

# **EiceDRIVER<sup>™</sup> gate driver 1EDI3033AS**

## Single channel isolated SiC-MOSFET driver



## Features

- Single channel isolated SiC driver using coreless transformer technology
- For SiC-MOSFETs up to 1200 V
- CMTI up to 150 V/ns at 1000 V
- 8 kV basic insulation according to VDE V 0884-11:2017-01
- Basic insulation recognized according to UL 1577
- Min. 12 A peak current rail-to-rail output
- Propagation delay 60 ns typical
- Typ. 10 A integrated Active Miller Clamp supports unipolar switching
- Integrated ADC for DC-link measurements
- Integrated safety features to support ASIL B(D):
  - Redundant DESAT and OCP protection
  - Gate and output stage monitoring
  - Shoot-through protection
  - Primary/secondary supply monitoring
    - Internal supervision
- ISO 26262 Safety Element out of Context for safety requirements up to ASIL B
- Green Product (RoHS compliant)

## **Potential applications**

- Traction inverters for HEV and EV
- Auxiliary inverters for HEV and EV
- High power DC/DC converters

## **Product validation**

Qualified for automotive applications. Product validation according to AEC-Q100.

## Description

The EiceDRIVER<sup>™</sup> gate driver 1EDI3033AS is a high-voltage SiC-MOSFET driver designed for automotive motor drives above 5 kW. The device is based on Infineon's coreless transformer (CT) technology, providing galvanic insulation between low voltage and high voltage domains. The device has been designed to support 400 V, 600 V and 1200 V SiC-MOSFET technologies.





### Description

The device features a high output stage of minimum 12 A peak current. A comprehensive feature set allows advanced protection of the device and the power switch, as well as optimized driver performance and robustness.

The device can be connected on the low voltage side ("primary" side) to 5 V and 3.3 V logic.

On the high voltage side (secondary side), the device is dimensioned to drive the gate of SiC-MOSFETs directly. Short propagation delays and controlled internal tolerances lead to a minimal distortion of the PWM signal. In addition, there is a Miller clamping stage with minimum 12 A integrated, which allows unipolar supply of the SiC-MOSFET.

The device features an integrated ADC for DC link measurement and a detailed error diagnosis via a PWM signal.

A large panel of safety related functions supports functional safety requirements at system level as per ISO 26262. Besides, these integrated features ease the implementation of a transition to safe-state.

| Туре       | Package   | Marking    |  |
|------------|-----------|------------|--|
| 1EDI3033AS | PG-DSO-20 | 1EDI3033AS |  |



## Table of contents

## **Table of contents**

|     | Features                                    |
|-----|---------------------------------------------|
|     | Potential applications                      |
|     | Product validation $\ldots \ldots \ldots 1$ |
|     | Description                                 |
|     | Table of contents                           |
| 1   | Block diagram                               |
| 2   | Pin configuration                           |
| 2.1 | Pin definitions and functions6              |
| 3   | <b>General product characteristics</b>      |
| 3.1 | Absolute maximum ratings                    |
| 3.2 | Functional range                            |
| 3.3 | Thermal characteristics                     |
| 3.4 | Insulation characteristics                  |
| 4   | Operating modes                             |
| 4.1 | Operating modes diagram                     |
| 4.2 | Operating modes description                 |
| 4.3 | Single failure events in Normal_Mode15      |
| 5   | <b>Power supply</b>                         |
| 5.1 | Bipolar and unipolar supplies               |
| 5.2 | Electrical characteristics power supply16   |
| 6   | Switching characteristics                   |
| 6.1 | Functional description switching            |
| 6.2 | Electrical characteristics switching18      |
| 7   | Protection and monitoring functions         |
| 7.1 | DESAT protection                            |
| 7.2 | Over Current Protection (OCP)               |
| 7.3 | Safe turn-off                               |
| 7.4 | Shoot Through Protection (STP)              |
| 7.5 | Power supply monitoring                     |
| 7.6 | Gate monitoring                             |
| 7.7 | Output stage monitoring                     |
| 8   | Clamping functions                          |
| 8.1 | Active Miller clamp                         |
| 8.2 | Passive clamping                            |
| 9   | Analog-to-Digital Converter (ADC)           |
| 9.1 | Functional description ADC                  |

## EiceDRIVER<sup>™</sup> gate driver 1EDI3033AS Single channel isolated SiC-MOSFET driver



## Table of contents

| 9.2  | Electrical characteristics ADC                 |    |
|------|------------------------------------------------|----|
| 10   | Interface                                      | 40 |
| 10.1 | Reset (NRST)                                   |    |
| 10.2 | Ready (RDY)                                    |    |
| 10.3 | Fault (NFLT)                                   |    |
| 10.4 | I/O levels                                     |    |
| 10.5 | DATA read-out                                  |    |
| 11   | Application information                        |    |
| 11.1 | Electrical characteristics external components |    |
| 11.2 | Typical application example                    |    |
| 12   | Package information                            |    |
|      | Revision history                               |    |
|      | Disclaimer                                     |    |



## 1 Block diagram







infineon

2 Pin configuration

## 2 Pin configuration



Figure 2 Pin assignment

## 2.1 Pin definitions and functions

### Table 1Pin definition and functions

| Pin # | Pin name | I/O    | Voltage<br>class  | Function                                                                                                                                                                                                                                                                             |
|-------|----------|--------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | GND1     | Ground | Primary<br>ground | Ground connection for the primary side.                                                                                                                                                                                                                                              |
| 2     | VCC1     | Supply | Primary<br>supply | 5 V/3.3 V power supply for the primary side (referring to GND1).                                                                                                                                                                                                                     |
| 3     | DATA     | Output | 5 V primary       | The data pin is used for ADC or diagnosis data. This pin is a push-pull output which is driving a PWM signal according to the data.                                                                                                                                                  |
| 4     | NFLT     | Output | 5 V primary       | The fault open-drain signal is used to report failure events<br>triggered by DESAT or OCP protection. As a result the pin is<br>driven to low. This pin has to be connected externally to VCC1<br>with a pull-up resistance.                                                         |
| 5     | RDY      | Output | 5 V primary       | The ready open-drain signal is used to report failure events<br>like UVLO1, UVLO2, OVLO2, Life Sign Lost, Output Stage Error,<br>Gate Monitoring Error, etc. As a result this pin is driven to<br>low. This pin has to be connected externally to VCC1 with a<br>pull-up resistance. |
| 6     | NRST     | Input  | 5 V primary       | The reset signal is used to clear the failure/fault events which<br>triggered RDY or NFLT active low. The signal is clearing an<br>error on rising edge. An internal pull-down resistance is<br>driving this pin to low state in case the pin is floating.                           |
| 7     | EN       | Input  | 5 V primary       | The enable signal allows the logic on the primary side to enable or disable the device. The logic levels are according                                                                                                                                                               |



## 2 Pin configuration

| Table 1 |                | (continued) Pin definition and functions |                     |                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
|---------|----------------|------------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Pin #   | Pin name       | I/O                                      | Voltage<br>class    | Function                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
|         |                |                                          |                     | to the used power supply. An internal weak pull-down resistance is disabling the device in case the pin is floating.                                                                                                                                                                  |  |  |  |  |  |  |  |
| 8       | INN            | Input                                    | 5 V primary         | The inverting PWM signal is used for monitoring for shoot<br>through protection. An internal weak pull-up resistor to VCC1<br>drives this input to high state in case the pin is floating.                                                                                            |  |  |  |  |  |  |  |
| 9       | INP            | Input                                    | 5 V primary         | The non-inverting PWM signal of the driver. An internal weak pull-down resistor to GND1 drives this input to low state in case the pin is floating.                                                                                                                                   |  |  |  |  |  |  |  |
| 10      | GND1           | Ground                                   | Primary<br>ground   | Ground connection for the primary side.                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |
| 11      | VEE2           | Supply                                   | Secondary<br>supply | Negative power supply for the secondary side (referring to GND2).                                                                                                                                                                                                                     |  |  |  |  |  |  |  |
| 12      | GATE/<br>CLAMP | Input/<br>Output                         | 15 V<br>secondary   | The gate monitoring and clamp signal is monitoring the gate<br>of the power switch and clamping the gate to VEE2 if the<br>threshold VCLAMP is reached.                                                                                                                               |  |  |  |  |  |  |  |
| 13      | TOUT           | Output                                   | 15 V<br>secondary   | The transistor drive voltage signal switches the power switch gate to VCC2 or VEE2, according to the PWM input.                                                                                                                                                                       |  |  |  |  |  |  |  |
| 14      | VCC2           | Supply                                   | Secondary<br>supply | Positive power supply for the secondary side (referring to GND2).                                                                                                                                                                                                                     |  |  |  |  |  |  |  |
| 15      | DESAT          | Input                                    | 15 V<br>secondary   | The desaturation protection signal monitors the voltage<br>across the power switch. An internal current source to VCC2<br>drives this signal to high level in case it is floating.                                                                                                    |  |  |  |  |  |  |  |
| 16      | GND2           | Ground                                   | Secondary<br>ground | Reference ground for the secondary side.                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
| 17      | AIP            | Input                                    | 5 V<br>secondary    | The ADC function can be used to monitor the DC-link voltage.<br>The internal current source is disabled.                                                                                                                                                                              |  |  |  |  |  |  |  |
| 18      | OCPN           | Input                                    | 5 V<br>secondary    | The negative over current protection signal is differential therefore it should be always close to OCPP signal. A common-mode filter should be applied to the OCPP signal.                                                                                                            |  |  |  |  |  |  |  |
| 19      | ОСРР           | Input                                    | 5 V<br>secondary    | The positive over current protection signal is differential<br>therefore it should be always close to OCPN signal. A<br>common-mode filter should be applied to the OCPN signal.<br>An internal weak pull-up resistor drives this input to high<br>state in case the pin is floating. |  |  |  |  |  |  |  |
| 20      | VEE2           | Supply                                   | Secondary<br>supply | Negative power supply for the secondary side (referring to GND2).                                                                                                                                                                                                                     |  |  |  |  |  |  |  |



## **3** General product characteristics

## 3.1 Absolute maximum ratings

#### Table 2Absolute maximum ratings

 $T_{\rm J}$  = -40°C to 150°C; all voltages with respect to ground, pos. current flowing into pin (unless otherwise specified). Absolute maximum ratings are defined as ratings which when being exceeded may lead to destruction of the integrated circuit. Absolute maximum ratings are not subject to production test, specified by design.

