Revision 2.x hardware is not compatible with older A or B models.

- 320x240 QVGA Resolution, RGB 65K true-to-life colours, TFT Screen with integrated 4-wire
Resistive Touch Panel.

- Display full GUI output / primary output, just like a monitor connected to the Raspberry Pi
- High -Speed 48MHz SPI connection to the Raspberry Pi, featuring SPI compression technology.

- The typical frame rate of 25 Frames per second (FPS), is higher if the image can be compressed
further by the kernel. Lower if no compression is possible.

- Powered directly off the Raspberry Pi, no external power supply is required.
- On/Off or PWM controlled backlight, selectable by onboard jumper.

- On board EEPROM for board identification, following the HAT standard.

- Module dimensions: 57.3 x 92.4 x 20.5mm (including corner plates).

- Weighing ~ 55g.

- Display Viewing Area: 48.60 x 64.80mm

- 4x corner plates with 2.6mm holes for mechanical mounting.

- RoHS and CE Compliant.

wwwﬂdsgstems‘cnm‘au

32" 240xRGBX320
with Resistive Toueh ® SYSTEMS

HW Rev. 20

Tumlng Technology into Art

qD PiDisplay

¥ m\[—% L2 IR LU
‘:‘Z‘Tﬁ-ﬂ @ re o

R17_ €S

cjﬂﬂ

4D Systems DATASHEET Page 4 of 28

4DPi-32-11 Pin Configuration and Summary

3. Pin Configuration and Summary

P1 Pinout (Raspberry Pi Connector - Female Connector)

Pin Symbol 1/o Description
1 Y P +5V Supply Pin, connected to the main 5V supply of the
Raspberry Pi
5 433V P +3.3V Supply Pin, connected to the main 3.3V supply of the
Raspberry Pi.
3 Y P +5V Supply Pin, connected to the main 5V supply of the
Raspberry Pi
4 SDAI I/O 12C SDAI
Ground Pin, connected to the main system Ground of the
5 GND p .
Raspberry Pi
6 SCL (@) I12C SCL1
7 GPIO14 I/O GPIO on the Raspberry Pi - unused
8 GPIO4 I/O GPIO on the Raspberry Pi - unused
9 GPIO15 I/O GPIO on the Raspberry Pi - unused
Ground Pin, connected to the main system Ground of the
10 GND P .
Raspberry Pi
GPIO on the Raspberry Pi - Can be used for PWM Backlight,
1 GPIO18 I/O
else unused
12 PENIRQ Interrupt for the touchscreen controller
Ground Pin, connected to the main system Ground of the
13 GND p .
Raspberry Pi
14 KEYIRQ Interrupt for the push buttons
15 GPIO23 I/O GPIO on the Raspberry Pi - unused
16 GPIO22 I/O GPIO on the Raspberry Pi - unused
17 GPIO24 I/O GPIO on the Raspberry Pi - unused
+3.3V Supply Pi ted to th in 3.3V ly of th
- 33V b ppy in, connected to the main supply of the
Raspberry Pi
Ground Pin, connected to the main system Ground of the
19 GND p .
Raspberry Pi

4D Systems DATASHEET Page 5 of 28

4DPi-32-11 Pin Configuration and Summary

Pin Symbol 1/0 Description
20 MOSI O SPI MOSI Pin
21 GPIO25 I/O GPIO on the Raspberry Pi - unused
22 MISO SPI MISO Pin
SPI Chip Select O — Used for Xilinx Processor for Display, to
23 SPI-CSO O .
Raspberry Pi
24 SCK O SPI SCK Clock Pin
25 SPI-CSI O SPI Chip Select 1 - unused
Ground Pin, connected to the main system Ground of the
26 GND P .
Raspberry Pi
27 ID-SC O 12C ID EEPROM
28 ID-SD I/O 12C ID EEPROM
Ground Pin, connected to the main system Ground of the
29 GND P .
Raspberry Pi
30 GPIOS I/O GPIO on the Raspberry Pi - unused
31 GPIOT12 I/O GPIO on the Raspberry Pi - unused
32 GPIO6 I/O GPIO on the Raspberry Pi - unused
Ground Pin, connected to the main system Ground of the
33 GND P .
Raspberry Pi
34 GPIO13 I/O GPIO on the Raspberry Pi - unused
35 GPIO16 I/O GPIO on the Raspberry Pi - unused
36 GPIO19 I/O GPIO on the Raspberry Pi - unused
37 GPIO20 I/O GPIO on the Raspberry Pi - unused
38 GPIO26 I/O GPIO on the Raspberry Pi - unused
39 GPIO21 I/O GPIO on the Raspberry Pi - unused
Ground Pin, connected to the main system Ground of the
40 GND P .
Raspberry Pi
\J
Note
-1 =Input, O = Output, P = Power
- The onboard processor of the 4DPi-32-11 uses one of the Chip Select(CS) pins on the Raspberry Pi's SPI Bus
(SPI-CSO0). There is SPI-CSI1 still available for use by the User.
- The on-board Touch Screen Controller utilises the 12C bus (SDAI, SCLI1) to communicate to the Raspberry
Pi. The SPI Bus can communicate with other devices also, so is not restricted only to the 4DPi's touch
controller.

