

Compact Camera Module Preliminary version 01 April, 2021

Himax Imaging, Ltd.

Compact Camera Module

Himax Imaging, Ltd. http://www.himax.com.tw

Revision History

Version	Date	Description of changes
01	2021/04/28	New setup.

Compact Camera Module

Himax Imaging, Ltd. http://www.himax.com.tw

List of Contents

1.	Sensor Specification	7
	1.1. Features	8
	1.2. Application	8
	1.3. Key parameters	9
	1.4. VGA window readout	10
	1.5. Electrical specification	11
	1.5.1. Operating voltages	11
	1.5.2. DC characteristics	
	1.5.3. Master Clock (MCLK) input	
	1.6. Power up sequence	
2.	Camera Module Specification	14
	2.1. Pin map and description of camera module	14
	2.2. Mechanical drawing of camera module	15
	2.3. Application schematic of camera module	
	2.3.1. Reference circuit	
	2.3.2. Layout consideration	
3.		
•••	Optical Lens Specification 3.1. Mechanical drawing of optical lens	
	3.2. Specification of optical lens	
4.	3.2. Specification of optical lens	
5.	Reliability Test Conditions	
	,	
6.	Inspection Specification	
6.	Inspection Specification	20 20
6.	Inspection Specification 6.1. Sampling plan 6.2 Visual inspection method	20 20 20
6.	Inspection Specification 6.1. Sampling plan 6.2. Visual inspection method 6.3. Inspection item	20 20 20 20
6.	Inspection Specification 6.1. Sampling plan 6.2. Visual inspection method 6.3. Inspection item 6.4 Remark	20 20 20 20 20
6.	Image Quality Specification Reliability Test Conditions Inspection Specification 6.1. Sampling plan 6.2. Visual inspection method 6.3. Inspection item 6.4. Remark 6.5. Appearance / Dimension check	20 20 20 20 20 20 20
6.	Inspection Specification 6.1. Sampling plan 6.2. Visual inspection method 6.3. Inspection item 6.4. Remark 6.5. Appearance / Dimension check	20 20 20 20 21
6.	Inspection Specification 6.1. Sampling plan 6.2. Visual inspection method 6.3. Inspection item 6.4. Remark 6.5. Appearance / Dimension check	20 20 20 20 21
6.	Inspection Specification 6.1. Sampling plan 6.2. Visual inspection method 6.3. Inspection item 6.4. Remark 6.5. Appearance / Dimension check	20 20 20 20 21
6.	Inspection Specification 6.1. Sampling plan 6.2. Visual inspection method 6.3. Inspection item 6.4. Remark 6.5. Appearance / Dimension check	20 20 20 20 21
6.	Inspection Specification 6.1. Sampling plan 6.2. Visual inspection method 6.3. Inspection item 6.4. Remark 6.5. Appearance / Dimension check	20 20 20 20 21
6.	Inspection Specification 6.1. Sampling plan 6.2. Visual inspection method 6.3. Inspection item 6.4. Remark 6.5. Appearance / Dimension check	20 20 20 20 21
6.	Inspection Specification 6.1. Sampling plan 6.2. Visual inspection method 6.3. Inspection item 6.4. Remark 6.5. Appearance / Dimension check	20 20 20 20 21

Compact Camera Module

Himax Imaging, Ltd. http://www.himax.com.tw

List of Figures

Figure 1.1: VGA resolution pixel readout	.10
Figure 1.2: Power up sequence	
Figure 2.1: Mechanical drawing of camera module	.15
Figure 2.2: Reference circuit of camera module (CSP)	.16
Figure 3.1: Mechanical drawing of optical lens	.17

Compact Camera Module

Himax Imaging, Ltd. http://www.himax.com.tw

List of Tables

Table 1.1: Operating voltages	11
Table 1.2: DC characteristics	
Table 1.3: Master Clock (MCLK) timing	
Table 1.4: Power up sequence timing	
Table 2.1: Pin map and description of camera module	
Table 3.1: Specification of optical lens	
Table 4.1: Image quality specification	18
Table 5.1: Reliability test condition	19