| Parameter                                                                                       | Symbol                          | bol Values                        |      |                            | Unit | Note or condition  | P-      |  |
|-------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------|------|----------------------------|------|--------------------|---------|--|
|                                                                                                 |                                 | Min.                              | Тур. | Max.                       |      |                    | Number  |  |
| Positive<br>power supply<br>(primary)                                                           | V <sub>VCC1_MAX</sub>           | -0.3                              | -    | 7                          | V    | Referenced to GND1 | PRQ-560 |  |
| Positive<br>power supply<br>(secondary)                                                         | V <sub>VCC2_MAX</sub>           | -0.3                              | -    | 30                         | V    | Referenced to GND2 | PRQ-561 |  |
| Negative<br>power supply<br>(secondary)                                                         | V <sub>VEE2_MAX</sub>           | -13                               | -    | 0.3                        | V    | Referenced to GND2 | PRQ-562 |  |
| Power supply<br>voltage<br>difference<br>(secondary)<br>VCC2-VEE2                               | V <sub>VCC2</sub> -<br>VEE2_MAX | -                                 | -    | 40                         | V    |                    | PRQ-563 |  |
| Voltages on<br>any I/O pin<br>on primary<br>side (INP,<br>INN, NRST,<br>DATA, RDY,<br>NFLT, EN) | V <sub>INx_MAX</sub>            | -0.3                              | -    | V <sub>VCC1</sub><br>+ 0.3 | V    | Referenced to GND1 | PRQ-564 |  |
| AIP voltage                                                                                     | V <sub>AIP_MAX</sub>            | -0.3                              | -    | V <sub>VCC2</sub><br>+ 0.3 | V    |                    | PRQ-789 |  |
| DESAT<br>voltage                                                                                | V <sub>DESAT_MAX</sub>          | -0.3                              | -    | V <sub>VCC2</sub><br>+ 0.3 | V    | Referenced to GND2 | PRQ-566 |  |
| ОСРР                                                                                            | V <sub>OCPP_MAX</sub>           | -2.8                              | -    | 2.8                        | V    | Referenced to GND2 | PRQ-788 |  |
| OCPN                                                                                            | V <sub>OCPN_MAX</sub>           | -2.8                              | _    | 2.8                        | V    | Referenced to GND2 | PRQ-831 |  |
| Maximum<br>Clamp/gate<br>voltage                                                                | V <sub>Clamp/</sub><br>Gate_MAX | V <sub>VEE2</sub><br>- 0.3        | -    | V <sub>VCC2</sub><br>+ 0.3 | V    | Referenced to GND2 | PRQ-567 |  |
| TOUT voltage                                                                                    | V <sub>OUT_MAX</sub>            | <i>V</i> <sub>VEE2</sub><br>- 0.3 | -    | V <sub>VCC2</sub><br>+ 0.3 | V    | Referenced to GND2 | PRQ-568 |  |



### Table 2 (continued) Absolute maximum ratings

 $T_{\rm J}$  = -40°C to 150°C; all voltages with respect to ground, pos. current flowing into pin (unless otherwise specified). Absolute maximum ratings are defined as ratings which when being exceeded may lead to destruction of the integrated circuit. Absolute maximum ratings are not subject to production test, specified by design.

| Parameter                                               | Symbol                          | Values |      |      | Unit | Note or condition                                            | P-      |  |
|---------------------------------------------------------|---------------------------------|--------|------|------|------|--------------------------------------------------------------|---------|--|
|                                                         |                                 | Min.   | Тур. | Max. |      |                                                              | Number  |  |
| TOUT high<br>output<br>maximum<br>current               | I <sub>OUTH_MAX</sub>           | -15    | _    | -    | A    | t <sub>MAX</sub> = 1.5 μs, non-repetitive                    | PRQ-569 |  |
| TOUT low<br>output<br>maximum<br>current                | I <sub>OUTL_MAX</sub>           | -      | _    | 15   | A    | t <sub>MAX</sub> = 1.5 μs, non-repetitive                    | PRQ-570 |  |
| Gate/Clamp<br>low<br>maximum<br>output<br>current       | I <sub>Gate/</sub><br>Clamp_Max | -      | -    | 15   | A    | t <sub>MAX</sub> = 1.5 μs, non-repetitive                    | PRQ-848 |  |
| Current on<br>output logic<br>pins (DATA,<br>RDY, NFLT) | / <sub>outx_max</sub>           | -      | -    | 10   | mA   |                                                              | PRQ-572 |  |
| ESD<br>immunity                                         | V <sub>ESD_HBM</sub>            | -2     | -    | 2    | kV   | HBM according to AEC Q100-002, CDM according to AEC Q100-011 | PRQ-573 |  |
| Storage<br>temperature                                  | T <sub>s_MAX</sub>              | -55    | -    | 150  | °C   |                                                              | PRQ-575 |  |
| Junction<br>temperature                                 | T <sub>J_MAX</sub>              | -40    | -    | 150  | °C   |                                                              | PRQ-790 |  |

## 3.2 Functional range

#### Table 3 Functional range

 $T_{\rm J}$  = -40°C to 150°C; all voltages with respect to ground, pos. current flowing into pin (unless otherwise specified).

| Parameter                             | Symbol            | Values |      |      | Unit | Note or condition  | P-      |
|---------------------------------------|-------------------|--------|------|------|------|--------------------|---------|
|                                       |                   | Min.   | Тур. | Max. | 1    |                    | Number  |
| Positive<br>power supply<br>(primary) | V <sub>VCC1</sub> | 3      | -    | 5.5  | V    | Referenced to GND1 | PRQ-579 |
| VCC1 ramp-<br>up slew-rate            | t <sub>RP1</sub>  | -      | -    | 2000 | V/ms |                    | PRQ-797 |



### Table 3(continued) Functional range

 $T_{\rm J}$  = -40°C to 150°C; all voltages with respect to ground, pos. current flowing into pin (unless otherwise specified).

| Parameter                                                                                   | Symbol                 | Values     |      |                   | Unit  | Note or condition         | P-      |
|---------------------------------------------------------------------------------------------|------------------------|------------|------|-------------------|-------|---------------------------|---------|
|                                                                                             |                        | Min.       | Тур. | Max.              |       |                           | Number  |
| VCC2 ramp-<br>up slew-rate                                                                  | t <sub>RP2</sub>       | 0.65<br>0  | -    | 1000              | V/ms  |                           | PRQ-798 |
| Negative<br>power supply<br>(secondary)                                                     | V <sub>VEE2</sub>      | -11.5      | -5   | 0                 | V     | Referenced to GND2        | PRQ-581 |
| VEE2 ramp-<br>up slew-rate                                                                  | t <sub>RP3</sub>       | -0.10<br>0 | -    | -100<br>0         | V/ms  |                           | PRQ-799 |
| Power supply<br>voltage<br>difference<br>(secondary)<br>VCC2-VEE2                           | V <sub>VCC2-VEE2</sub> | -          | -    | 25                | V     |                           | PRQ-582 |
| Junction<br>temperature                                                                     | TJ                     | -40        | -    | 150               | °C    |                           | PRQ-588 |
| Common<br>mode<br>transient<br>immunity                                                     | dV <sub>ISO</sub> /dt  | -150       | -    | 150               | kV/µs | For voltages up to 1000 V | PRQ-589 |
| Voltages on<br>any I/O pin<br>on primary<br>side (INP,<br>INN, NRST,<br>DATA, RDY,<br>NFLT) | V <sub>INx</sub>       | 0          | -    | V <sub>VCC1</sub> | V     | Referenced to GND1        | PRQ-583 |

## 3.3 Thermal characteristics

The thermal capability of the device is depending on the used power module. The following formula and parameters can be used to calculate the maximum switching frequency for a dedicated power module:

$$f_{SW} = \frac{P_{SW} \cdot (R_{DSON-OSLN} + R_g)}{(V_{VCC2} - V_{VEE2})^2 \cdot C_{Gate} \cdot R_{DSON-OSLN}}$$

#### Figure 3 Formula to calculate the maximum switching frequency in application

Where the maximum switching losses are  $P_{SW} = P_{DIS2} - P_{IDLE\_sec}$ ,  $R_g$  is the external gate resistor,  $C_{Gate}$  is the maximum gate charge of the power switch, and  $R_{DSON-OSLN}$  is the internal gate resistor.

*Note:* This formula is only valid if ON/OFF resistors have the same value.



## 3.3.1 Thermal characteristics parameters

#### Table 4Thermal characteristics parameters

 $T_{\rm J}$  = -40°C to 150°C; all voltages with respect to ground, pos. current flowing into pin (unless otherwise specified).

| Parameter                                                        | Symbol                | ol Values |                |     | Unit | Note or condition                                                                                                                                                                                                     | P-       |
|------------------------------------------------------------------|-----------------------|-----------|----------------|-----|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|                                                                  |                       | Min.      | Min. Typ. Max. |     |      |                                                                                                                                                                                                                       | Number   |
| Power<br>Dissipation -<br>Primary Chip                           | P <sub>DIS1</sub>     | -         | 40             | _   | mW   | <i>T</i> <sub>AMB</sub> = 25°C, <i>V</i> <sub>VCC1</sub> = 5 V, PWM duty cycle<br>= 50%, Normal_Mode, no <i>C</i> <sub>LOAD</sub> , no <i>R</i> <sub>LOAD</sub><br>on TOUT, average value (peak current<br>neglected) | PRQ-946  |
| Power<br>Dissipation -<br>Secondary<br>Chip                      | P <sub>DIS2</sub>     | -         | 300            | _   | mW   | $T_{AMB} = 25^{\circ}C$ , $V_{VCC2} = typ.$ , $V_{VEE2} = typ.$ , PWM<br>duty cycle = 50%, Normal_Mode, no $C_{LOAD}$ ,<br>no $R_{LOAD}$ on TOUT, average value (peak<br>current neglected)                           | PRQ-947  |
| Switching frequency                                              | f <sub>SW</sub>       | -         | 25             | 430 | kHz  | $V_{VCC2} = 18 \text{ V}, V_{VEE2} = -5 \text{ V}, C_{Gate} = 9 \text{ nF}, R_g = 6$<br>$\Omega, T_{AMB} = 25^{\circ}\text{C}$                                                                                        | PRQ-839  |
| Thermal<br>Resistance<br>Junction to<br>Ambient<br>(25°C)        | R <sub>THJA</sub>     | -         | 85             | -   | K/W  | T <sub>amb</sub> = 25°C                                                                                                                                                                                               | PRQ-932  |
| Thermal<br>Resistance<br>Junction to<br>Ambient<br>(125°C)       | R <sub>THJA,125</sub> | _         | 71             | -   | K/W  | T <sub>AMB</sub> = 125°C                                                                                                                                                                                              | PRQ-975  |
| Thermal<br>Resistance<br>Junction to<br>Case<br>(bottom)         | R <sub>THJCBOT</sub>  | -         | 60             | -   | K/W  | $T_{amb} = 25^{\circ}C$                                                                                                                                                                                               | PRQ-933  |
| Thermal<br>Resistance<br>Junction to<br>Case (top)               | R <sub>THJCTOP</sub>  | -         | 52             | -   | K/W  | T <sub>amb</sub> = 25°C                                                                                                                                                                                               | PRQ-934  |
| Thermal<br>Resistance<br>Junction to<br>Board (25°C)             | R <sub>THJBOARD</sub> | -         | 45.4           | -   | K/W  | T <sub>amb</sub> = 25°C, power losses on secondary<br>side ≤ 500 mW, power losses on primary<br>side ≤ 50 mW                                                                                                          | PRQ-1031 |
| Ψ - Pseudo<br>Thermal<br>Resistance<br>Junction to<br>Case (top) | R <sub>PSIJT</sub>    | _         | 21             | -   | K/W  | T <sub>amb</sub> = 25°C                                                                                                                                                                                               | PRQ-935  |



This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go to www.jedec.org.