4D Systems DATASHEET Page 6 of 28

4DPi-32-11 Connecting the Display to the Pi

4. Connecting the Display to the Pi

4.1. Hardware Connection

The 4DPi-32-11 is easily connected to a Raspberry Pi, by simply aligning the Female 40-way header
with the Raspberry Pl's Male 40-way header, and connecting them - ensuring the aligning is correct

and all pins are seated fully and correctly.

/’ Note

The 4DPi-32-11 is supported only by the 40-way header, and therefore pressing on the touch screen may result
in the 4DPi-32-1 moving towards the Raspberry Pi, and therefore the circuitry touching the Raspberry Pi. This
could result in damage to either product if a short circuit were to occur. It is therefore highly encouraged to
mount the display and attach the Pi to the mounted display.

If development is desired on the bench before the mounting of the display, please ensure some sort
of support is provided between the 4DPi-32-1l and the Raspberry Pi so they do not touch
inadvertently.

Included in the box is a small double-sided sticky rubber pad. This is optional, however, can be
placed on the top of the Ethernet connector of the Raspberry Pi, to provide some support to the
display.

4D Systems DATASHEET Page 7 of 28

4DPi-32-11 Software Download/Installation

4.2. Software Download/Installation

4D Systems has prepared a custom DMA-enabled kernel for use with the Raspberry Pi Operating
System (previously named Raspbian OS), which is available for download as a single package. This
can be installed over your existing OS installation, or it can be applied over a fresh image. We
recommend that you apply it over a fresh image.

If you are starting from a fresh image, start from Step 1, or else skip to step 3 if you already have an
OS image and want to apply this kernel to that. If you are not installing from a fresh image and you
encounter issues, we won't know the settings of your OS so please try and use a fresh image to
determine any modifications that conflict with our kernel release. If you are running an OS with a
Kernel version later than our Kernel Pack, you might encounter problems. Please contact support if
you have problems. If you already have a custom Kernel, then applying our Kernel Pack over your
custom Kernel will likely stop your previous modifications from working. You will need to build the
kernel from scratch using the steps below.

STEPS (recommendations):

1. Install a fresh operating system as discussed on the Raspberry Pi website. Enable SSH and Wi-Fi
as preferred.

2. Connect the 4DPi and insert the uSD card into the Raspberry Pi. You will need network
connectivity to proceed with the installation. A monitor, keyboard and mouse are required if not
using SSH. SSH can be configured in Step 1. Power on the Raspberry Pi and make sure it is
connected to your network.

3. Login to the Raspberry Pi using the standard 'pi' and 'raspberry' credentials or as configured in
Step 1. If SSH is not used, open the Terminal app.

4. You are welcome to perform a system update if prompted, but please take note that if you
install a newer kernel than what our Kernel Pack offers, then you could encounter problems.
Therefore, it's not advisable to update the system, as this could update the Kernel.

5. Typically, on modern versions of the Pi OS, this following step is not required or is done
automatically. However, it is here for reference. Expand the file system on the downloaded image
using raspi-config (submenu Expand Filesystem). After exiting raspi-config a reboot is needed.

$ sudo raspi-config
$ sudo reboot

6. Once rebooted, you need to do an apt-get upgrade, because doing this after applying the Kernel
Pack will render the 4DPi modifications disabled. Please note that doing an upgrade could
change your current Kernel which could make the version installed newer than the Kernel Pack
you are about to install next. The Kernel pack must be applied to a kernel very close (a newer
Kernel Pack is generally OK) if not identical to the kernel your OS is running, or there will be

issues.

7. Log into your Raspberry Pi again, you will need to download and install the Kernel Pack which
supports the 4DPi. The following step requires sudo root access.

4D Systems DATASHEET Page 8 of 28

https://www.raspberrypi.com/documentation/computers/getting-started.html#installing-the-operating-system

4DPi-32-11 Software Download/Installation

8. To download and install files, enter the following commands in terminal/shell/SSH to download
the kernel from the 4D Systems Server:

$ wget https://4dsystems.com.au/download/14644/ -0 gen4-hats.tar.gz

- Then extract the kernel pack:

$ sudo tar --keep-directory-symlink -xzvf gen4-hats.tar.gz -C /
- If you encounter issues running the above command, try adding --no-same-owner

$ sudo tar --no-same-owner --keep-directory-symlink -xzvf gen4-hats.tar.gz -C /

- The package selects the kernel required for the Raspberry Pi model, automatically. If you
want to check for the kernel packages released by 4D systems, proceed to the Latest Kernel

Versions section.

9. Reboot the Raspberry Pi by running the command
sudo reboot now

10. The desktop should begin to show on the 4DPi once the Raspberry Pi has booted.

11. Doing an apt-get upgrade after the Kernel Pack has been installed, will disable the 4DPi and its
modifications, as the modules and Kernel would be updated in this process. To reenable, be sure
to download the latest Kernel Pack (check this datasheet again if there has been an updated
version) and perform the same steps to get up and running again. Results may vary, and it's
always advisable to apply the 4DPi Kernel Pack to a fresh image, but this is not always possible.