	No.
HAMAN DO	

Compact Camera Module

Himax Imaging, Ltd. http://www.himax.com.tw

Important Notice

April, 2021

Disclaimer

Himax Imaging reserves the right to modify this documentation without prior notice. The information appearing in this publication is believed to be accurate and reliable. However, Himax Imaging makes no warranty for any errors which may appear in this document. Contact Himax Imaging to obtain the latest version of product specifications before placing your order. No responsibility is assumed by Himax Imaging, Ltd. for any infringement of patent or other rights of third parties which may result from its use. Products described herein are intended for use in normal commercial applications. Please note that application circuits illustrated in this document are for reference purposes only.

All Rights Reserved

The following are trademarks of Himax Imaging Ltd.: Himax Imaging, BrightSense, ClearSense, the Himax Imaging logo symbol. The use of any trademark, trade name, or service mark found in this document without the owner's express written consent is strictly prohibited.

Himax Imaging strives to produce quality documentation and welcomes your feedback. Please send comments or suggestions to him marketing@himaximaging.com

Compact Camera Module

Himax Imaging, Ltd. http://www.himax.com.tw

Preliminary Version 01

April, 2021

1. Sensor Specification

The HM0360 is an ultra-low power, Back Side Illuminated (**BSI**) CMOS image sensor designed for energy efficient smart vision applications, such as object-specific classification, tracking and identification. The advanced 3.6µ low noise, deep diode pixel achieves superior image quality performance to enable monitoring, detection and video capture in low light environments while minimizing the use of external, power consuming, LED illuminators.

The HM0360 Always On Sensor architecture delivers a target current consumption of 256µA in AoS monitor mode and 8.6mA in VGA 60 frames per second read out mode. In order to reduce host processor loading, camera latency and system power consumption, the HM0360 features on-chip oscillator with automatic external reference clock detection, automatic frame mode switch, fast sensor initialization, <2ms frame trigger time, context switching and instant frame update. The sensor offers several monitoring options with programmable interrupt thereby allowing the host processor to be placed in low power standby until notified by the sensor.

The HM0360 is available in a compact Chip Scale Package (CSP) compatible with standard SMT reflow process. The sensor supports multiple power supply configurations and uses few passive components to enable a highly compact camera module design for next generation energy efficient, smart camera devices.

№НМ0360-МWА-00FW703

Compact Camera Module

1.1. Features

- Ultra Low Power, high sensitivity, low noise VGA sensor
- Operates 8.6mA VGA 60 FPS down to 256µA in monitor mode
- Automatic wake and sleep operation with programmable event interrupt to wake host processor
- On chip high precision oscillator, auto exposure / gain, ambient light sensor and zone detection
- Metered exposure provides well exposed first frame and after extended sleep (blanking) period
- External frame synch and stereo camera support
- Flexible binning, subsampling and region of interest
- Embedded line provides metadata frame, AE statistics, zone trigger and other interrupt event information
- On-chip high precision oscillator and LDO
- 1-lane MIPI CSI2 and 8-bit parallel/serial data format that supports 1-bit, 4-bit and 8-bit protocol
- I2C 2-wrie serial interface supporting burst operation for fast register access
- < 13 mm2 CSP sensor package option
- High CRA for low profile module design

1.2. Application

- Cellular and mobile phones
- Digital video camcorders
- PC multimedia
- Tablets