#### **Insulation characteristics** 3.4

#### Table 5 Insulation characteristics for reinforced and basic insulation in compliance with DIN VDE V 0884-11:2017-01. Input to output test conditions according to method a) and b) follow the more stringent requirements as of reinforced insulation.

| Description                                                                                                                                                                             | Symbol                       | Value                | Unit              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------|-------------------|
| Installation classification per IEC 60664-1, Table F.1                                                                                                                                  |                              | -                    | _                 |
| for rated mains voltage ≤ 150 V <sub>RMS</sub>                                                                                                                                          |                              | I-IV                 |                   |
| for rated mains voltage ≤ 300 V <sub>RMS</sub>                                                                                                                                          |                              | I-IV                 |                   |
| for rated mains voltage ≤ 600 V <sub>RMS</sub>                                                                                                                                          |                              | I-III (IV for basic) |                   |
| for rated mains voltage ≤ 1000 V <sub>RMS</sub>                                                                                                                                         |                              | I-II (III for basic) |                   |
| Climatic classification                                                                                                                                                                 |                              | 40/125/21            | -                 |
| Pollution degree (IEC 60664-1)                                                                                                                                                          |                              | 2                    | -                 |
| Minimum external creepage                                                                                                                                                               | CPG                          | 8                    | mm                |
| Minimum external clearance                                                                                                                                                              | CLR                          | 8                    | mm                |
| Minimum comparative tracking index                                                                                                                                                      | СТІ                          | 400                  | -                 |
| Maximum repetitive insulation voltage                                                                                                                                                   | V <sub>IORM</sub> ,reinforce | 1767                 | V <sub>PEAK</sub> |
|                                                                                                                                                                                         | $V_{\rm IORM, basic}$        | 1420                 |                   |
| Maximum rated transient insulation voltage                                                                                                                                              | V <sub>IOTM</sub>            | 8000                 | V <sub>PEAK</sub> |
| Maximum surge insulation voltage for reinforced insulation<br>Test voltage in subgroup $#1 = 1.6 * V_{IOSM,reinforced} = 11kV$                                                          | $V_{\rm IOSM, reinforce}$ d  | 6875                 | V <sub>PEAK</sub> |
| Maximum surge insulation voltage for basic insulation<br>Test voltage in subgroup $#1 = 1.3 * V_{IOSM, basic} = 10.4 kV$                                                                | V <sub>IOSM,basic</sub>      | 8000                 | V <sub>PEAK</sub> |
| Input to output test voltage, method b) $V_{\text{ini,b}} = 1.2 * V_{\text{iotm}}, V_{pd(m)} = V_{\text{iorm,reinforced}} * 1.875, 100\%$ production test with $t_{\text{ini,b}} = 1$ s | q <sub>pd</sub>              | < 5                  | pC                |
| Input to output test voltage, method a) $V_{ini,a} = V_{iotm}$ , $V_{pd(m)} = V_{iorm,reinforced} * 1.6$ , sample test with $t_{ini,a} = 60$ s                                          | 9 <sub>pd</sub>              | < 5                  | pC                |
| Insulation resistance at 100 °C $\leq T_{amb} \leq$ 125 °C, $V_{io} =$ 500 V                                                                                                            | R <sub>IO</sub>              | >10 <sup>12</sup>    | Ω                 |
| Insulation resistance at $T_{\rm S}$ = 150 °C, $V_{\rm io}$ = 500 V                                                                                                                     | R <sub>IO_S</sub>            | >109                 | Ω                 |

| Table 6 Insulat                         | ion characteristic | s recognized according to UL 1 | 577    |          |
|-----------------------------------------|--------------------|--------------------------------|--------|----------|
| Parameter                               | Symbol             | Characteristic                 | Unit   |          |
| Insulation withstand<br>voltage / 1 min | V <sub>ISO</sub>   | 5700                           | V(rms) |          |
| Insulation test voltage / 1 s           | V <sub>ISO</sub>   | 6000                           | V(rms) |          |
| <b>(table continues)</b><br>Datasheet   | 1                  | 12                             | '      | Rev. 1.1 |

Note:



### Table 6(continued) Insulation characteristics recognized according to UL 1577

| Parameter Symbol Characteristic Unit |
|--------------------------------------|
|--------------------------------------|

*Note:* The insulation characteristics only apply when the device is operated within the safety limits given by the absolute maximum ratings.



**4** Operating modes

## 4 Operating modes

## 4.1 Operating modes diagram



#### Figure 4 Operating modes state diagram

Note:

- Life sign lost will be detected only if communication has been established once.
- External pull-up required on RDY and NFLT (open drain output)

## 4.2 Operating modes description

The device has the following modes which it can operate in:

- Ready\_Mode (not enabled)
- Error\_Mode (Failure/Fault event occurred)
- Normal\_Mode (Device enabled)

#### Reset

If the NRST signal is low the device keeps its operating mode (no influence on PWM). Further the rising edge on NRST signal will reset the failure/fault event memory.



#### 4 Operating modes

#### Power Down and Start up

The device is in Power\_Down\_Mode at start-up or if an UVLO1 error occurs. In both cases it will not operate. If the device is partly supplied (e.g. VCC1 only) the device will enter Error\_Mode. Therefore supplies should rise within the specified slew rates to a valid voltage level according to given operating conditions. Afterwards a rising edge on NRST will bring the device into Ready\_Mode (no Failure or Fault Event occurred).

#### **Mode Transitions**

Once in Ready\_Mode the change to Normal\_Mode can be done with setting EN signal to "high level" (voltage level differs with VCC1 level), changing it to "low level" is also the returning into Ready\_Mode. The transition into Error\_Mode can only be done with the according events which are:

- OCP event
- DESAT event
- UVLO2 event
- OVLO2 event
- Sec. Internal Supervision Error
- Output Stage Monitor Error
- Gate Monitoring Error
- OCPx pin open
- OTP read error

#### Error\_Mode

In Error\_Mode a "low level" on signal EN will issue diagnosis information on the DATA pin. This diagnosis information states details about the failure root cause. A "high level" on signal EN issues the ADC information, identical to Normal\_Mode.

A rising edge on NRST and no failure or fault active will transition the device back to Ready\_Mode (or to Normal\_Mode if signal EN is set). In Ready\_Mode diagnosis information is available on the DATA pin. See also the operating modes diagram for further information.

### 4.3 Single failure events in Normal\_Mode

#### Table 7Single failure events in Normal\_Mode

| Failure Event                    | Output stage reaction                    | Resulting pin status changes                      |  |  |
|----------------------------------|------------------------------------------|---------------------------------------------------|--|--|
| DESAT when TOUT = high (VCC2)    | Safe turn-off                            | NFLT = 0; DATA: ADC (EN = 1), DATA: DIAG (EN = 0) |  |  |
| OCP when TOUT = high (VCC2)      | Safe turn-off                            | NFLT = 0; DATA: ADC (EN = 1), DATA: DIAG (EN = 0) |  |  |
| Gate monitoring error            | Safe turn-off when<br>TOUT = high (VCC2) | RDY = 0; DATA: ADC (EN = 1), DATA: DIAG (EN = 0)  |  |  |
| OSM error                        | Tri-state                                | RDY = 0; DATA: ADC (EN = 1), DATA: DIAG (EN = 0)  |  |  |
| UVLO2                            | Normal switch-off                        | RDY = 0; DATA: ADC (EN = 1), DATA: DIAG (EN = 0)  |  |  |
| OVLO2                            | Normal switch-off                        | RDY = 0; DATA: ADC (EN = 1), DATA: DIAG (EN = 0)  |  |  |
| UVLO1                            | Normal switch-off                        | RDY = 0; DATA = 0                                 |  |  |
| Prim. internal supervision error | Normal switch-off                        | RDY = 0; DATA = 0                                 |  |  |
| Sec. internal supervision error  | Normal switch-off                        | RDY = 0; DATA: ADC (EN = 1), DATA: DIAG (EN = 0)  |  |  |
| OCPx pin open                    | Normal switch-off                        | RDY = 0; DATA: ADC (EN = 1), DATA: DIAG (EN = 0)  |  |  |



**5** Power supply

## 5 Power supply

## 5.1 Bipolar and unipolar supplies

The device is designed to support two different supply configurations, bipolar supply and unipolar supply.

*Note:* In bipolar supply the driver is typically supplied with a positive voltage of 15 V at VCC2 and a negative voltage of -5 V at VEE2 (referenced to GND2). The negative supply prevents a dynamic turn on due to the additional charge which is generated from the input capacitance current of the power switch times the negative supply voltage. GATE/CLAMP has to be connected to the gate of the power switch in all power supply configurations.

## 5.2 Electrical characteristics power supply

#### Table 8Electrical characteristics power supply

 $T_{\rm J}$  = -40°C to 150°C; all voltages with respect to ground, pos. current flowing into pin (unless otherwise specified).

| Parameter                                            | Symbol                  |      | Values | 5    | Unit | Note or condition                                                                                                                                                                                                          | P-       |
|------------------------------------------------------|-------------------------|------|--------|------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|                                                      |                         | Min. | Тур.   | Max. |      |                                                                                                                                                                                                                            | Number   |
| Quiescent<br>Current Input<br>Chip (VCC1)            | I <sub>QVCC1</sub>      | 3    | 5      | -    | mA   | Ready_Mode, all primary I/Os without<br>impact on Ready_Mode open, V <sub>VCC1</sub> = 5<br>V, V <sub>VCC2</sub> = 15 V, V <sub>VEE2</sub> = -5 V                                                                          | PRQ-937  |
| Operating<br>Current VCC1<br>(TOUT = high<br>(VCC2)) | I <sub>QPVCC1_ON</sub>  | _    | 10     | 12   | mA   | Normal_Mode, INN = 0, INP = 1, EN = 1,<br>NRST = 1, outputs open, <i>V</i> <sub>VCC1</sub> = 5 V, <i>V</i> <sub>VCC2</sub> =<br>15 V, <i>V</i> <sub>VEE2</sub> = -5 V                                                      | PRQ-938  |
| Operating<br>Current VCC1<br>(TOUT = low<br>(VEE2))  | I <sub>OPVCC1_OFF</sub> | _    | 5.5    | 7    | mA   | Normal_Mode, INN = 0, INP = 0, EN = 1,<br>NRST = 1, outputs open, <i>V</i> <sub>VCC1</sub> = 5 V, <i>V</i> <sub>VCC2</sub> = 15 V, <i>V</i> <sub>VEE2</sub> = -5 V                                                         | PRQ-939  |
| Operating<br>Current VCC2<br>(TOUT = high<br>(VCC2)) | I <sub>OPVCC2_ON</sub>  | -    | 11     | 13   | mA   | Normal_Mode, INN = 0, INP = 1, EN = 1,<br>NRST = 1, primary outputs open, OCPx = 0,<br>DESAT = 0, Gate shorted to TOUT, V <sub>VCC1</sub> =<br>5 V, V <sub>VCC2</sub> = 15 V, V <sub>VEE2</sub> = -5 V, other pins<br>open | PRQ-1036 |
| Operating<br>Current VCC2<br>(TOUT = low<br>(VEE2))  | I <sub>OPVCC2_OFF</sub> | 6    | 11     | 13   | mA   | Normal_Mode, INN = 0, INP = 0, EN = 1,<br>NRST = 1, primary outputs open, OCPx = 0,<br>DESAT = 0, Gate shorted to TOUT, V <sub>VCC1</sub> =<br>5 V, V <sub>VCC2</sub> = 15 V, V <sub>VEE2</sub> = -5 V, other pins<br>open | PRQ-1037 |
| Operating<br>Current VEE2<br>(TOUT = high<br>(VCC2)) | I <sub>OPVEE2_ON</sub>  | -    | 1.5    | 2    | mA   | Normal_Mode, INN = 0, INP = 1, EN = 1,<br>NRST = 1, primary outputs open, OCPx = 0,<br>DESAT = 0, Gate shorted to TOUT, V <sub>VCC1</sub> =<br>5 V, V <sub>VCC2</sub> = 15 V, V <sub>VEE2</sub> = -5 V, other pins<br>open | PRQ-944  |
| Operating<br>Current VEE2                            | I <sub>OPVEE2_OFF</sub> | 0.5  | 1.5    | 2    | mA   | Normal_Mode, INN = 0, INP = 0, EN = 1,<br>NRST = 1, primary outputs open, OCPx = 0,                                                                                                                                        | PRQ-945  |



#### **5** Power supply

### Table 8 (continued) Electrical characteristics power supply

 $T_J$  = -40°C to 150°C; all voltages with respect to ground, pos. current flowing into pin (unless otherwise specified).

| Parameter              | Symbol |      | Values | 5    | Unit | Note or condition                                                                                        | P-     |
|------------------------|--------|------|--------|------|------|----------------------------------------------------------------------------------------------------------|--------|
|                        |        | Min. | Тур.   | Max. |      |                                                                                                          | Number |
| (TOUT = low<br>(VEE2)) |        |      |        |      |      | DESAT = 0, Gate shorted to TOUT, $V_{VCC1}$ = 5 V, $V_{VCC2}$ = 15 V, $V_{VEE2}$ = -5 V, other pins open |        |



**6** Switching characteristics

## 6 Switching characteristics

## 6.1 Functional description switching

The voltage on pin TOUT ranges from  $V_{VEE2}$  to  $V_{VCC2}$  (referenced to GND2). The device supports short propagation delay for On and Off switching of  $t_{PDON}$  and  $t_{PDOFF}$ .