Warning

An upgrade should only be done if the latest RPi OS kernel is supported by the latest 4D kernel pack.
Otherwise, installing the 4D kernel pack will downgrade the kernel and problems may occur.

12. ADVANCED USERS: If you need to make custom modifications to your Kernel, and want the
4DPi to function, you will need to build the Kernel from the source, and include the 4DPi files in
the process. The link to our source is on our website, along with the steps required to add in the
4DPi files so this can be enabled in menuconfig while building the Kernel.

#’ Note

- It is advisable to use the RPi OS release with a matching kernel version as one of the latest 4DPi packages
that you plan to use. If support for a newer version is not yet available, please raise a ticket for assistance.

- RPi OS based on Debian Bullseye is not fully compatible with our kernel release. Please use the latest
Legacy version which is based on Debian Buster instead.

4D Systems DATASHEET Page 9 of 28

https://helpdesk.4dsystems.com.au

4DPi-32-11 Calibrating the Touch Screen

4.3. Calibrating the Touch Screen

Each 4DPi which is shipped from the 4D Systems factory is slightly different, in the sense that each
of the touch screens has a slightly different calibration. To get the best from your 4DPi, you will need
to calibrate the display, so it is as accurate as possible.

To calibrate the touch screen, the xinput_calibrator is required, and the following steps should be
carried out. Make sure the Desktop is not running before you start, quit the desktop if it is and return

to the terminal prompt.

/ Note

Only resistive touch display modules could be calibrated.

1. Install xinput_calibrator (if not installed by default) by running this command in the terminal.
sudo apt-get install xinput-calibrator
2. Install the event device input driver:
sudo apt-get install xserver-xorg-input-evdev
3. Rename 10-evdev.conf file to 45-evdev.conf.
sudo mv /usr/share/X11/xorg.conf.d/10-evdev.conf /usr/share/X11/xorg.conf.d/45-evdev.conf
4. Check if evdev.conf has a higher number than libinput.conf.
1s /usr/share/X11/xorg.conf.d/
- The user should get something like this:

10-quirks.conf 40-libinput.conf 45-evdev.conf 99-fbturbo.conf

5. Perform a reboot

sudo reboot now

4D Systems DATASHEET Page 10 of 28

4DPi-32-11 Change the Display Orientation

6. Reconnect to SSH and run xinput calibrator.
DISPLAY=:0.0 xinput_calibrator
- Perform the calibration and copy results. The result should be something like this:

Section "InputClass"
Identifier "calibration"
MatchProduct "AR1020 Touchscreen"
Option "Calibration" "98 4001 175 3840"
Option "SwapAxes" "@"

EndSection

7.You may test the changes after xinput calibrator ends. To make the changes permanent, paste
the resultsto /etc/Xx11/xorg.conf.d/99-calibration.conf .

sudo nano /etc/X11/xorg.conf.d/99-calibration.conf
8. Save the file and perform a reboot
sudo reboot now

9. The Display should now be calibrated.

4.4. Change the Display Orientation
To change the display orientation, simply edit the /boot/cmdline.txt file

Add the parameter below after the console parts in the parameter list:
4d_hats.rotate = 90

And change this to have the value of 0, 90, 180 or 270. It should look something like this:
console=serial®,115200 console=ttyl 4d_hats.rotate=90 root= (etc etc)

Save the file and restart your Raspberry Pi.
The touch screen will automatically remap the alignment thanks to the custom kernel.

After changing the Display Orientation, you need to calibrate again the screen.

4D Systems DATASHEET Page 11 of 28

4DPi-32-11 SPI Frequency and Compression

4.5. SPI Frequency and Compression

The 4DPi can be adjusted to work with a range of SPI Frequencies and levels of compression,
depending on the requirements of the product/project.

Increasing the frequency can result in a higher Frame Rate (FPS), however, will use more power and
processor time. Increasing the level of compression can also result in a higher FPS but may cause the
display to corrupt. By default, an SPI Frequency of 48Mhz is used, with a Compression level of 7.

The following parameters are the defaults in the /boot/cmdline.txt file and can be edited to adjust
the Frequency and Compression level.

4d_hats.sclk=48000000
4d_hats.compress=7

Setting compress to 1 will enable the kernel to control the level of compression based on the
frequency selected. This however is not guaranteed to have a good result and may require manually
setting the compression level of corruption on the display is experienced.

If corruption or display anomalies occur at any given compression level, try to lower it by 1value and

check if this has improved.

/" Note

Changing the frequency and compression requires a restart of the Raspberry Pi.

4D Systems DATASHEET Page 12 of 28

4DPi-32-11 Backlight Control

4.6. Backlight Control

The backlight is controllable in two possible ways. One is using simple on/off control, which is done
by sending a GPIO command to the onboard processor, which then turns the backlight on and off.
The other is using a DMA-PWM output from the Raspberry Pl and controlling the backlight
brightness.