Compact Camera Module

DATASHEET Preliminary V01

1.3. Key parameters

Parameters		Value			
Image sensor part number		HM0360-MWA			
Pixel array (Active / Effective)		656 x 496 / 640 x 480			
Pixel size		3.6µm x 3.6µm / BSI			
Image diagonal		2.88mm (1/6")			
Color filter array		Bayer, Monochrome			
Shutter type		Electronic Rolling Shutter			
Frame rate @24MHz		QQVGA 1 FPS to VGA 60 FPS			
S/N ratio (Max.)		45.5 dB			
Dynamic range (1x)		60 dB			
		5.5V / Lux-sec @530nm			
Sensitivity		15V / (µW-cm ⁻² sec) @850nm			
Pixel CRA (Max.)		35.74°			
	AVDD	2.8V			
Supply voltage	DVDD	1.2V (Internal LDO)			
	IOVDD	1.8V / 2.8V			
Input reference clock		6 – 24MHz			
Internal oscillator		48MHz			
Serial interface		I2C (1MHz max., single / burst)			
MIPI data format		8-bit			
Parallel / Serial data format		8-bit, 4-bit+4-bit / 4-bit / 1-bit			
Current Concurrentian		QVGA(S2), 2FPS: 179 µA			
Current Consumption (8-bit parallel interface, Typ.)		QVGA, 60FPS: 5.25 mA			
(8-bit parallel interface, Typ.)	(907	VGA, 60FPS: 8.6 mA			
Temperature		Operating -40 °C to 85 °C			
Temperature		Stable Image 0 °C to 60 °C			
Construction		3P			
EFL	1)3 20	1.56 mm			
BFL		0.75 mm			
Image circle	7 (() (ψ3.0 mm			
F/No		2.4 ± 5%			
TV distortion		< 1.5%			
	Horizontal	70.1°			
Field of view		55.4°			
	Diagonal	85.0°			
Relative illumination		>33% at y=1.0 field			
Chief ray angle	\bigvee	< 28°			
Barrel size		M4 x P0.3			
Holder size		6.5mm x 6.5mm			
Total track (Barrel to image)		Y=3.0mm			

Compact Camera Module

DATASHEET Preliminary V01

1.4. VGA window readout

The HM0360 full active pixel array of 656 x 496 can be windowed to 640 x 480 by register **0x3030[0]**.

Compact Camera Module

DATASHEET Preliminary V01

1.5. Electrical specification

1.5.1. Operating voltages

Parameter	Symbol		Unit		
Farameter	Symbol	Min.	Тур.	Max.	Unit
Analog supply voltage	V _{DD-A}	2.6	2.8	3.0	V
Digital supply voltage	V _{DD-D}	1.08	1.2	1.32	V
IO supply voltage	Vdd-10	1.7	1.8 / 2.8	3.0	V
LDO supply voltage		1.7	1.8 / 2.8	3.0	V

Table 1.1: Operating voltages

1.5.2. DC characteristics

The power consumptions are measured in color bar (C_L = 5pF).

				Spec.		Unit	
Parameter Symbol		Condition	Min.	Typ.	Max.	Unit	
Average Current Consum	nption – Par	allel 8b, External LDO mode					
	IDD-AVDD1	Video, VGA @ 60 FPS,		1940	-	μA	
Continuous video output	DD-DVDD1	PCLKO free running,	<u> 20</u>	4860	-	μA	
		$V_{DD-A} = 2.8V, V_{DD-D} = 1.2V,$ $V_{DD-IO} = 1.8V$	S^{-}	1790	-	μA	
	IDD-AVDD1	Auto wake up sleep, QQVGA@ 2 FPS,	6	36.6	-	μA	
S1 (Gate single frame with software standby)	DD-DVDD1	PCLKO gated, V _{DD-A} = 2.8V,V _{DD-D} = 1.2V,		215.6	-	μA	
		V _{DD-IO} = 1.8V, XSLEEP high	-	4	-	μA	
	Idd-avdd1	Auto wake up sleep, QQVGA@ 2 FPS,	-	22.6	-	μA	
S2 (Gate single frame with hardware standby)	DD-DVDD1	PCLKO gated, V _{DD-A} = 2.8V,V _{DD-D} = 1.2V,	-	70.1	-	μA	
	IDD-IOVDD1	V _{DD-10} = 1.8V, XSLEEP control by host	-	2.5	-	μA	
Software Standby current	IDD-SLEEP1	$V_{DD-A} = 2.8V, V_{DD-D} = 1.2V,$ $V_{DD-IO} = 1.8V$ XSLEEP inactive	-	176	-	μA	
Hardware Standby current	IDD-SLEEP2	V _{DD-A} = 2.8V, V _{DD-D} = 1.2V, V _{DD-IO} = 1.8V XSLEEP active	-	16	-	μA	
Average Current Consun	nption – MIP	I, External LDO mode	• 				
	DD-AVDD1	Video, VGA @ 60 FPS,	-	2120	-	μA	
Continuous video output	DD-DVDD1	gated by line, w/o LSLE	-	8840	-	μA	
		$V_{DD-A} = 2.8V, V_{DD-D} = 1.2V,$ $V_{DD-IO} = 1.8V$	-	1	-	μA	
	IDD-AVDD1	Auto wake up sleep, QQVGA@ 2 FPS,	-	42.4	-	μA	
S1 (Gate single frame with software standby)	IDD-DVDD1	gated by line, w/o LSLE V _{DD-A} = 2.8V,V _{DD-D} = 1.2V,	-	224.2	-	μA	
		V _{DD-IO} = 1.8V, XSLEEP high	-	4.5	-	μΑ	