## 6.2 Electrical characteristics switching

### Table 9 Electrical characteristics switching

 $T_{\rm J}$  = -40°C to 150°C; all voltages with respect to ground, pos. current flowing into pin (unless otherwise specified).

| Parameter                                              | Symbol                |      | Value | 5    | Unit | Note or condition                                                                                                                                                                                     | P-      |
|--------------------------------------------------------|-----------------------|------|-------|------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|                                                        |                       | Min. | Тур.  | Max. | 1    |                                                                                                                                                                                                       | Number  |
| High level<br>output peak<br>current                   | I <sub>OUTH</sub>     |      |       | - 12 | A    | INP = $V_{VCC1}$ , INN = $V_{GND1}$ , EN = $V_{VCC1}$ , TOUT<br>= $V_{VCC2}$ , CLAMP/GATE = $V_{VEE2}$ , $V_{VCC2}$ = 15 V,<br>$V_{VEE2}$ = -5 V, $C_{LOAD}$ = 200 nF                                 | PRQ-662 |
| Low level<br>output peak<br>current                    | I <sub>outl</sub>     | 12   |       |      | A    | INP = $V_{GND1}$ , INN = $V_{GND1}$ , EN = $V_{VCC1}$ , TOUT<br>= $V_{VEE2}$ , CLAMP/GATE = $V_{VCC2}$ , $V_{VCC2}$ = 15 V,<br>$V_{VEE2}$ = -5 V, $C_{LOAD}$ = 200 nF                                 | PRQ-663 |
| Propagation<br>delay - On                              | t <sub>PDON</sub>     | 40   | 60    | 120  | ns   | VCC1 = typ., VCC2 = typ., VEE2 = typ.,<br>Start: INP rising edge at V <sub>digital,input(high)</sub> ,<br>Stop: TOUT rising edge at V <sub>VEE2</sub> + 1.5 V, no<br>load, no gate resistance         | PRQ-770 |
| Propagation<br>delay - Off                             | t <sub>PDOFF</sub>    | 40   | 60    | 120  | ns   | VCC1 = typ., VCC2 = typ., VEE2 = typ.,<br>Start: INP falling edge at V <sub>digital,input(low)</sub> ,<br>Stop: TOUT falling edge at V <sub>VCC2</sub> - 1.5 V, no<br>load, no gate resistance        | PRQ-851 |
| Propagation<br>delay<br>distortion                     | t <sub>Prop,dis</sub> | -20  | -     | 20   | ns   | t <sub>PDON</sub> - t <sub>PDOFF</sub> , t <sub>PDON</sub> & t <sub>PDOFF</sub> measured @<br>same T <sub>JUNC</sub>                                                                                  | PRQ-803 |
| Propagation<br>delay EN to<br>turn-on (INP<br>= high)  | t <sub>PDENON</sub>   | 10   | 60    | 120  | ns   | $V_{VCC1}$ = typ.; $V_{VCC2}$ = typ., $V_{VEE2}$ = typ., INP<br>= high, INN = GND1, TOUT = $V_{VEE2}$ + 1.5 V,<br>referring to VEE2 (rising edge)                                                     | PRQ-968 |
| Propagation<br>delay EN to<br>turn-off (INP<br>= high) | t <sub>pdenoff</sub>  | 10   | 60    | 120  | ns   | V <sub>VCC1</sub> = typ., V <sub>VCC2</sub> = typ., V <sub>VEE2</sub> = typ., INP<br>= high, INN = GND1, TOUT = V <sub>VCC2</sub> - 1.5<br>V referring to VEE2 (falling edge)                         | PRQ-967 |
| TOUT rise<br>time 90 %                                 | t <sub>Rise1</sub>    | _    | -     | 55   | ns   | no $C_{\text{LOAD}}$ , no $R_{\text{LOAD}}$ , $V_{\text{VCC2}}$ = typ., $V_{\text{VEE2}}$ =<br>typ. $V_{\text{TOUT}}$ = $V_{\text{VEE2}}$ + 1.5 V to $V_{\text{TOUT}}$ = $V_{\text{VCC2}}$ -<br>1.5 V | PRQ-801 |
| TOUT rise<br>time 70 %                                 | t <sub>Rise2</sub>    | -    | -     | 35   | ns   | no $C_{\text{LOAD}}$ , no $R_{\text{LOAD}}$ , $V_{\text{VCC2}}$ = typ., $V_{\text{VEE2}}$ =<br>typ., $V_{\text{TOUT}}$ = $V_{\text{VEE2}}$ + 1.5 V to $V_{\text{TOUT}}$ = $V_{\text{VCC2}}$ -<br>6 V  | PRQ-958 |



#### **6** Switching characteristics

### Table 9 (continued) Electrical characteristics switching

 $T_{\rm J}$  = -40°C to 150°C; all voltages with respect to ground, pos. current flowing into pin (unless otherwise specified).

| Parameter                      | Symbol                       | Values |      |      | Unit | Note or condition                                                                                                                                                                                      | P-       |
|--------------------------------|------------------------------|--------|------|------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|                                |                              | Min.   | Тур. | Max. |      |                                                                                                                                                                                                        | Number   |
| Fall time                      | t <sub>Fall</sub>            | -      | -    | 45   | ns   | No $C_{\text{LOAD}}$ , no $R_{\text{LOAD}}$ , $V_{\text{VCC2}}$ = typ., $V_{\text{VEE2}}$<br>= typ., $V_{\text{TOUT}}$ = $V_{\text{VCC2}}$ - 1.5 V to $V_{\text{TOUT}}$ =<br>$V_{\text{VEE2}}$ + 1.5 V | PRQ-802  |
| TOUT RDSON<br>High-side        | R <sub>DSON-</sub><br>OSHN   |        | 0.30 |      | Ω    | N-MOS, tolerances according to <i>R</i> <sub>DSON-OSLN</sub>                                                                                                                                           | PRQ-1032 |
| TOUT RDSON<br>High-side<br>P&N | R <sub>DSON-</sub><br>OSHtot | 0.3    | -    | 1    | Ω    | N-MOS and P-MOS, voltage drop V <sub>VCC2</sub> -<br>V <sub>TOUT</sub> < 1 V                                                                                                                           | PRQ-849  |
| TOUT RDSON<br>Low-side         | R <sub>DSON-OSLN</sub>       | 0.07   | -    | 0.35 | Ω    | N-MOS, voltage drop V <sub>TOUT</sub> - V <sub>VEE2</sub> < 1 V                                                                                                                                        | PRQ-850  |

Note: The defined minimum/maximum value of I<sub>OUTx</sub> is the minimum current which the device delivers under the given conditions. In general the device is capable to delives higher output currents than the defined minimum/maximum. The maximum output current needs to be limited by an external gate resistor to stay inside the defined absolute maximum rating parameters regarding maximum peak current (equivalent energy needs to be considered) and maximum junction temperature.



## 7 Protection and monitoring functions

## 7.1 DESAT protection

## 7.1.1 Functional description DESAT protection

The device monitors the voltage across the power switch when TOUT = high(VCC2), after the DESAT blanking time is elapsed. If the corresponding reference level ( $V_{DESATx}$ ) is reached, it issues a safe turn-off within  $t_{DESAT2OFF}$ , then changes into Error\_Mode and signals a NFLT low in  $t_{NFLT_DESAT}$ .



#### Figure 5 DESAT diagram of principal functionality

The DESAT pin has an internal clamping which clamps DESAT to  $V_{\text{DESATL}}$  in case TOUT = low (VEE2), TOUT =  $V_{\text{SOffPLT}}$  or in case of OSM (tristate).





Figure 6 DESAT clamping and blanking timing diagram

## 7.1.2 Electrical characteristics DESAT protection

#### Table 10 Electrical characteristics DESAT protection

 $T_{\rm J}$  = -40°C to 150°C; all voltages with respect to ground, pos. current flowing into pin (unless otherwise specified).

| Parameter                   | Symbol               | l Values |      |      | Unit | Note or condition                                                           | P-      |
|-----------------------------|----------------------|----------|------|------|------|-----------------------------------------------------------------------------|---------|
|                             |                      | Min.     | Тур. | Max. |      |                                                                             | Number  |
| DESAT<br>reference<br>level | V <sub>DESAT2</sub>  | 5.7      | 6    | 6.3  | V    | VCC2 = typ., VEE2 = typ.                                                    | PRQ-990 |
| DESAT<br>current<br>source  | I <sub>DESATCS</sub> | -550     | -500 | -450 | μA   | $V_{VCC2}$ = typ., $V_{VEE2}$ = typ., $V_{DESAT} \le 10 \text{ V}$          | PRQ-800 |
| DESAT low<br>voltage        | V <sub>DESATL</sub>  | 0        | 200  | 300  | mV   | Referenced to GND2, DESAT clamping enabled, <i>I</i> <sub>sink</sub> = 5 mA | PRQ-693 |



### Table 10 (continued) Electrical characteristics DESAT protection

 $T_{\rm J}$  = -40°C to 150°C; all voltages with respect to ground, pos. current flowing into pin (unless otherwise specified).

| Parameter                             | Symbol                 | l Values |      |                   | Unit | Note or condition                                                                                                                                                                                                    | P-      |
|---------------------------------------|------------------------|----------|------|-------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|                                       |                        | Min.     | Тур. | Max.              |      |                                                                                                                                                                                                                      | Number  |
| DESAT<br>detection &<br>reaction time | t <sub>DESAT2OFF</sub> | 100      | 300  | 400               | ns   | $V_{\text{DESAT}_{\text{Overdrive}}}$ = 2 V, Slew rate @ DESAT =<br>10 V/µs; TOUT = $V_{\text{VCC2}}$ - 1.5 V, after DESAT<br>blanking time elapsed, $C_{\text{LOAD}_{\text{TOUT}}}$ = no<br>load, no resistive load | PRQ-841 |
| DESAT<br>blanking<br>time             | t <sub>desatbt</sub>   | 120      | 320  | 400               | ns   | From $V_{GATEVEEH}$ to release of clamping<br>(Desat pin voltage rising above 0.5 V,<br>with internal current source, no external<br>$C_{DESAT}$ ), no $C_{Load}/R_{Load}$ on TOUT                                   | PRQ-969 |
| DESAT input<br>voltage range          | V <sub>DESAT</sub>     | 0        | -    | V <sub>VCC2</sub> | V    | Referenced to GND2                                                                                                                                                                                                   | PRQ-690 |

## 7.2 Over Current Protection (OCP)

## 7.2.1 Functional description OCP protection

The device monitors the voltage difference between OCPP and OCPN when TOUT = high (VCC2) after the OCP blanking time is elapsed. If the corresponding reference level ( $V_{OCPDx}$ ) is reached, it issues a safe turn-off within  $t_{OCP2OFF}$ , then changes into Error\_Mode and signals a NFLT low in  $t_{NFLT_OCP}$ .