The control of the backlight is selected using the Jumper J1, selecting ON/OFF or DMA control. For
the simple ON/OFF control GPIO18 is used.

The backlight brightness can be controlled from the terminal or a bash script.
Executing the following command will control the backlight.

- To turn the backlight OFF:

sudo sh -c 'echo 0 > /sys/class/backlight/4d-hats/brightness’
- To turn the backlight ON:

sudo sh -c 'echo 1 > /sys/class/backlight/4d-hats/brightness'

- To control the backlight using DMA-PWM, ensure that the Jumper J1is on PWM.

The following command can be used to set the backlight from 0 to 100%.
sudo sh -c 'echo 31 > /sys/class/backlight/4d-hats/brightness’

The above will set the backlight to 100%. Simply change the 'echo 31' to anything from O to 31.

4D Systems DATASHEET Page 13 of 28

4DPi-32-11 Parameters Listing

4.7. Parameters Listing

The following is a list of all the custom parameters used by the 4DPi.
rotate: Screen rotation 0/90/180/270 (int)
compress: SP| compression 0/1/2/3/4/5/6/7 (int)

sclk: SPI clock frequency (long)

Valid SPI Frequency values (4d-hats.sclk):

Values can be almost anything. This has been tested up to 64Mhz. Common values would
include 64000000 (64MHz), 48000000 (Default), 32000000, 24000000 etc.

Valid Compression values (4d-hats.compress):
0 (compression off)
1 (compression on, auto set based on sclk value)

2 (lowest), 3, 4, 5, 6, 7 (highest compression)

These parameters can be set or read from the /boot/cmdline.txt file, and they can be read from the /
sys/module/4d_hats/oarameters/ directory.

For example:

cat /sys/module/4d_hats/parameters/rotate

Will display the current rotation saved.

4.8. HDMI or 4DPi Output

To switch the X Windows output being displayed on 4DPi or HDMI output, X can be launched using
either of the following commands:

startx -- -layout TFT
startx -- -layout HDMI

Alternatively, these commands do the same thing:

FRAMEBUFFER=/dev/fbl startx
startx

4D Systems DATASHEET Page 14 of 28

4DPi-32-11 DPI Adjustment

4.9. DPI Adjustment
It is possible to change the DPI output of the 4DPi in the same way as other LXDE-based systems.

- Login as pi and open terminal

- Check the current DPI settings by running this command:
xrdb -query -all

- The current dpi is listed next to the Xft.dpi listing.
- You can change the DPI by doing this.

- Edit the following file, and then merge it
nano ~/.Xresources

- Add this line to the file: xft.dpi: 75.
- This will set the DPI to 75.
- Save and exit the file.

- Merge it so the value gets used, by doing the following:

xrdb -merge ~/.Xresources

- You can now check the DPI settings.
xrdb -query -all

- Reboot the Pi, and your changes should take effect.

Changing the DPI can make the screen blurry, so take care when adjusting these values. If you get to
a point where it is unreadable, SSH into your Pi and change the value back to something reasonable.

Ideally, DPI is set based on your resolution, however, for small-resolution displays, it can be desirable
to make the DPI smaller so you can fit more on the screen.

4D Systems DATASHEET Page 15 of 28

4DPi-32-11 Display Module Part Numbers

5. Display Module Part Numbers
The following is a breakdown of the part numbers and what they mean.
Example:
- 4DPi-32-11
4DPi - Display Family
32 - Display size (3.2")

Il - Hardware Revision 2.0 and higher

6. Latest Kernel Versions

Here is the list of the kernel patches released by 4D systems.
Latest releases:

- gen4-hats_5-10-103.tar.gz

- gen4-hats_5-15-32_32bit.tar.gz (refer to the 2nd point from the note below)

Previous releases:

- gen4-hats_5-10-76-4DPi.tar.gz - gen4-hats_4-19-57-v7I+_v1.0.tar.gz
- gen4-hats_5-10-63.tar.gz - gen4-hats_4-14-34_vl.l.tar.gz
- gen4-hats_5-4-68.tar.gz - gen4-hats_4-9-80_vl.l.tar.gz

- gen4-hats_4-9-59_vl.2.tar.gz

2 Note

1. It is highly advisable to use a Raspberry Pi OS release with matching kernel version (first 2 numbers and
3rd number need to be less than or equal) as the Kernel Pack you decide to use. Please refer to step 1
under the Software Download/Installation section regarding current recommendations.

For example, if your OS uses Kernel 5.4.60, then applying our 5.4.68 Kernel Pack is a good match.

Example 2, If your OS uses 5.4.79, or 5.5.10, then applying the 5.4.68 Kernel Pack likely would not be the
best idea as it would be a downgrade, and some things may not function correctly.