Compact Camera Module

DATASHEET Preliminary V01

Deremeter	Symbol Condition			Unit		
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
	IDD-AVDD1	Auto wake up sleep, QQVGA@ 2 FPS,	-	26.3	-	μA
S2 (Gate single frame with hardware standby)	DD-DVDD1	gated by line, w/o LSLE V _{DD-A} = 2.8V,V _{DD-D} = 1.2V,	-	75.7	-	μA
		V _{DD-IO} = 1.8V, XSLEEP control by host	-	2.5	-	μA
Software Standby current	IDD-SLEEP1	$V_{DD-A} = 2.8V, V_{DD-D} = 1.2V,$ $V_{DD-IO} = 1.8V$ XSLEEP inactive	-	179	-	μΑ
Hardware Standby current	IDD-SLEEP2	$V_{DD-A} = 2.8V, V_{DD-D} = 1.2V,$ $V_{DD-IO} = 1.8V$ XSLEEP active	-	17	Ø -	μA
Average Current Consun	nption – Har	dware shutdown				
Hardware shutdown (Parallel/MIPI)	I _{DD}	MCLK off	\sim	1	-	μA
Digital Inputs (MCLK, TR	IGGER, SCL	.)				
Input voltage low	VIL	-	GND – 0.3	-	0.3V _{DD-IO}	V
Input voltage high	VIH	-	0.7VDD-IO	× -1	V _{DD-IO} + 0.3	V
Digital Output						
Output voltage low	Vol	-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u> </u>	$\overline{)}$	0.2V _{DD-IO}	V
Output voltage high	Vон		0.8VDD-10	<u>Y</u> -	-	V
Tri-state leakage current	loz		(0)	V -	10	μA

Table 1.2: DC characteristics

1.5.3. Master Clock (MCLK) input

Deremeter	Symbol			L lus it		
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Input frequency	MCLK		6	-	24	MHz
Input clock duty cycle	MCLKDUTY		45	-	55	%
	10 0		·			