**Figure 7** 

OCP diagram of principal functionality





Figure 8 OCP blanking time

## 7.2.2 Electrical characteristics OCP protection

### Table 11 Electrical characteristics OCP

 $T_{\rm J}$  = -40°C to 150°C; all voltages with respect to ground, pos. current flowing into pin (unless otherwise specified).

| Parameter                                      | Symbol              | vmbol Values |      |      | Unit N | Note or condition                     | P-      |
|------------------------------------------------|---------------------|--------------|------|------|--------|---------------------------------------|---------|
|                                                |                     | Min.         | Тур. | Max. |        |                                       | Number  |
| Overcurrent<br>error<br>detection<br>threshold | V <sub>OCPD2</sub>  | 540          | 600  | 660  | mV     | V <sub>OCPP</sub> - V <sub>OCPN</sub> | PRQ-865 |
| OCPP &<br>OCPN pull-up<br>resistance           | R <sub>PUOCP2</sub> | 26           | 38   | 50   | kΩ     |                                       | PRQ-697 |
| OCPP &<br>OCPN<br>voltage                      | V <sub>OCP</sub>    | -1           | _    | 1    | V      | referring to GND2                     | PRQ-793 |



### Table 11 (continued) Electrical characteristics OCP

 $T_{\rm J}$  = -40°C to 150°C; all voltages with respect to ground, pos. current flowing into pin (unless otherwise specified).

| Parameter                            | Symbol               | ymbol Values |      |      | Unit | Note or condition                                                                                                                                                                         | P-       |
|--------------------------------------|----------------------|--------------|------|------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|                                      |                      | Min.         | Тур. | Max. |      |                                                                                                                                                                                           | Number   |
| OCP<br>detection &<br>reaction time  | t <sub>ocp2off</sub> | 100          | 300  | 400  | ns   | $V_{OCP_Overdrive} = 200 \text{ mV}$ , slew rate = 100 mV/<br>ns, TOUT = $V_{VCC2} - 1.5 \text{ V}$ , after OCP blanking<br>time elapsed, $C_{LOAD_TOUT} =$ no load, no<br>resistive load | PRQ-842  |
| OCP blanking<br>time                 | t <sub>OCPBT</sub>   | 120          | 320  | 400  | ns   | From $V_{GATEVEEH}$ to release of blanking.<br>$V_{OCP_Overdrive} = 200 \text{ mV}$ , slew rate = 100<br>mV/ns, no $C_{Load}/R_{Load}$ on TOUT                                            | PRQ-1014 |
| OCP pin open<br>detection<br>voltage | V <sub>OCPOPEN</sub> | 2.2          | 2.45 | 2.6  | V    |                                                                                                                                                                                           | PRQ-1030 |

## 7.3 Safe turn-off

## 7.3.1 Functional description safe turn-off

The device enables a Two-Level Turn-off in case of a fault.





#### Figure 9

Two Level Turn-Off principle for safe turn-off

*Note:* • Safe turn-off is only enabled at DESAT, OCP and gate monitoring error (if TOUT = high (VCC2) events.

• DESAT is only used as an example, can be replaced by OCP and gate monitoring.

## 7.3.2 Electrical characteristics safe turn-off

#### Table 12Electrical characteristics safe turn-off

| Parameter                     | Symbol                  | Values |      |      | Unit | Note or condition                           | P-      |
|-------------------------------|-------------------------|--------|------|------|------|---------------------------------------------|---------|
|                               |                         | Min.   | Тур. | Max. |      |                                             | Number  |
| Safe turn-off<br>plateau time | t <sub>SafeOffPLT</sub> | 0.5    | -    | 0.8  | μs   |                                             | PRQ-972 |
| Plateau to<br>turn-off time   | t <sub>PLT2Off</sub>    | 10     | -    | 50   | ns   | No R <sub>Load</sub> , No C <sub>Load</sub> | PRQ-974 |



| Table 12 | (continued) Electrical characteristics safe turn-off |
|----------|------------------------------------------------------|
|----------|------------------------------------------------------|

| Parameter                                 | Symbol               | Values |      | Unit | Note or condition | P-                                                                                           |          |
|-------------------------------------------|----------------------|--------|------|------|-------------------|----------------------------------------------------------------------------------------------|----------|
|                                           |                      | Min.   | Тур. | Max. |                   |                                                                                              | Number   |
| Safe turn-off<br>plateau<br>voltage level | V <sub>SOffPLT</sub> | 5.7    | 6    | 6.3  | V                 | $V_{VCC2} \ge V_{SOffPLT,max} + 2 V, C_{LOAD_TOUT} = 68 nF,$<br>$R_{LOAD_TOUT} = 1.7 \Omega$ | PRQ-1035 |

## 7.4 Shoot Through Protection (STP)

## 7.4.1 Functional description STP

The device has a Shoot Through Protection (STP) function to prevent both high-side and low-side switches to be activated simultaneously.

*Note:* STP is always active. However, setting the INN pin to GND1 deactivates the function.

If one of the drivers is in ON state, the driver's counterpart PWM input is inhibited, preventing it to turn on.



### Figure 10 Shoot through protection application diagram

The device follows the shoot through protection timing diagram shown below:





### Figure 11 Shoot through protection timing diagram

## 7.4.2 Electrical characteristics STP

### Table 13 Electrical characteristics STP

 $T_{\rm J}$  = -40°C to 150°C; all voltages with respect to ground, pos. current flowing into pin (unless otherwise specified).

| Parameter                                       | Symbol             | Values |      |      | Unit | Note or condition | P-      |
|-------------------------------------------------|--------------------|--------|------|------|------|-------------------|---------|
|                                                 |                    | Min.   | Тур. | Max. |      |                   | Number  |
| Dead time for<br>shoot<br>through<br>protection | t <sub>DEAD0</sub> | 100    | 140  | 180  | ns   |                   | PRQ-726 |

## 7.5 Power supply monitoring

## 7.5.1 Functional description power supply monitoring

The device is equipped with an undervoltage lockout for the primary supply (VCC1) and secondary supply (VCC2) in order to ensure correct switching of the power switch.

*Note:* In all under voltage conditions the ASC signal still works until the voltage drops below VASCOFF at VCC2.

The device turns off the power switch and ignores signals at INP and INN (goes into Power\_Down Mode) if the power supply VCC1 drops below  $V_{UVLO1L}$ . It returns to Ready\_Mode if the voltage at VCC1 is above  $V_{UVLO1H}$  and the device received a rising edge at NRST.

The device turns off the power switch within  $t_{UVLO22OFF}$  and ignores signals at INP and INN (go into Error\_Mode) within  $t_{PS2RDY}$  if the power supply VCC2 drops below  $V_{UVLO2L_x}$ . It returns to Ready\_Mode if the voltage at VCC2 is above  $V_{UVLO2H_x}$  and the device received a rising edge at NRST.

The device is equipped with an overvoltage lockout for the secondary supply VCC2 in order to prevent damage of the power switch.



*Note:* The ASC signal will overwrite the turn-off command, which may lead to damage of the power switch (power switch).

The device turns off the power switch within  $t_{OVLO22OFF}$  and ignores signals at INP and INN (go into Error\_Mode) within  $t_{PS2RDY}$  if the power supply  $V_{VCC2}$  rises above  $V_{OVLO2H_x}$ . It returns to Ready\_Mode if the voltage  $V_{VCC2}$  is below  $V_{OVLO2L_x}$  and the device received a rising edge at NRST.

- *Note:* In Error\_Mode, RDY changes to 0.
  - Turn-off means normal switch-off and not a safe turn-off.
  - Exception: ASC function  $\rightarrow$  TOUT = high (VCC2).

## 7.5.2 Electrical characteristics power supply monitoring

#### Table 14Electrical characteristics power supply monitoring

 $T_{\rm J}$  = -40°C to 150°C; all voltages with respect to ground, pos. current flowing into pin (unless otherwise specified).

| Parameter                             | Symbol                 | Values    |      |      | Unit | Note or condition                             | P-      |
|---------------------------------------|------------------------|-----------|------|------|------|-----------------------------------------------|---------|
|                                       |                        | Min.      | Тур. | Max. |      |                                               | Number  |
| UVLO1<br>threshold<br>low             | V <sub>UVLO1L</sub>    | 2.6       | 2.75 | -    | V    | @ VCC1, referenced to GND1                    | PRQ-741 |
| UVLO1<br>threshold<br>high            | V <sub>UVLO1H</sub>    | -         | 2.85 | 2.95 | V    | @ VCC1, referenced to GND1                    | PRQ-740 |
| UVLO1<br>hysteresis                   | V <sub>UVLO1HYS</sub>  | -         | 80   | 100  | mV   |                                               | PRQ-742 |
| OVLO2<br>threshold<br>high            | V <sub>OVLO2H_1</sub>  | 18.9<br>5 | 19.5 | 20   | V    | @ VCC2, referenced to GND2                    | PRQ-746 |
| OVLO2<br>threshold<br>low             | V <sub>OVLO2L_1</sub>  | 18.1      | 18.7 | 19.2 | V    | @VCC2, Referenced to GND2                     | PRQ-886 |
| OVLO2<br>hysteresis                   | V <sub>OVLO2HYS</sub>  | 400       | 800  | -    | mV   | V <sub>OVLO2H_x</sub> - V <sub>OVLO2L_x</sub> | PRQ-896 |
| UVLO2<br>threshold<br>high            | V <sub>UVLO2H_1</sub>  | 12.2      | 12.6 | 13   | V    | @ VCC2, referenced to GND2                    | PRQ-750 |
| UVLO2<br>threshold<br>low             | V <sub>UVLO2L_1</sub>  | 11.4      | 11.8 | 12.2 | V    | @ VCC2, referenced to GND2                    | PRQ-752 |
| UVLO2<br>hysteresis                   | V <sub>UVLO2HYS</sub>  | 720       | 800  | 880  | mV   |                                               | PRQ-755 |
| UVLO1<br>detection &<br>reaction time | t <sub>UVLO12OFF</sub> | -         | 500  | 800  | ns   | Slewrate = 2 V/μs, Overdrive = +/- 300 mV     | PRQ-914 |



### Table 14 (continued) Electrical characteristics power supply monitoring

 $T_{\rm J}$  = -40°C to 150°C; all voltages with respect to ground, pos. current flowing into pin (unless otherwise specified).

| Parameter                                                              | Symbol                 |      | Values | 5    | Unit | Note or condition                     | P-      |
|------------------------------------------------------------------------|------------------------|------|--------|------|------|---------------------------------------|---------|
|                                                                        |                        | Min. | Тур.   | Max. |      |                                       | Number  |
| UVLO2<br>detection &<br>reaction time                                  | t <sub>UVLO22OFF</sub> | -    | 500    | 800  | ns   | Slewrate=10 V/µs; Overdrive=+/-200 mV | PRQ-915 |
| OVLO2<br>detection &<br>reaction time                                  | t <sub>OVLO22OFF</sub> | -    | 500    | 800  | ns   | Slewrate=10 V/µs; Overdrive=+/-200 mV | PRQ-916 |
| Power supply<br>monitoring<br>detection<br>and<br>notification<br>time | t <sub>PS2RDY</sub>    | -    | -      | 2.5  | μs   | VCC2 = typ., VEE2 = typ.              | PRQ-976 |

## 7.6 Gate monitoring

## 7.6.1 Functional description gate monitoring

The device monitors in the time frame of  $t_{GMBT}$  (dynamic or static) the gate signal  $V_{GATE}$  at pin CLAMP/GATE to ensure the signal  $V_{TOUT}$  reaches the threshold value of  $V_{GATE}$  properly. If monitoring conditions are violated, the device issues a safe turn-off (if TOUT = high (VCC2) in less than  $t_{GM-DaR}$  and changes to Error\_Mode in less than  $t_{RDY_GM}$ .





