Ethernet Core Module

100 Version with RJ-45 | 200 Version with 10-pin header

DATASHEET

Key Points

 Use as a high-performance single board computer or add Ethernet connectivity to a new or existing design

Device Connectivity

- 10/100Mbps Ethernet
- 3 UARTs, I2C, and SPI
- SD/MMC flash card ready

Performance and memory

• 32-bit 147.5 MHz Processor

- Customize with a development kit and begin writing application code immediately!
- Industrial temperature range (-40°C to 85°C)
- 47 digital I/Os
- 16-bit address bus and 32-bit data bus with 3 chip selects
- 8MB SDRAM and 512KB Flash

Companion development kit

The following is available with the development kit:

- · Customize any aspect of operation including web pages, data filtering, or custom network applications
- · Development software: NB Eclipse IDE, Graphical debugger, deployment tools, and examples
- Communication software: TCP/IP stack, HTTP web server, FTP, E-mail, and flash file system
- System software: uC/OS RTOS, ANSI C/C++ compiler and linker

The following optional software modules are not included with kit and are sold separately:

- Embedded SSL & SSH Security Suite (Module License Version)
- SNMP

Specifications

Processor and Memory

32-bit Freescale ColdFire 5270 running at 147.5MHz with 8MB SDRAM, 512KB Flash, and 64Kb SRAM.

Network Interface

10/100 BaseT with RJ-45 connector (100 Version)

10-pin header (200 Version)

Data I/O Interface (J1 and J2)

- Up to 3 UARTs
- Up to 47 digital I/O
- Up to 3 external timer in and up to 4 timer outputs
- · Up to 4 external IRQs

- I²C interface
- SPI interface
- SD/MMC flash card ready
- 16-bit address bus and 32-bit data bus with 3 chip selects

Flash Card Support

FAT32 support for SD Cards up to 8GB (requires exclusive use of SPI signals). Card types include SD/MMC (up to 2GB) and SDHC.

Serial Configurations

The UARTs can be configured in the following way:

- · 3 TTL ports
- Add external level shifter for RS-232
- Add external level shifter for RS-422/485 (up to three ports)

Note: UART 0/1/2 also provides RTS/CTS hardware handshaking signals.

LEDs

Link and Speed (100 Version only, on RJ-45)

Physical Characteristics

Dimensions (inches): 2.60" x 2.00"

Weight: 1 oz.

Mounting Holes: 2 x 0.125" dia.

Power

DC Input Voltage: 3.3V @ 380mA typical

Environmental Operating Temperature

-40° to 85° C

RoHS Compliance

The Restriction of Hazardous Substances guidelines ensure that electronics are manufactured with fewer environment harming materials.

Part Numbers

MOD5270 Ethernet Core Module (100 Version, with RJ-45)

Part Number: MOD5270-100IR

MOD5270 Ethernet Core Module (200 Version, with 10-pin header)

Part Number: MOD5270-200IR

MOD5270 LC Development Kit Part Number: NNDK-MOD5270LC-KIT

Kit includes all the hardware and software you need to customize the included platform hardware. See NetBurner Store product page for package contents. Note: Includes the MOD-DEV-70 development board.

MOD5270 Development Kit Part Number: NNDK-MOD5270-KIT

Kit includes all the hardware and software you need to customize the included platform hardware. See NetBurner Store product page for package contents. Note: Includes the MOD-DEV-100 development board.

Embedded SSL & SSH Security Suite (Module License Version)

Part Number: NBLIC-SSL-MODULE

Only required if you are using a development kit.

SNMP V1 (Module License Version)

Part Number: NBLIC-SNMP

Available as an option if you are using a development kit.

Ordering Information

E-mail: sales@netburner.com Online Store: www.NetBurner.com Telephone: 1-800-695-6828

Pinout and Signal Description

The 200 version board has a 10-pin header instead of an RJ-45 jack. This header enables you to relocate the jack to another location or to add a different jack with power over ethernet (PoE) capabilities to your module. Table 1 provides descriptions of pin function of the 10-pin header.

Refer to the application note, "Adding an External Ethernet RJ-45 Connector and PCB Layout Guidlines for Net-Burner -200 Version Modules", for details and examples.

Table 1: Pinout and Signal Descriptions for JP2 Header (1)

Pin	Signal	Description		
1	TX-	Transmit -		
2	TX+	Transmit +		
3	TXCT ¹	Transmit Data Center Tap		
4	RX+	Receive +		
5	RX-	Receive -		
6	RXCT ¹	Receive Data Center Tap		
7	GND	Ground		
8	N/C	Not Connected		
9	LED	LED control sink, link/activity		
10	LED	LED control sink, speed		

^{1.} Ethernet magnetics center tap voltage provided by NetBurner device

The module has two dual in-line 50 pin headers which enable you to connect to one of our standard NetBurner Carrier Boards, or a board you create on your own. Table 2-3 provides descriptions of pin function of the module header.