2. This kernel package is versions higher than the recormmended latest Buster (legacy) version release. This
was built to be able to update the Buster version to a matching kernel version of the Bullseye release. To
match the kernel, you can use the command: sudo rpi-update <git hash>

Git hash must be the commit in the Raspberry Pi Firmware Files repository with the same kernel version
as the 4DPi package.

3. Some older kernel releases may be available upon request. Please contact 4D Systems Support Team for
more information.

4D Systems DATASHEET Page 16 of 28

https://4dsystems.com.au/download/14344/
https://4dsystems.com.au/download/14644/
https://4dsystems.com.au/download/14649/
https://4dsystems.com.au/download/9392/
https://4dsystems.com.au/download/9393/
https://4dsystems.com.au/download/9394/
https://4dsystems.com.au/download/9398/
https://4dsystems.com.au/download/14648/
https://4dsystems.com.au/download/14645/
https://github.com/raspberrypi/rpi-firmware/commits/master
https://helpdesk.4dsystems.com.au/hc/en-au

4DPi-32-11 Mechanical Details

7. Mechanical Details

A A
3.4mm _ - 57.3mm -
[N
* i
sww ddsys com.au h
@ SYSTEMS
B E T e ey == S S ———— | B
40 PiDisplay Turning Technology into Art
E
o
< ®
®
®
®
o
€ o
E S
o~ £
©)
c [o¢] o~ c
[
D D
)
Y
] Y
<5
20.5mm
E
UNLESS OTHERWISE SPECIFIED: TITLE:
DIMENSIONS ARE N MILUMETERS
o 0.3mm 4DPi-32 Primary Display for the Raspberry Pi A3
ez
NAE otE
DRAWN 4D 22/09/2015
o
APPVD
.
4D SYSTEMS
1 2 3 4 DO NOT SCALE DRAWING Revision 2.0 SCALE: 2:1 SHEET 1 OF 1

4D Systems DATASHEET Page 17 of 28

https://resources.4dsystems.com.au/datasheets/4dpi/pdf/4DPi-32/4DPi-32_drawing_R_2_0.pdf
https://resources.4dsystems.com.au/datasheets/4dpi/pdf/4DPi-32/4DPi-32_drawing_R_2_0.pdf
https://resources.4dsystems.com.au/datasheets/4dpi/pdf/4DPi-32/4DPi-32_drawing_R_2_0.pdf

4DPi-32-11

Schematic Diagram

8. Schematic Diagram

RASPBERRY PI HEADERS (FEMALE)

+3.3V
SDAL
SaL
RASP_GPIOA RASP_GPIO14
11 RASP_GPIOT5

PENIRQ RASP_GPIOT8
KEYIRQ
RASP_GPIO2Z RASP_GPI023

[RASP_GPI024
MoSt
MISO RASP_GPI02S
5K SPL_ (50

SpL_CST
ID_SD I 1D 5C
RASP_GPIOS
RASP_GPIO6. RASP_GPIO12
RASP_GPIO13
RASP_GPIO19 RASP_GPIO16
RASP_GPI026 RASP_GPI020
RASP_GPIO21

FPC TO DISPLAY
433V
o
<
<
g
3
8 L1
2
8
2
2
=
)
3
s
S Db’
]
2B——2 ppo
DI
B—— DBl
B DB?
o —]
B2 om
D5
Wo———— DbBs
B Y
5V xR
(= S Tioa
TEDKL 2
e LEDKI
- LEDK2
c5 LEDK3 -
1 LEDK3
4.7uF LEDKE T LEDK4
LEDKS 8 o
TEDK6 T e
= 7 LEDK6
= GND
L
FPAZLUAOTM2T - PTU
BACKLIGHT EDK1
EDK2
EDK3
EDKA
EDKS
EDKG
R10 | |R11 | R12 | [R13
68R
A, sacwen
w—

|3 RASP GPIOT8

Q
MMBT3904

BUTTONS + HEADER

swi 10
573 5
W3 o
SWa 3
S5 5
ID EEPROM
+3.3V
R14 [[R15 [|R16
1K K7 | [4K7
+3.3V
433V u2
— a0 vee £
8 a2 ID_SC
A2 sCL
0.1uF 2 e S 1050
= CAT24C2WLGT3

XILINX PROCESSOR
U1A
- U1E
X JTAG_TDL 9 [1o
z JTAG_TDO. 2 5o
g TTAGTCK N 120
TTAGTMS 10, | e

u1B
+33V +33V +33V
o UIF
¥ 26 | | - 15
Z CCIO 2.5V/3.3V VCCINT 3. 35
Z VCCINT3 -
2 c2 XCOSTIXL-10VQGHC
0.1uF C4 C3
O.IuF | 0.uF
XCIST2XL-10VQGHC B = =
uic
16 D4
“© okE—os U1G
X i D3 25 = 4
z. o B 2 17 GND GND
< 1O o= o GND
2 . 3 B0 XC9572XL-10VQGHC
] X LCD ¢S N i
Lol s——coResE
D6
07
I S
9
D10
DIL
T v a—
XC9572XL-10VQG44C
RES TOUCH
R17
FID1
20K
Sk u4 . 0.01uF
. Tul — Vi =
T Ve Do XL 133V
B R
FID2 133V = e [T
i R YD R18 [|R19
Y0 4K7 | jak7
sIQ 1z
Sy+ X+
S SDUSDARX DAL
. o spo
LD — NC SCK/SCL/TX Sa
ARI02IT-I/'SS
—c11
0.01uF
FID4