Dynamic gate monitoring timing diagram





#### Figure 13 Static gate monitoring timing diagram

## 7.6.2 Electrical characteristics gate monitoring

### Table 15 Electrical characteristics gate monitoring

| $T_{\rm J}$ = -40°C to 150°C; all voltages with respect to ground, pos. current flowing into pin (unless |  |
|----------------------------------------------------------------------------------------------------------|--|
| otherwise specified).                                                                                    |  |

| Parameter                                                      | Symbol              |      | Values | 5    | Unit | Note or condition        | P-      |
|----------------------------------------------------------------|---------------------|------|--------|------|------|--------------------------|---------|
|                                                                |                     | Min. | Тур.   | Max. |      |                          | Number  |
| Gate<br>monitoring<br>detection<br>and reaction<br>time        | t <sub>GM-DaR</sub> | 450  | 650    | 900  | ns   | VCC2 = typ., VEE2 = typ. | PRQ-853 |
| Gate<br>monitoring<br>detection<br>and<br>notification<br>time | t <sub>RDY_GM</sub> | -    | 1.5    | 2.5  | μs   | VCC2 = typ., VEE2 = typ. | PRQ-910 |
| Dynamic gate<br>monitoring<br>blanking<br>time                 | t <sub>GMBTd2</sub> | 3.24 | 3.6    | 3.96 | μs   | VEE2 = typ., VCC2 = typ. | PRQ-978 |
| Static gate<br>monitoring<br>blanking<br>time                  | t <sub>GMBTs2</sub> | 3.60 | 3.9    | 4.20 | μs   | VEE2 = typ., VCC2 = typ. | PRQ-982 |



### Table 15 (continued) Electrical characteristics gate monitoring

 $T_{\rm J}$  = -40°C to 150°C; all voltages with respect to ground, pos. current flowing into pin (unless otherwise specified).

| Parameter                                                     | Symbol                |                                   | Values                     | 5                          | Unit | Note or condition           | P-      |
|---------------------------------------------------------------|-----------------------|-----------------------------------|----------------------------|----------------------------|------|-----------------------------|---------|
|                                                               |                       | Min.                              | Тур.                       | Max.                       |      |                             | Number  |
| Gate<br>monitoring<br>VCC2 voltage<br>threshold<br>high level | V <sub>GATEVCCH</sub> | V <sub>VCC2</sub><br>- 2.3        | V <sub>VCC2</sub><br>- 2.1 | V <sub>VCC2</sub><br>- 1.9 | V    | t <sub>GMBT</sub> is active | PRQ-855 |
| Gate<br>monitoring<br>VCC2 voltage<br>threshold<br>low level  | V <sub>GATEVCCL</sub> | V <sub>VCC2</sub><br>- 3.2        | V <sub>VCC2</sub><br>- 3   | V <sub>VCC2</sub><br>- 2.8 | V    | t <sub>GMBT</sub> is active | PRQ-962 |
| Gate<br>monitoring<br>VEE2 voltage<br>threshold<br>high level | V <sub>GATEVEEH</sub> | V <sub>VEE2</sub><br>+ 2.8        |                            | V <sub>VEE2</sub><br>+ 3.2 | V    | t <sub>GMBT</sub> is active | PRQ-963 |
| Gate<br>monitoring<br>VEE2 voltage<br>threshold<br>low level  | V <sub>GATEVEEL</sub> | <i>V</i> <sub>VEE2</sub><br>+ 1.9 | V <sub>VEE2</sub><br>+ 2.1 |                            | V    | t <sub>GMBT</sub> is active | PRQ-856 |

## 7.7 Output stage monitoring

## 7.7.1 Functional description output stage monitoring

The output stage monitoring checks whether the internal output signal is according to the given PWM or ASC input signal in the time frame of  $t_{OUTMBTx}$ , otherwise the device issues a tri-state for the output stage in less than  $t_{OUTM-DaR}$  and changes to Error\_Mode in less than  $t_{RDY_OSM}$ .





Figure 14 Dynamic output stage monitoring working principle





Figure 15 Static output stage monitoring working principle

*Note:* The passive clamping at TOUT is working.

## 7.7.2 Electrical characteristics output stage monitoring

### Table 16 Electrical characteristics output stage monitoring

 $T_{\rm J}$  = -40°C to 150°C; all voltages with respect to ground, pos. current flowing into pin (unless otherwise specified).

| Parameter                                                       | Symbol                |      | Values | 5    | Unit | Note or condition        | P-      |
|-----------------------------------------------------------------|-----------------------|------|--------|------|------|--------------------------|---------|
|                                                                 |                       | Min. | Тур.   | Max. |      |                          | Number  |
| Output stage<br>monitoring<br>detection<br>and reaction<br>time | t <sub>OUTM-DaR</sub> | 200  | 350    | 500  | ns   | VCC2 = typ., VEE2 = typ. | PRQ-859 |
| Output stage<br>monitoring<br>detection<br>and                  | t <sub>RDY_OSM</sub>  | -    | 1.5    | 2.5  | μs   | VCC2 = typ., VEE2 = typ. | PRQ-964 |



### Table 16 (continued) Electrical characteristics output stage monitoring

 $T_J$  = -40°C to 150°C; all voltages with respect to ground, pos. current flowing into pin (unless otherwise specified).

| Parameter                                                             | Symbol                |                            | Values                     | 5                          | Unit | Note or condition            | P-      |
|-----------------------------------------------------------------------|-----------------------|----------------------------|----------------------------|----------------------------|------|------------------------------|---------|
|                                                                       |                       | Min.                       | Тур.                       | Max.                       |      |                              | Number  |
| notification<br>time                                                  |                       |                            |                            |                            |      |                              |         |
| Dynamic<br>output stage<br>monitoring<br>blanking<br>time             | t <sub>outmbtd3</sub> | 600                        | 800                        | 1000                       | ns   | VEE2 = typ., VCC2 = typ.     | PRQ-922 |
| Static output<br>stage<br>monitoring<br>blanking<br>time              | t <sub>outmbts3</sub> | 1000                       | -                          | 1200                       | ns   | VEE2 = typ., VCC2 = typ.     | PRQ-925 |
| Output stage<br>monitoring<br>VCC2 voltage<br>threshold<br>high level | V <sub>ОЅМ</sub> УССН | V <sub>VCC2</sub><br>- 2.3 | V <sub>VCC2</sub><br>- 2.1 | V <sub>VCC2</sub><br>- 1.9 | V    | t <sub>OUTBT</sub> is active | PRQ-863 |
| Output stage<br>monitoring<br>VCC2 voltage<br>threshold<br>low level  | V <sub>OSMVCCL</sub>  | V <sub>VCC2</sub><br>- 3.2 | V <sub>VCC2</sub><br>- 3   | V <sub>VCC2</sub><br>- 2.8 | V    | t <sub>OUTBT</sub> is active | PRQ-965 |
| Output stage<br>monitoring<br>VEE2 voltage<br>threshold<br>high level | V <sub>OSMVEEH</sub>  | V <sub>VEE2</sub><br>+ 2.8 | V <sub>VEE2</sub><br>+ 3   | V <sub>VEE2</sub><br>+ 3.2 | V    | t <sub>OUTBT</sub> is active | PRQ-966 |
| Output stage<br>monitoring<br>VEE2 voltage<br>threshold<br>low level  | V <sub>OSMVEEL</sub>  | V <sub>VEE2</sub><br>+ 1.9 | V <sub>VEE2</sub><br>+ 2.1 | V <sub>VEE2</sub><br>+ 2.3 | V    | t <sub>OUTBT</sub> is active | PRQ-864 |



8 Clamping functions

## 8 Clamping functions

## 8.1 Active Miller clamp

## 8.1.1 Functional description Active Miller clamp

The clamp output is activated if the gate voltage V<sub>GATE</sub> goes below V<sub>GATEVEEL</sub> during turn-off.



#### Figure 16 Active Miller clamp timing diagram

Note: In a half bridge configuration the switched off power switch tends to dynamically turn on during the turn on phase of the opposite power switch. A Miller clamp allows sinking the Miller current across a low impedance path in this high dV/dt situation. Therefore, in many applications the use of a negative supply voltage can be avoided.

## 8.1.2 Electrical characteristics Active Miller clamp

### Table 17Electrical characteristics Active Miller clamp

 $T_{\rm J}$  = -40°C to 150°C; all voltages with respect to ground, pos. current flowing into pin (unless otherwise specified).

| Parameter                          | Symbol                      |                   | Values |                   |   | Note or condition                                                                             | P-      |
|------------------------------------|-----------------------------|-------------------|--------|-------------------|---|-----------------------------------------------------------------------------------------------|---------|
|                                    |                             | Min.              | Тур.   | Max.              |   |                                                                                               | Number  |
| Low level<br>clamp peak<br>current | I <sub>CLAMPL</sub>         | 9.5               | 10     |                   | A | TOUT = low ( $V_{VEE2}$ ), CLAMP/GATE = $V_{CLAMP}$ ,<br>$V_{VCC2}$ = 15 V, $V_{VEE2}$ = -5 V | PRQ-667 |
| CLAMP/GATE<br>voltage              | V <sub>CLAMP/</sub><br>GATE | V <sub>VEE2</sub> | -      | V <sub>VCC2</sub> | V | Referenced to GND2, no load                                                                   | PRQ-586 |



### 8 Clamping functions

### Table 17 (continued) Electrical characteristics Active Miller clamp

 $T_{\rm J}$  = -40°C to 150°C; all voltages with respect to ground, pos. current flowing into pin (unless otherwise specified).

| Parameter      | meter Symbol Values         |      | 5    | Unit | Note or condition | P-                                                       |         |
|----------------|-----------------------------|------|------|------|-------------------|----------------------------------------------------------|---------|
|                |                             | Min. | Тур. | Max. |                   |                                                          | Number  |
| CLAMP<br>RDSON | R <sub>DSON-</sub><br>CLAMP | 0.08 | -    | 0.35 | Ω                 | Voltage drop V <sub>VCC2</sub> - V <sub>TOUT</sub> < 1 V | PRQ-852 |

## 8.2 Passive clamping

## 8.2.1 Functional description passive clamping

If the secondary chip is not supplied, the pin GATE/CLAMP is passively clamped to VEE2.

### 8.2.2 Electrical characteristics passive clamping

#### Table 18 Electrical characteristics passive clamping

 $T_{\rm J}$  = -40°C to 150°C; all voltages with respect to ground, pos. current flowing into pin (unless otherwise specified).

| Parameter                                                   | Symbol              | Values |      |                                 | Unit | Note or condition                                                                              | P-      |
|-------------------------------------------------------------|---------------------|--------|------|---------------------------------|------|------------------------------------------------------------------------------------------------|---------|
|                                                             |                     | Min.   | Тур. | Max.                            |      |                                                                                                | Number  |
| GATE passive<br>clamping<br>voltage<br>(ICLAMP = 10<br>mA)  | V <sub>PCLPG1</sub> | -      | -    | V <sub>VEE2</sub><br>+ 2 V      | V    | Secondary chip not supplied (VCC2<br>floating, VEE2 = 0 V), <i>I</i> <sub>Clamp</sub> = 10 mA  | PRQ-738 |
| GATE passive<br>clamping<br>voltage<br>(ICLAMP =<br>100 mA) | V <sub>PCLPG2</sub> | -      | -    | V <sub>VEE2</sub><br>+ 2.2<br>V | V    | Secondary chip not supplied (VCC2<br>floating, VEE2 = 0 V), <i>I</i> <sub>Clamp</sub> = 100 mA | PRQ-882 |


9 Analog-to-Digital Converter (ADC)

# 9 Analog-to-Digital Converter (ADC)

## 9.1 Functional description ADC

The device has an ADC to measure the DC-link voltage.