Table 1.3: Master Clock (MCLK) timing

Compact Camera Module

DATASHEET Preliminary V01

1.6. Power up sequence

	Power Off	Deep Sleep (Sleep 2)	Soft Sleep (Sleep 1)	Stream	2
AVDD -	T1 → +				
IOVDD -	T2-	et	1		
DVDD -	T3->	*	+ +		19
XSHDOWN-		2 POR	1/		
XSLEEP -		Internally gate			
MCLK	ກາດກາດກາດການ	000000000	INN –		າບົດດາດດາດດາດດາດດາດດາດດາດ
I2C_SEL		I2C selection time	Change	during this period will not affect I2C ADDRESS	
(input) SDA, SCL -			T5 I2C Read	Set Modeselect[1:0]=001 To begin streaming	
TRIGGER				Sensor Sensor Integration	Programmable
(input)				Initialization Period for 1 ^d frame	1" Active Row of 1" frame Gated and Free run clock i
PCLKO (8b) mable polarity (default pos.) -		High-Z		High-Z or Low (programmable)	
D[7:0] _		High-Z		High-Z or Low (programmable)	012345678910
PCLKO (4b)		High-Z		High-Z or Low (programmable)	2 × PLCKO (8b)
mable polarity (default pos.) =				High-Z or Low (programmable)	
D[3:0] Programmable nibble order		High-Z			
SCK_Master (Out)		High-Z		High-Z or Low (programmable)	
(PCLKO pad)		: High-Z		High-Z or Low (programmable)	
D[0] Programmable nibble order					
HVLD -	<u> </u>	High-Z		High-Z or Low (programmable)	_
HVLD -		: High-Z		High-Z or Low (programmable)	
FVLD -			Program by I2C	Twake_up : . (> 1ms)	
CLK+/					
OER()/4 =		7			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
DATA+/- 1		-i		LP10 LP11	
Disital In-					
Digital Input (METER,FSIN,CXT_SEL) =			-		
Digital Output					· · · · · · · · · · · · · · · · · · ·
(INT,STROBE)		1	<u>†</u> †		+

Parameter	Symbol		Unit		
Falameter	Symbol	Min.	Тур.	Max.	Unit
AVDD to IOVDD	T1	0	-	∞	S
IOVDD to DVDD	T2	0	-	8	S
DVDD to XSHDOWN (External DVDD)	T3	0	-	8	S
XSHDOWN to XSLEEP	T4	400	-	-	μs
XSLEEP to 1 st I2C command	T5	38.6	-	-	μs

Note: (1) The minimum timing of T4 is 50µs when using external LDO mode.

(2) The maximum timing for power on reset time (**POR**) is 50µs.

Table 1.4: Power up sequence timing

Compact Camera Module

DATASHEET Preliminary V01

2. Camera Module Specification

2.1. Pin map and description of camera module

Pin no.	Pin name	Туре	Description
1	AVDD	Power	Analog power. (2.8V)
2	AGND	Ground	Analog ground.
3	D7	Out	Data 7 output.
4	D6	Out	Data 6 output.
5	D5	Out	Data 5 output.
6	D4	Out	Data 4 output.
7	D3	Out	Data 3 output.
8	D2	Out	Data 2 output.
9	D1	Out	Data 1 output.
10	D0	Out	Data 0 output.
11	DGND	Ground	Digital ground.
12	IOVDD	Power	IO power. (1.8V)
13	DVDD	Power	Core digital power. (1.2V)
14	DGND	Ground	Digital ground.
15	MCLK	In	Master clock input.
16	PCLKO	Out	Pixel clock
17	CXT_SEL	In	Context switching selection. (Internal pull low)
18	INT	Out	Interrupt output. (Active high)
19	SDA	In/Out	Serial Data I/O. (Open drain)
20	SCL	In	I2C serial clock.
21	HVLD	Out	Line valid output.
22	FVLD	Out	Frame valid output.
23	TRIGGER	In	Frame trigger input. (Internal pull low / Active high)
24	DGND	Ground	Digital ground.
25	CLK_SEL	In	Clock source select. (Internal pull low, L: Oscillator; H: MCLK, connect to ground for oscillator mode)
26	RTC	In	Real time clock source input. (Must not be left floating, connected to DGND without RTC clock input)
27	METER	In /	Exposure meter enable pin. (Internal pull low / Active high)
28	XSHUTDOWN	10/ In (Reset and power down control pin. (Active low)
29	XSLEEP	In	Low power sleep mode. (Active low)
30	STROBE	Out	Strobe output.

Note: (1) HM0360 sensor default slave address: 0x24.