Title

Size:
Date
File:

4DPi-32 3.2" SPI Primary Display for Raspberry Pi

A3 Number: | Revision: 2.0
220912015 Time: 8:22:22PM Sheet 1 of 1
4DPi-32-REV2.0.SchDoc

6 7

4D Systems

Unit 7
103 Sargents Rd
Minchinbury, 2770 4D SYSTEMS

NSW, Australia

4D Systems

DATASHEET

Page 18 of 28

https://resources.4dsystems.com.au/datasheets/4dpi/pdf/4DPi-32/4DPi-32-REV2.0.pdf
https://resources.4dsystems.com.au/datasheets/4dpi/pdf/4DPi-32/4DPi-32-REV2.0.pdf
https://resources.4dsystems.com.au/datasheets/4dpi/pdf/4DPi-32/4DPi-32-REV2.0.pdf

4DPi-32-11

Specifications

9. Specifications

ﬁﬂ Absolute Maximum Ratings
Operating ambient temperature -15°C to +65°C
Storage temperature -30°C to +70°C
\J
Note
Stresses above those listed here may cause permanent damage to the device. This is a stress rating only and
functional operation of the device at those or any other conditions above those indicated in the
recommended operation listings of this specification is not implied. Exposure to maximum rating conditions
for extended periods may affect device reliability.
ﬂﬂ Recommended Operating Conditions
Parameter Conditions Min Typ Max Units
S ly Volt Stabl t | |
upply Voltage a .e external supply 30 33 40 Y
(+3.3V) required
S ly Volt Stabl t | |
upply Voltage a ‘e external supply 45 50 e y
(+5V) required
O ti
perating 10 - +60 °C
Temperature
ﬂﬂ Global Characteristics Based on Operating Conditions
Parameter Conditions Min Typ Max Units
Supply Current
PP 3.3V Supply -- 100 - mA
(Icc)
Backlight
5V Supply -- 150 -- mA
Current (ICC)
Display Hours of operation, measured to when
. . i . - 20000 - H
Endurance the display is 50% original brightness
] PERFORMANCE
Parameter Conditions Min Typ Max Units
Video Playback, Full Screen, 320x240. A higher FPS can
Frame Rate be achieved if the display outputs lots of blocks of the -5 FpS
(FPS) same colour. See the SPI Frequency and Compression
section
4D Systems DATASHEET Page 19 of 28

4DPi-32-11

Specifications

Parameter
Display Type
Display Sizes
Display Resolution

Display Brightness

Display Contrast Ratio

Display Viewing
Angles

Display Viewing
Direction

Display Backlighting

Pixel Pitch

Pixel Density

ﬂﬂ LCD DISPLAY INFORMATION

Conditions

5V Supply, gen4-uLCD-32D

5V Supply, gen4-uLCD-32D-CLB

5V Supply, gen4-uLCD-32DT

5V Supply,gen4-uLCD-32DCT-
CLB

Typical

Above Centre

Below Centre

Left of Centre

Right of Centre

White LED Backlighting

Number of pixelsin1row in
2544 mm

Specification

TFT Transmissive LCD
3.2" Diagonal

240 x 320 (Portrait View)
200 cd/m?2 (typical)

194 cd/m2 (typical)

160 cd/m2 (typical)

190 cd/m2 (typical)

500:1

35 Degrees

55 Degrees
55 Degrees
55 Degrees

6 O'clock Display (Optimal viewing is from below when in
Portrait mode)

1x6 Parallel LED's

0.2025 x 0.2025 (Square pixels)

127 DPI/PPI

Order Code: 4DPi-32-I1

ﬂﬂ Ordering Information

Packaging: Module sealed in a 4D Systems box

4D Systems

DATASHEET Page 20 of 28

4DPi-32-11

Appendix 1- Code Examples - Push Buttons

10. Appendix 1 - Code Examples - Push Buttons

10.1. Example for communicating to Push Buttons, for C language

// test program to read state of buttons on 4D Systems 4DPi displays

#include <stdio.h>
#include <sys/types.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>
#include <sys/ioctl.h>

#define LCD4DPI_GET_KEYS _IOR('K', 1, unsigned char =)

void print_keys(int fd)

{

}

unsigned char keys;

if (ioctl(fd, LCD4DPI_GET_KEYS, &keys) == -1)
{
perror("_apps ioctl get");
}
else
{
printf("Keys : %2x\n", keys);
}

int main(int argc, char =*argv[])

{

char *file_name = "/dev/fb1";
int fd;

fd = open(file_name, O_RDWR);
if (fd == -1)
{
perror("_apps open");
return 2;