The integrated ADC allows the measurement of the DC-link voltage. The internal current source  $I_{ADC,ref}$  is deactivated. The voltage signal  $V_{AIP}$  is encoded to a PWM signal that is passed through the isolation to DATA pin on the primary side. The Total Unadjusted Error is the square sum of errors (INL, ER<sub>OFF</sub> and ER<sub>GAIN</sub>).



### Figure 17 DC-link measurement diagram

The integrated ADC allows isolated temperature sensing. The internal current source  $I_{ADC,ref}$  is disabled. The voltage signal  $V_{AIP}$  is encoded to a PWM signal that is passed through the isolation to DATA pin on the primary side. The Total Unadjusted Error is the square sum of errors (INL, ER<sub>OFF</sub> and ER<sub>GAIN</sub>).



## 9 Analog-to-Digital Converter (ADC)



### Figure 18 ADC application diagram with NTC.

Note:  $V_{IADC,effective} = (V_{IADC} * ER_{GAIN} / 100)$ 

## 9.2 Electrical characteristics ADC

### Table 19 Electrical characteristics ADC

 $T_{\rm J}$  = -40°C to 150°C; all voltages with respect to ground, pos. current flowing into pin (unless otherwise specified).

| Parameter                                | Symbol             | Values |      |           | Unit | Note or condition                                                                   | P-      |
|------------------------------------------|--------------------|--------|------|-----------|------|-------------------------------------------------------------------------------------|---------|
|                                          |                    | Min.   | Тур. | Max.      |      |                                                                                     | Number  |
| ADC<br>resolution                        |                    | -      | -    | 12        | bit  |                                                                                     | PRQ-609 |
| Ideal ADC<br>input voltage<br>full scale | V <sub>IADC</sub>  | -      | 4.82 | -         |      |                                                                                     | PRQ-794 |
| ADC Gain<br>Error                        | ER <sub>GAIN</sub> | - 1.5  | -    | + 1.5     | %FS  | Refers to $V_{IADC}$ , valid for Input range $V_{AIP}$ -<br>$V_{GND2}$ = 0.4 V4.4 V | PRQ-897 |
| ADC Offset<br>Error                      | ER <sub>OFF</sub>  | -0.25  | -    | +0.2<br>5 | %FS  | Refers to $V_{IADC}$ , valid for Input range $V_{AIP}$ -<br>$V_{GND2}$ = 0.4 V4.4 V | PRQ-898 |



9 Analog-to-Digital Converter (ADC)

## Table 19 (continued) Electrical characteristics ADC

 $T_J$  = -40°C to 150°C; all voltages with respect to ground, pos. current flowing into pin (unless otherwise specified).

| Parameter              | Symbol               |      | Values    | 5         | Unit | Note or condition                                                                   | P-<br>Number |
|------------------------|----------------------|------|-----------|-----------|------|-------------------------------------------------------------------------------------|--------------|
|                        |                      | Min. | Тур.      | Max.      |      |                                                                                     |              |
| ADC INL                | INL                  | -    | 0.02<br>4 | 0.07<br>3 | %FS  | Refers to $V_{IADC}$ , valid for Input range $V_{AIP}$ -<br>$V_{GND2}$ = 0.4 V4.4 V | PRQ-899      |
| ADC DNL                | DNL                  | -    | 0.00<br>7 | 0.02<br>5 | %FS  | Refers to $V_{IADC}$ , valid for Input range $V_{AIP}$ -<br>$V_{GND2} = 0.4 V4.4 V$ | PRQ-900      |
| ADC sample<br>rate     | f <sub>SAMPLE</sub>  | 2.28 | 2.4       | 2.52      | kHz  | 12 bit                                                                              | PRQ-903      |
| ADC leakage<br>current | / <sub>leakADC</sub> | - 3  |           | 3         | μA   | $V_{AIP} = 4 V$                                                                     | PRQ-1034     |



# 10 Interface

## 10.1 Reset (NRST)

## 10.1.1 Functional description NRST

The NRST pin is the reset input of the device. All errors cleared with a rising edge on NRST.

## 10.1.2 Electrical characteristics NRST

### Table 20Electrical characteristics NRST

 $T_{\rm J}$  = -40°C to 150°C; all voltages with respect to ground, pos. current flowing into pin (unless otherwise specified).

| Parameter                            | Symbol            | Values |      | Unit | Note or condition | P- |         |
|--------------------------------------|-------------------|--------|------|------|-------------------|----|---------|
|                                      |                   | Min.   | Тур. | Max. |                   |    | Number  |
| Minimum<br>reset<br>duration<br>time | t <sub>NRST</sub> | 10     | -    | -    | μs                |    | PRQ-764 |

## 10.2 Ready (RDY)

## 10.2.1 Functional description RDY

The RDY pin reports whether the device is ready.

*Note: Ready means: no OSM error, no gate monitoring error, no OVLO2, no UVLO2, no open pin at OCPx, no prim. or sec. internal supervision error, OTP read ok.* 

The RDY pin has a passive clamping.

Note: Passive clamping keeps RDY = 0 in case of no supply.

## 10.2.2 Electrical characteristics RDY

#### Table 21 Electrical characteristics RDY

 $T_{\rm J}$  = -40°C to 150°C; all voltages with respect to ground, pos. current flowing into pin (unless otherwise specified).

| Parameter                             | Symbol                | Values |      |      | Unit | Note or condition                                     | P-      |
|---------------------------------------|-----------------------|--------|------|------|------|-------------------------------------------------------|---------|
|                                       |                       | Min.   | Тур. | Max. |      |                                                       | Number  |
| RDY open<br>drain output<br>low level | V <sub>RDY(low)</sub> | -      | -    | 0.5  | V    | $V_{VCC1} \ge 3.0 \text{ V}, I_{load} = 5 \text{ mA}$ | PRQ-840 |

(table continues...)



## Table 21 (continued) Electrical characteristics RDY

 $T_{\rm J}$  = -40°C to 150°C; all voltages with respect to ground, pos. current flowing into pin (unless otherwise specified).

| Parameter                                         | Symbol                |      | Values | 5    | Unit | Note or condition                                                               | P-<br>Number |
|---------------------------------------------------|-----------------------|------|--------|------|------|---------------------------------------------------------------------------------|--------------|
|                                                   |                       | Min. | Тур.   | Max. |      |                                                                                 |              |
| RDY output<br>low passive<br>clamping             | V <sub>RDYCLAMP</sub> | -    | 0.5    | 1    | V    | / <sub>RDYCLAMP</sub> = 500 μA, V <sub>CC1</sub> = floating, all I/O = floating | PRQ-834      |
| Power up<br>timing prim.                          | t <sub>PUprim</sub>   | -    | 100    | 1500 | μs   | Time from UVLO1 release to device operable, secondary chip running              | PRQ-959      |
| Power up<br>timing sec.                           | t <sub>PUsec</sub>    | -    | 100    | 1500 | μs   | Time from UVLO2 release to device operable, primary chip running                | PRQ-960      |
| Time from<br>rising Edge<br>NRST to RDY<br>= high | t <sub>NRST2RDY</sub> | 50   | _      | 200  | ns   | No error detected                                                               | PRQ-961      |

## 10.3Fault (NFLT)

## 10.3.1 Functional description NFLT

The device has an active low fault pin (NFLT) to report DESAT and OCP short circuit events.

If the device switches off the output stage due to a DESAT or OCP event, it goes to Error\_Mode and signals the event on pin NFLT with NFLT = 0 within  $t_{\text{NFLT}_{DESAT}}$  or  $t_{\text{NFLT}_{OCP}}$ .

Note: Switch off means safe turn-off.

The device keeps the fault signal available unless a reset event takes place.

## 10.3.2 Electrical characteristics NFLT

### Table 22 Electrical characteristics NFLT

 $T_{\rm J}$  = -40°C to 150°C; all voltages with respect to ground, pos. current flowing into pin (unless otherwise specified).

| Parameter                                         | Symbol                  | Values |      |      | Unit | Note or condition                                                                                                                    | P-      |
|---------------------------------------------------|-------------------------|--------|------|------|------|--------------------------------------------------------------------------------------------------------------------------------------|---------|
|                                                   |                         | Min.   | Тур. | Max. |      |                                                                                                                                      | Number  |
| OCP event<br>detection to<br>NFLT<br>activation   | t <sub>NFLT_OCP</sub>   | -      | 1.2  | 2.3  | μs   | $V_{\text{OCP}_{\text{OVerdrive}}}$ = +/-200 mV, slew rate = 100 mV/ns, NFLT = 90 %, $R_{\text{PU}_{\text{NFLT}}}$ = 1 k $\Omega$    | PRQ-614 |
| DESAT event<br>detection to<br>NFLT<br>activation | t <sub>NFLT_DESAT</sub> | _      | 1.5  | 2.5  | μs   | $V_{\text{DESAT}_{\text{Overdrive}}}$ = +/-200 mV, slew rate = 10<br>V/µs, NFLT = 90 %, $R_{\text{PU}_{\text{NFLT}}}$ = 1 k $\Omega$ | PRQ-844 |



## Table 22 (continued) Electrical characteristics NFLT

 $T_{\rm J}$  = -40°C to 150°C; all voltages with respect to ground, pos. current flowing into pin (unless otherwise specified).

| Parameter                              | Symbol            | Values |      |      | Unit | Note or condition                                       | P-      |
|----------------------------------------|-------------------|--------|------|------|------|---------------------------------------------------------|---------|
|                                        |                   | Min.   | Тур. | Max. |      |                                                         | Number  |
| NFLT open<br>drain output<br>low level | V <sub>NFLT</sub> | -      | -    | 0.5  | V    | $V_{VCC1} \ge 3.0 \text{ V};  I_{NFLT}  = 5 \text{ mA}$ | PRQ-791 |

## 10.4 I/O levels

### Table 23I/O levels

 $T_{\rm J}$  = -40°C to 150°C; all voltages with respect to ground, pos. current flowing into pin (unless otherwise specified).

| Parameter                                           | Symbol                               |      | Values | 5                 | Unit | Note or condition                                                                                          | P-      |
|-----------------------------------------------------|--------------------------------------|------|--------|-------------------|------|------------------------------------------------------------------------------------------------------------|---------|
|                                                     |                                      | Min. | Тур.   | Max.              |      |                                                                                                            | Number  |
| Primary<br>digital input<br>low level               | V <sub>digital,inpu</sub><br>t(low)  | 0    | -      | 0.8               | V    |                                                                                                            | PRQ-704 |
| Primary<br>digital input<br>high level              | V <sub>digital,inpu</sub><br>t(high) | 2    | -      | V <sub>VCC1</sub> | V    |                                                                                                            | PRQ-705 |
| INP high/low<br>duration                            | t <sub>INPPD</sub>                   | 750  | -      | -                 | ns   | <i>V</i> <sub>VCC1</sub> =typ., <i>V</i> <sub>VCC2</sub> =typ., <i>V</i> <sub>VEE2</sub> =typ., 50% to 50% | PRQ-970 |
| INN high/low<br>duration                            | t <sub>INNPD</sub>                   | 750  | -      | -                 | ns   | <i>V</i> <sub>VCC1</sub> =typ., <i>V</i> <sub>VCC2</sub> =typ., <i>V</i> <sub>VEE2</sub> =typ., 50% to 50% | PRQ-971 |
| Weak pull<br>down<br>resistance<br>NRST, EN,<br>INP | R <sub>PDIN1</sub>                   | 40   | 48     | 60.5              | kΩ   |                                                                                                            | PRQ-929 |
| Weak pull up<br>resistance<br>INN                   | R <sub>PDINN</sub>                   | 40   | 52     | 60.5              | kΩ   |                                                                                                            | PRQ-930 |

## 10.5 DATA read-out

## **10.5.1** Functional description DATA

In case the device switches to Error\_Mode and EN pin is low, diagnostic data are available, starting with the next frame. In Ready\_Mode diagnostic data are available. In Normal\_Mode and in Error\_Mode, when EN pin is high, ADC result data are available.