Table 2.1: Pin map and description of camera module

Himax Imaging, Ltd. Confidential

This information contained herein is the exclusive property of Himax Imaging, Ltd. and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Himax Imaging, Ltd.

Compact Camera Module

DATASHEET Preliminary V01

2.2. Mechanical drawing of camera module

Figure 2.1: Mechanical drawing of camera module

Himax Imaging, Ltd. Confidential

This information contained herein is the exclusive property of Himax Imaging, Ltd. and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Himax Imaging, Ltd.

XSHUTDOWN

8

ROBE

1

METER

НМ0360-МWА-00FW703

Compact Camera Module

DATASHEET Preliminary V01

2.3. Application schematic of camera module

2.3.1. Reference circuit

- Note: (1) Capacitors should be placed close to its respective pin. All power supplies must be adequately decoupled. (2) CCI pull-up resistors should have a value based on the CCI specification (typically 4k7 ohm).
 - (3) RTC pin must not be left floating, connected to DGND without RTC clock input.
 - (4) MCLK connect to DGND when using internal oscillator.

Figure 2.2: Reference circuit of camera module (CSP)

2.3.2. Layout consideration

- A. In order to reduce power noise to the camera module, it is suggested that a 0.1μ F capacitor and a high value decoupling capacitor (10μ F or above) be placed across every power line (AVDD & DVDD & IOVDD) and corresponding ground pin. Try to place these capacitors close to the module connector. The power noise will contribute to image noise and it is necessary to reduce them as much as possible.
- B. In order to reduce interference and noise caused by the high frequency clocks. It is suggested that the master and pixel clocks be surrounded with ground shielding pins.
- C. In order to avoid the ground loop, it is recommended that the sensor analog ground be connected to sensor digital ground through a point or 0ohm resistor. Then the sensor digital ground should be connected to system ground through a point or a 0 ohm resistor.
- D. In order to reduce EM radiation, it is recommended that ground pins be assigned to the edge of the module connector.

Compact Camera Module

3. Optical Lens Specification

3.1. Mechanical drawing of optical lens

3.2. Specification of optical lens

Parameter		Spec.
Construction	401	3P
EFL		1.56 mm
BFL		0.75 mm
Image circle		ψ3.0 mm
F/No		2.4 ± 5%
TV distortion		< 1.5%
	lorizontal	70.1°
Field of view	/ertical	55.4°
	Diagonal	85.0°
Relative illumination		>33% at y=1.0 field
Chief ray angle	6	< 28°
Barrel size		M4 x P0.3
Holder size		6.5mm x 6.5mm
Total track (Barrel to image)		Y=3.0mm

Table 3.1: Specification of optical lens

Compact Camera Module

DATASHEET Preliminary V01

4. Image Quality Specification

No.	Test item	Diagram	Test condition	Standard
1	MTF		Test chart: 1/8 N Pattern chart Distance: 35cm Full image size	Center (0% field) : >=0.8 Corner (65% field) : >=0.6
2	Shading	AOI: 32x32 pixel Shading ratio= Ycorner (Min.) / Ycenter	Without ISP (raw image) Distance: 1cm Light condition: 1500 ± 300 lux, 5100 ± 300K	>=30%
3	Blemish	A: 324 pixel Biock size: 9x9 pixel	Without ISP (raw image) Distance: 1cm Light condition: 1500 ± 300 lux, 5100 ± 300K	The luminance difference between each block and the adjacent block should be less than 3%
		Dark pixel defect	The sensor is illuminated to midlevel: ~ 400 LSBs to 700 LSBs.	Within a color plane, each pixel is compared to the mean of the neighboring 40 x 40 pixels. If the pixel value is 40 percent or more below the mean, it is considered a dark pixel defect.
4	④ Defect pixel	Bright pixel defect	The sensor is illuminated to midlevel: ~ 400 LSBs to 700 LSBs. (Analog gain = 1; exposure time = 10ms)	Within a color plane, each pixel is compared to the mean of the neighboring 40 x 40 pixels. If the pixel value is 40 percent or more above the mean, it is considered a dark pixel defect.
		Bright cluster Defect no.: 10	By "Bright Pixel Defect" Result	The defects within each color plane are examined. If any two adjacent pixels that are considered bright pixel defects are detected, they are then defined as a bright cluster.
		Dark Cluster Defect No.: 10	By "Dark Pixel Defect" Result	The defects within a color plane are examined. If any two adjacent pixels that are considered dark pixel defects are detected, they are then defined as a dark cluster.