}

print_keys(fd);

printf("Ioctl Number: (dec)%d (hex)%x\n", LCD4DPI_GET_KEYS, LCD4DPI_GET_KEYS);

close (fd);
return 0;

4D Systems DATASHEET

Page 21 of 28

4DPi-32-11 Example for communicating to Push Buttons, for Python language

10.2. Example for communicating to Push Buttons, for Python language

#!/usr/bin/python

import array, fcntl
from time import sleep

test program to read state of buttons on 4D Systems 4DPi displays
LCD4DPI_GET_KEYS = -2147202303

_IOC_NRBITS = 8
_I0C_TYPEBITS
_I0C_SIZEBITS
_I0C_DIRBITS = 2

_TOC_DIRMASK = (1 << _IOC_DIRBITS) - 1
_TOC_NRMASK = (1 << _IOC_NRBITS) - 1
_TOC_TYPEMASK = (1 << _IOC_TYPEBITS) - 1
_TOC_NRSHIFT = 0

_TOC_TYPESHIFT = _IOC_NRSHIFT+_IOC_NRBITS
_I0C_SIZESHIFT = _IOC_TYPESHIFT+_IOC_TYPEBITS
_IOC_DIRSHIFT = _IOC_SIZESHIFT+_IOC_SIZEBITS

8
14

_IOC_NONE = 0
_TOC_WRITE = 1
_I0C_READ = 2

def _10C(dir, type, nr, size):

print 'dirshift {}, typeshift {}, nrshift {}, sizeshift {}'.format(_IOC_DIRSHIFT,
_I0C_TYPESHIFT, _IOC_NRSHIFT, _IOC_SIZESHIFT)

ioc = (dir << _IOC_DIRSHIFT) | (type << _IOC_TYPESHIFT) | (nr << _IOC_NRSHIFT) | (size <<
_I0C_SIZESHIFT)

if ioc > 2147483647: ioc -= 4294967296

return ioc

#def _IO(type, nr):
return _IOC(_IOC_NONE, type, nr, 0)

def _IOR(type,nr,size):
return _IOC(_IOC_READ, type, nr, size)

#def _IOW(type,nr,size):
return _IOC(_IOC_WRITE, type, nr, sizeof(size))

LCD4DPI_GET_KEYS = _IOR(ord('K'), 1, 4)
buf = array.array('h',[0])

print 'Press Top & Bottom buttons simultaneously to exit'
with open('/dev/fbl', 'rw') as fd:

while True:
fcntl.ioctl(fd, LCD4DPI_GET_KEYS, buf, 1) # execute ioctl call to read the keys
keys = buf[0]

if not keys & 0b00OO1:
print "KEY1" ,

if not keys & 0b00010:
print "KEY2" ,

if not keys & 0b00100:

4D Systems DATASHEET Page 22 of 28

4DPi-32-11 Example for communicating to Push Buttons, for Python language

print "KEY3" ,

if not keys & 0b01000:
print "KEY&4" ,

if not keys & 0b10000:
print "KEY5"

if keys != 0b11111:
print

if keys == 0b01110: # exit if top and bottom pressed
break

sleep(0.1)

4D Systems DATASHEET Page 23 of 28

4DPi-32-11

Example for Shutdown and Reset buttons, for C language

10.3. Example for Shutdown and Reset buttons, for C language

// test program to Shutdown or Restart Pi using buttons on 4D Systems 4DPi displays

#include <stdio.h>
#include <sys/types.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>
#include <sys/ioctl.h>

#define LCD4DPI_GET_KEYS _IOR('K', 1, unsigned char =)

int get_keys(int fd, unsigned char *keys)

{

if (ioctl(fd, LCD4DPI_GET_KEYS, keys) == -1)
{
perror("_apps ioctl get");
return 1;
}
xkeys &= 0b11111;
return 0;

int main(int argc, char =argv[])

char *file_name = "/dev/fb1";
int fd;
unsigned char key_status;

fd = open(file_name, O_RDWR);
if (fd == -1)
{
perror("_apps open");
return 2;

key_status = 0b11111;

while(key_status & 0b00001) // press key 1 to exit

{
if(get_keys(fd, &key_status) != 0)
break;
// printf("key_status: %x\n", key_status);
if(!(key_status & 0b10000))
{
system("sudo shutdown -h now");
break;
}
if(!(key_status & 0b01000))
{
system("sudo reboot");
break;
}
sleep(0.1);
}
4D Systems

DATASHEET Page 24 of 28

4DPi-32-11 Example for Shutdown and Reset buttons, for C language

close(fd);
return 0;