### Figure 19 DATA pin ADC and diagnostic transition timing diagram

The 12 bit ADC data is pulse width modulated to a signal with a period of  $t_{Period\_ADC}$ . The duty cycle for 12 bit ADC data always remains in the range of  $D_{ADC}$  regardless of the ADC input. The following diagnostic functions are reported in Ready\_Mode and in Error\_Mode, if EN = 0:

- UVLO2
- OVLO2
- Gate monitoring
- Output stage monitoring
- OCP
- DESAT
- Sec. internal supervision error (Parity, OTP, PMU\_Supervision error)

The 8 bit diagnostic functions is pulse width modulated to a signal with a period of  $t_{Period_Diag}$ . The duty cycle of the DATA pin always remains in the range of  $D_{Diag}$  regardless of the diagnostic status.

Note: 0% and 100% duties are not allowed at DATA pin.

| Table 24 | Diagnostic read-out at DATA pin |
|----------|---------------------------------|
|----------|---------------------------------|

| BIT <sub>x</sub> | Value | Description    | Value | •          | Example: Single<br>failure DESAT |
|------------------|-------|----------------|-------|------------|----------------------------------|
| BIT 0            | 0     | PRIM NOT READY | 1     | PRIM READY | 1                                |



| BIT <sub>x</sub> | Value    | Description              | Value | Description   | Example: Single<br>failure DESAT |
|------------------|----------|--------------------------|-------|---------------|----------------------------------|
| BIT 1            | 0        |                          | 1     |               | 1                                |
| BIT 2            | 0        |                          | 1     |               | 1                                |
| BIT 3            | 0        |                          | 1     |               | 1                                |
| BIT 4            | Reserve  | d (always 0)             |       |               |                                  |
| BIT 5            | 0        | No OSM Error             | 1     | OSM Error     | 0                                |
| BIT 6            | 0        | No GATEMON Error         | 1     | GATEMON Error | 0                                |
| BIT 7            | 0        | No DESAT Error           | 1     | DESAT Error   | 1                                |
| BIT 8            | 0        | No OCP Error             | 1     | OCP Error     | 0                                |
| BIT 9            | 0        | No UVLO2 Error           | 1     | UVLO2 Error   | 0                                |
| BIT 10           | 0        | No OVLO2 Error           | 1     | OVLO2 Error   | 0                                |
| BIT 11           | 0        | SEC READY                | 1     | SEC NOT READY | 0                                |
| Result f         | rom exam | ple diagnostic read-out: |       |               | Duty cycle = 3.49 %              |

Table 24(continued) Diagnostic read-out at DATA pin

The duty cycle for diagnostic read-out can be calculated using the following formula:

$$\mathsf{DC} = \frac{\sum (BIT_{\chi} \cdot 2^{\chi})}{4096}$$

Figure 20

Formula to calculate the duty cycle for diagnostic read-out

## 10.5.2 Electrical characteristics DATA

#### Table 25Electrical characteristics DATA

 $T_{\rm J}$  = -40°C to 150°C; all voltages with respect to ground, pos. current flowing into pin (unless otherwise specified).

| Parameter                         | Symbol            | Values |      |      | Unit | Note or condition                   | P-      |
|-----------------------------------|-------------------|--------|------|------|------|-------------------------------------|---------|
|                                   |                   | Min.   | Тур. | Max. |      |                                     | Number  |
| ADC DATA<br>duty cycle<br>range   | D <sub>ADC</sub>  | 0.36   | -    | 99.6 | %    | No life sign lost, no primary reset | PRQ-782 |
| Diagnostic<br>duty cycle<br>range | D <sub>Diag</sub> | 0.36   | -    | 99.6 | %    |                                     | PRQ-783 |



## Table 25 (continued) Electrical characteristics DATA

 $T_{\rm J}$  = -40°C to 150°C; all voltages with respect to ground, pos. current flowing into pin (unless otherwise specified).

| Parameter                 | Symbol                             | Values                    |                   |      | Unit | Note or condition                                       | P-      |
|---------------------------|------------------------------------|---------------------------|-------------------|------|------|---------------------------------------------------------|---------|
|                           |                                    | Min.                      | Тур.              | Max. | 1    |                                                         | Number  |
| ADC DATA<br>period        | t <sub>Period_ADC</sub>            | 95                        | 100               | 105  | μs   |                                                         | PRQ-784 |
| Diagnostic<br>period      | t <sub>Period_Diag</sub>           | 95                        | 100               | 105  | μs   |                                                         | PRQ-785 |
| DATA output<br>low level  | V <sub>DATA,outpu</sub><br>t(low)  | -                         | 0                 | 0.5  | V    | $V_{VCC1} \ge 3.0 \text{ V},  I_{load}  = 5 \text{ mA}$ | PRQ-706 |
| DATA output<br>high level | V <sub>DATA,outpu</sub><br>t(high) | V <sub>CC1</sub><br>- 0.5 | V <sub>VCC1</sub> | -    | V    | $V_{VCC1} \ge 3.0 \text{ V},  I_{load}  = 5 \text{ mA}$ | PRQ-707 |



#### **11** Application information

# **11** Application information

The external component values are specified as typical values in a typical application. Deviation of the nominal values are specified as min or max values, if applicable. Unless otherwise specified the deviation for external components are:

- Resistor: ±10%
- Capacitor: -50% ... +30%
- Note: The following information is given as a hint for the implementation of the device only and shall not be regarded as a description or warranty of a certain functionality, condition or quality of the device.

## **11.1** Electrical characteristics external components

#### Table 26 Electrical characteristics external components

| Parameter                                                  | Symbol                     | Values |      |      | Unit | Note or condition                                                                                                                                                                  | P-       |
|------------------------------------------------------------|----------------------------|--------|------|------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|                                                            |                            | Min.   | Тур. | Max. | 1    |                                                                                                                                                                                    | Number   |
| Decoupling<br>capacitance<br>(between<br>VCC1 and<br>GND1) | C <sub>dVCC1</sub>         | 0.55   | 1.1  | -    | μF   | Total capacitance refers to 1 $\mu$ F capacitance + 0.1 $\mu$ F close to the device.<br>Max value depends on $t_{\rm RP1}$ .                                                       | PRQ-1002 |
| Decoupling<br>capacitance<br>(between<br>VCC2 and<br>GND2) | C <sub>dVCC2</sub>         | -      | 11   | -    | μF   | Total capacitance refers to 10 $\mu$ F<br>capacitance + 1 $\mu$ F close to the device.<br>Values depend on external C <sub>LOAD</sub> . Max<br>value depends on t <sub>RP2</sub> . | PRQ-1001 |
| Decoupling<br>capacitance<br>(between<br>VEE2 and<br>GND2) | C <sub>dVEE2</sub>         | -      | 11   | -    | μF   | Total capacitance refers to 10 $\mu$ F capacitance + 1 $\mu$ F close to the device. Max value depends on $t_{\rm RP3}$ .                                                           | PRQ-1000 |
| Pull-up<br>resistance                                      | R <sub>pu</sub>            | -      | 10   | -    | kΩ   | Min value depends on <i>I</i> <sub>OUTx_MAX</sub> .                                                                                                                                | PRQ-1015 |
| Filter<br>resistance                                       | <i>R</i> <sub>Filter</sub> | -      | 1    | -    | kΩ   | Value must fit to application                                                                                                                                                      | PRQ-1016 |
| Filter<br>capacitance                                      | C <sub>Filter</sub>        | -      | 47   | -    | pF   | Value must fit to application                                                                                                                                                      | PRQ-1017 |
| DESAT<br>resistance                                        | R <sub>Desat</sub>         | 1      | 2.2  | -    | kΩ   | Depends on maximum current and on V <sub>DESATx</sub> deviation.                                                                                                                   | PRQ-1018 |
| DESAT filter<br>capacitance                                | C <sub>Desat</sub>         | 50     | 100  | -    | pF   | Depends on required response time.                                                                                                                                                 | PRQ-1019 |
| OCP sense<br>resistor                                      | R <sub>OCPSense</sub>      | -      | 0.47 | -    | Ω    | Value depends on power switch<br>specification, voltage rating of OCP pin has<br>to be considered.                                                                                 | PRQ-1021 |
| OCPP filter<br>resistance                                  | R <sub>OCPP</sub>          | -      | 10   | -    | Ω    | Depends on required response time.<br>Consider internal pull-up.                                                                                                                   | PRQ-1022 |

(table continues...) Datasheet



## **11** Application information

| Parameter                          | Symbol            | Values |      |      | Unit | Note or condition                                                                                                                       | P-       |
|------------------------------------|-------------------|--------|------|------|------|-----------------------------------------------------------------------------------------------------------------------------------------|----------|
|                                    |                   | Min.   | Тур. | Max. |      |                                                                                                                                         | Number   |
| OCPP filter<br>capacitance         | C <sub>OCP</sub>  | -      | 10   | -    | pF   | Depends on required response time                                                                                                       | PRQ-1023 |
| OCPN<br>resistance                 | R <sub>OCPN</sub> | -      | 10   | -    | Ω    | Should match to OCPP filter resistor.<br>Consider internal pull-up.                                                                     | PRQ-1024 |
| TOUT<br>resistance                 | R <sub>Load</sub> | 1.7    | _    | _    | Ω    | Min resistor value required according<br>to max output current in functional range.<br>Max value limited by gate monitoring<br>feature. | PRQ-1025 |
| GATE/CLAMP<br>series<br>resistance | R <sub>GATE</sub> | -      | 0    | -    | Ω    | Optional component. Voltage across<br>resistor impacts Active Miller clamping<br>feature.                                               | PRQ-1028 |

### Table 26 (continued) Electrical characteristics external components

## **11.2** Typical application example



#### Figure 21 Typical application example with ADC

*Note:* This is a very simplified example. The function must be verified in the real application.



12 Package information

12

**Package information** 





### **Green Product (RoHS compliant)**

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a Green Product. Green Products are RoHS compliant (Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

#### Information on alternative packages

Please visit www.infineon.com/packages.



## **Revision history**

# **Revision history**

| Revision | Date       | Changes                                             |  |  |  |  |
|----------|------------|-----------------------------------------------------|--|--|--|--|
| 1.1      | 2022-02-17 | Chapter 3.2 updated                                 |  |  |  |  |
|          |            | Table 3 updated                                     |  |  |  |  |
|          |            | - VCC1, VEE2, VCC2 ramp-up slew-rates reduced       |  |  |  |  |
|          |            | - ramp-down condition removed                       |  |  |  |  |
|          |            | Chapter 3.4 updated                                 |  |  |  |  |
|          |            | Table 5 updated                                     |  |  |  |  |
|          |            | - extended by further electrical information        |  |  |  |  |
|          |            | - additional reinforced insulation options          |  |  |  |  |
| 1.01     | 2021-06-25 | Typo in insulation certification standard corrected |  |  |  |  |
| 1.0      | 2021-03-18 | Initial datasheet created                           |  |  |  |  |

#### Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2022-02-17 Published by Infineon Technologies AG 81726 Munich, Germany

© 2022 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document? Email: erratum@infineon.com

Document reference IFX-Z8F80035734

#### **IMPORTANT NOTICE**

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

#### WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.