Compact Camera Module

DATASHEET Preliminary V01

5. Reliability Test Conditions

(Reliability test quantity: 35 pcs)

No.	Test item	Test conditions	Judgement
1	High temperature test	60°C / 48Hrs	
2	High temperature & Humidity test	60°C / 90%RH / 48Hrs	
3	Low temperature test	-20℃ / 48Hrs	
4	Thermal shock test (No-Operating)	-20°C / 30min~60°C / 30min (32 cycles)	
(5)	ESD test (No-Operating)	Contact discharge: ±2.0 KV / 10 times, to USB connector Human Body Mode	
6	Mechanical vibration test (No-Operating, No packaging)	5Hz \sim 350Hz \sim 500Hz 0.21 Grms. Vibrate X, Y, and Z axis, 60min per axis.	The difference of MTF(%) Center <=5 Corner(0.7f) <=10
7	Mechanical vibration test (No-Operating, packaging)	5Hz~55Hz; -6dB; Acc 3G, Vibrate X, Y, and Z axis, 60min per axis.	
8	Drop test (No-Operating, No packaging)	80cm height free fall for 10 times per unit base material: concrete floor	
9	Drop test (No-Operating, packaging)	100cm height free fall for 10 impacts per unit (1 corner, 3 edges, 6 faces) base material: concrete floor	
	*		

Himax Imaging, Ltd. Confidential

Compact Camera Module

6. Inspection Specification

6.1. Sampling plan

- MIL-STD-105E level single normal random sampling
- Defect classification and Acceptable Quality Level (AQL)

Parameter	Dimension / Appearance	Image function
AQL	0.65	0.4

6.2. Visual inspection method

- Lighting: the light level in QC station is 500~800 Lux
- Location: test sample should put in front of inspector for 30cm ± 5cm
- View angle: 90 ± 15 degree

6.3. Inspection item

- Appearance and dimension check
- Image function inspection

6.4. Remark

This standard is a general. If any special case (e.g. specified component... etc), it should be created a related standard and keep it was updated. If any Dept. or customer ans special request, we will use this request temporarily until it was canceled by Dept. or customer.

Compact Camera Module

DATASHEET Preliminary V01

6.5. Appearance / Dimension check

Parameter	No.	ltem	Spec.	Picture
Product outline	1	Please follow ME drawing	Please reference ME drawing	Please reference ME drawing
Outline	1	Lens glue overflow Barrel damaged	 A. No protruded glue residue on the Lens/Barrel surface B. Barrel can be not damaged 	This is not the correct model, Only for understanding
	2	Lens scratch	 A. Length ≤ 0.5D of lens B. Can be not influence image 	This is not the correct model, Only for understanding
Product appearance	3	Barrel scatch	 A. Length ≤ D B. Length ≥ 1/2D allow 2 places C. Can't be across center area < 0.2mm and can't n 	This is not the correct model, Only for understanding Center Area nake the outline dimension out of spec.
	5	Barrel loose	Barrel loosed is unacceptable	Confirmation method: use the clean needle to see if UV glue is cured completely.
	6	Holder mount gap	 A. Can't make the outline dimension out of spec. B. Can't influence image 	This is not the correct model, Only for understanding

Himax Imaging, Ltd. Confidential This information contained herein is the exclusive property of Himax Imaging, Ltd. and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Himax Imaging, Ltd.