4D Systems DATASHEET Page 25 of 28

4DPi-32-11 Example for Shutdown and Reset buttons, for Python language

10.4. Example for Shutdown and Reset buttons, for Python language

#!/usr/bin/python
import array, fcntl, os
from time import sleep

test program to Shutdown or Restart Pi using buttons on 4D Systems 4DPi displays

#LCD4DPI_GET_KEYS = -2147202303

_IOC_NRBITS = 8

_IOC_TYPEBITS = 8

_IOC_SIZEBITS = 14

_I0C_DIRBITS = 2

_IOC_DIRMASK = (1 << _IOC_DIRBITS) - 1
_I0C_NRMASK = (1 << _IOC_NRBITS) - 1
_IOC_TYPEMASK = (1 << _IOC_TYPEBITS) - 1

_IOC_NRSHIFT = ©
_IOC_TYPESHIFT
_I0C_SIZESHIFT
_IOC_DIRSHIFT

_IOC_NRSHIFT+_IOC_NRBITS
_IOC_TYPESHIFT+_IOC_TYPEBITS
_I0C_SIZESHIFT+_IOC_SIZEBITS

_IOC_NONE = 0
_IOC_WRITE = 1
_IOC_READ = 2

def _I0C(dir, type, nr, size):

print 'dirshift {}, typeshift {}, nrshift {}, sizeshift {}'.format(_IOC_DIRSHIFT,
_IOC_TYPESHIFT, _IOC_NRSHIFT, _IOC_SIZESHIFT)

ioc = (dir << _IOC_DIRSHIFT) | (type << _IOC_TYPESHIFT) | (nr << _IOC_NRSHIFT) | (size <<
_TIOC_SIZESHIFT)

if ioc > 2147483647: ioc -= 4294967296

return ioc

#def _I0(type, nr):
return _IOC(_IOC_NONE, type, nr, 0)

def _IOR(type,nr,size):
return _IOC(_IOC_READ, type, nr, size)

#def _IOW(type,nr,size):
return _IOC(_IOC_WRITE, type, nr, sizeof(size))

LCD4DPI_GET_KEYS = _IOR(ord('K'), 1, &)
#print 'ssd {} {:12} {:0>8x} {:0>32b}'.format(ssd1289, hex(ssd1289), ssd1289, ssd1289)
buf = array.array('h',[0])

with open('/dev/fbl', 'rw') as fd:

while True:
fcntl.ioctl(fd, LCD4DPI_GET_KEYS, buf, 1) # execute ioctl call to read the keys
keys = buf[0]

if not keys & 0b000OO1:
break

if not keys & 0b10000:
os.system("sudo shutdown -h now")

4D Systems DATASHEET Page 26 of 28

4DPi-32-11 Example for Shutdown and Reset buttons, for Python language

break

if not keys & 0b01000:
os.system("sudo reboot")
break

sleep(0.1)

4D Systems DATASHEET Page 27 of 28

4DPi-32-11 Revision History

11. Revision History

ﬁﬂ Hardware Revision
Revision Number Date Description

2.0 09/22/2015 Initial Public Release Version

ﬂﬂ Datasheet Revision

Revision Date Description

Number
2.0 09/28/2015 Initial Public Release Version
21 12/17/2015 Cosmetic changes on the datasheet
22 03/10/2016 Cosmetic changes on the datasheet
2.3 04/11/2016 Update of 4d kernel image and Cosmetic changes on the datasheet
2.4 05/24/2016 Update of 4d kernel image and Cosmetic changes on the datasheet
25 10/21/2016 Update of 4d kernel image and Cosmetic changes on the datasheet
2.6 01/11/2017 Update of 4d kernel image and Cosmetic changes on the datasheet
2.7 08/01/2017 Update of 4d kernel image and Cosmetic changes on the datasheet
2.8 03/07/2018 Update of 4d kernel image and Cosmetic changes on the datasheet
29 03/23/2018 Update of 4d kernel image and Cosmetic changes on the datasheet
210 03/28/2018 Cosmetic changes on the datasheet
2.1 04/11/2018 Cosmetic changes on the datasheet
212 07/14/2018 Update of 4d kernel image and cosmetic changes on the datasheet
213 03/16/2019 Cosmetic changes on the datasheet
214 02/08/2019 Cosmetic Cha nge§ to gen4 Primary Displays for Raspberry Pi and addition of the

Latest Kernel Versions
515 14/04/2020 Cosmetic Cha nge; to gen4 Primary Displays for Raspberry Pi and addition of the
Latest Kernel Versions

216 08/27/2020 Added notes regarding using matching kernel versions
217 28/06/2021 Updated instructions to contain the latest known information
218 17/06/2022 Updated latest kernel versions and instructions
219 06/01/2023 Modified datasheet for web-based documentation

4D Systems DATASHEET Page 28 of 28

	Description
	Features
	Pin Configuration and Summary
	Connecting the Display to the Pi
	Hardware Connection
	Software Download/Installation
	Calibrating the Touch Screen
	Change the Display Orientation
	SPI Frequency and Compression
	Backlight Control
	Parameters Listing
	HDMI or 4DPi Output
	DPI Adjustment

	Display Module Part Numbers
	Latest Kernel Versions
	Mechanical Details
	Schematic Diagram
	Specifications
	Appendix 1 - Code Examples - Push Buttons
	Example for communicating to Push Buttons, for C language
	Example for communicating to Push Buttons, for Python language
	Example for Shutdown and Reset buttons, for C language
	Example for Shutdown and Reset buttons, for Python language

	Revision History