Compact Camera Module

DATASHEET Preliminary V01

Solder mask damage Circuit or inner material exposure is not acceptable This is not the correct model, Only for understanding (1) Solder mask damage Circuit or inner material exposure is not acceptable This is not the correct model, Only for understanding (2) FPC dirty or glue residue Length (or 2Radius) of the dirty or glue residue < 1/5 th3 smallest edge length This is not the correct model, Only for understanding (3) FPC printing A. printing missing is NO This is not the correct model, Only for understanding. (3) FPC printing A. printing missing is NO This is not the correct model, Only for understanding. (3) FPC printing A. printing missing is NO This is not the correct model, Only for understanding. (4) FPC printing A. printing missing is NO This is not the correct model, Only for understanding. (4) FPC printing A. printing missing is NO This is not the correct model, Only for understanding. (4) FPC printing A. printing missing is NO This is not the correct model, Only for understanding. (4) FPC printing A. Printing missing is NO This is not the correct model, Only for understanding. (4) FPC printing A. No solder ball This is not the correct model, Only for understanding.	Parameter	No.	Item	Spec.	Picture
⑦ Solder mask damage Circuit or inner material exposure is not acceptable Only for understanding ⑧ FPC dirty or glue residue Length (or 2Radius) of the dirty or glue residue < 16 th 3 smallest edge length This is not the correct model, Only for understanding ⑨ FPC printing A printing missing is NOB This is not the correct model, Only for understanding ⑨ FPC printing A printing missing is NOB This is not the correct model, Only for understanding ⑨ FPC printing A printing missing is NOB This is not the correct model, Only for understanding. ⑨ FPC printing A printing missing is NOB This is not the correct model, Only for understanding. ⑨ FPC printing A printing missing is NOB This is not the correct model, Only for understanding. ⑨ FPC printing Prin dynamics is not acceptable Only for understanding. ⑨ Connector Prin oxidation is not acceptable Only for understanding. ⑨ Connector Pin oxidation is not acceptable Only for understanding. ⑨ Connector Connector and caused image problem is on acceptable Only for understanding.					
Image: Second state of the		7		material exposure	Only for understanding
 PPC printing PPC printing PPC printing Printing should be no blurred Printing should be no blured be no blurred Printin		8		of the dirty or glue residue < 1/5 th3 smallest edge	
 and no solder residue Pin oxidation is not acceptable Pin damaged is not acceptable Connector deformed and caused image problem is 		9	FPC printing	is NG B. printing should	This is not the correct model, Only for understanding.
		10	Connector	 and no solder residue B. Pin oxidation is not acceptable C. Pin damaged is not acceptable D. Connector deformed and caused image problem is 	

Himax Imaging, Ltd. Confidential This information contained herein is the exclusive property of Himax Imaging, Ltd. and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Himax Imaging, Ltd.

Compact Camera Module

DATASHEET Preliminary V01

Parameter	No.	ltem	Spec.	Picture
		Mylar attached	 A. Mylar missing is NG B. Mylar should be in the same direction (same as PCB indicator) C. Mylar is allowed to be shifted within a range of 45 degree; however, Mylar lift-up is unacceptable 	
	12	Product label	 A. Label missing is NG, should be no peeling, bubble, or blurred B. Label is correct and clear and at right location 	This is not the correct model, Only for understanding. Iabel
Package	1	Packing	E. Label should be r	
Function	1	Output Abnormal image	By visual	or no image is not acceptable abnormal color or apart is unacceptable
	3	Blurred image	By visual Blurred, shading or a	another special image is unacceptable
	1	Resolution test		d 4 corners should be clear to identify the lines
Image quality	2	Shading test	By test program Ratio of darkest to co (without lens correcti	enter should be great than specified ratio. ion)
	3	Blemish	Both visual inspectio	n and test by program are unacceptable
	4	Defect pixel	Depend on test prog (Defect pixel definitio	ram judgment n follow sensor outgoing spec.)