Table 2: Pinout and Signal Descriptions for J1 Connector (1)

		J1 Connector							
	CPU Pin	Function 1	Function 2	General Purpose I/O	Description	Max Voltage			
1		GND			Ground	-			
2		GND			Ground	-			
3		VCC3V			Input Power 3.3 VDC	3.3VDC			
4	J13	R/W			Read / NOT Write ¹	3.3VDC			
5	B10	CS1		PCS1	Chip Select 1 ¹	3.3VDC			
6	C9	CS2		PCS2	Chip Select 2 ¹	3.3VDC			
7	A9	CS3		PCS3	Chip Select 3 ¹	3.3VDC			
8	N6	ŌĒ			Output Enable	3.3VDC			
9	C6	BS2	CAS2		Byte Strobe for D16 to D23 (8 bits) ¹ or Column Address Strobe 2 ¹	3.3VDC			
10	B6	BS3	CAS3		Byte Strobe for D24 to D31 (8 bits) ¹ or Column Address Strobe 3 ¹	3.3VDC			
11		TIP			Transfer in Progress ^{1,2}	3.3VDC			
12	L2	D16			Data Bus - Data 16 ⁴	3.3VDC			
13	H11	TA		PBUSCTL6	Transfer Acknowledge ¹	3.3VDC			
14	K4	D18			Data Bus - Data 18	3.3VDC			
15	L1	D17			Data Bus - Data 17	3.3VDC			
16	K2	D20			Data Bus - Data 20	3.3VDC			
17	K3	D19			Data Bus - Data 19	3.3VDC			
18	J4	D22			Data Bus - Data 22	3.3VDC			
19	K1	D21			Data Bus - Data 21	3.3VDC			
20	J2	D24			Data Bus - Data 24	3.3VDC			
21	J3	D23			Data Bus - Data 23	3.3VDC			
22	H4	D26			Data Bus - Data 26	3.3VDC			
23	J1	D25			Data Bus - Data 25	3.3VDC			
24	H2	D28			Data Bus - Data 28	3.3VDC			
25	НЗ	D27			Data Bus - Data 27	3.3VDC			

- 1. Active low signals, such as RESET, are indicated with an overbar
- 2. The TIP signal is the logical AND of *CS1, *CS2 and *CS3. TIP can be used to control an external data bus buffer for the data bus signals. An example circuit design can be found on the Module Development Board schematic. An external data bus buffer is recommended for any designs that use data bus signals D16 D31.
- 3. The CLKOUT signal is 1/2 the system frequency of 147.456 MHz.
- 4. This is the LSB (Least-significant bit). This bit is unused for 16-bit ports
- 5. This is the MSB (Most-significant bit)
- 6. Each UART can be clocked from an internal or external source. For external clocks, each UARTn,can be clocked by the corresponding DTn_IN input pin.
- 7. If using I²C, pull-up resistors must be added to SDA/SCL.
- 8. The Mod5270 provides QSPI chip selects QSPI_CS0, QSPI_CS1 & QSPI_CS3.
- 9. 32-bit mode only

	J1 Connector (continued)							
Pin	CPU Pin	Function	General Purpose I/O	Description	Max Voltage			
26	G2	D30		Data Bus - Data 30	3.3VDC			
27	H1	D29		Data Bus - Data 29 ⁵	3.3VDC			
28	N13	RESET		Processor Reset Input ¹	3.3VDC			
29	G1	D31		Data Bus - Data 31	3.3VDC			
30	P13	RSTOUT		Processor Reset Output ¹	3.3VDC			
31	K14	CLK_OUT		Buffer Clock Out (CLKOUT-73.728 Mhz) ³	3.3VDC			
32	G13	A0		Data Bus - Address 0 ⁴	3.3VDC			
33	G12	A1		Data Bus - Address 1	3.3VDC			
34	G11	A2		Data Bus - Address 2	3.3VDC			
35	F14	A3		Data Bus - Address 3	3.3VDC			
36	F13	A4		Data Bus - Address 4	3.3VDC			
37	F12	A5		Data Bus - Address 5	3.3VDC			
38	E14	A6		Data Bus - Address 6	3.3VDC			
39	E13	A7		Data Bus - Address 7	3.3VDC			
40	E12	A8		Data Bus - Address 8	3.3VDC			
41	E11	A9		Data Bus - Address 9	3.3VDC			
42	D14	A10		Data Bus - Address 10	3.3VDC			
43	D13	A11		Data Bus - Address 11	3.3VDC			
44	D12	A12		Data Bus - Address 12	3.3VDC			
45	C14	A13		Data Bus - Address 13	3.3VDC			
46	C13	A14		Data Bus - Address 14	3.3VDC			
47	B14	A15		Data Bus - Address 15 ⁵	3.3VDC			
48		VCC3V		Input Power 3.3 VDC	3.3VDC			
49		GND		Ground	-			
50		GND		Ground	<u>-</u>			

- 1. Active low signals, such as $\overline{\text{RESET}}$, are indicated with an overbar
- 2. The TIP signal is the logical AND of *CS1, *CS2 and *CS3. TIP can be used to control an external data bus buffer for the data bus signals. An example circuit design can be found on the Module Development Board schematic. An external data bus buffer is recommended for any designs that use data bus signals D16 D31.
- 3. The CLKOUT signal is 1/2 the system frequency of 147.456 MHz.
- 4. This is the LSB (Least-significant bit). This bit is unused for 16-bit ports
- 5. This is the MSB (Most-significant bit)
- 6. Each UART can be clocked from an internal or external source. For external clocks, each UARTn,can be clocked by the corresponding DTn_IN input pin.
- 7. If using I²C, pull-up resistors must be added to SDA/SCL.
- 8. The Mod5270 provides QSPI chip selects QSPI_CS0, QSPI_CS1 & QSPI_CS3.
- 9. 32-bit mode only

Table 3: Pinout and Signal Descriptions for J2 Connector (1)

J2 Connector						
Pin	CPU Pin	Function 1	Function 2	General Purpose I/O	Description	Max Voltage
1		GND			Ground	-
2		VCC3V			Input Power 3.3 VDC	3.3VDC
3	F2	UARTO_RX		PUARTL0	UART o Receive6	3.3VDC
4	F1	UARTO_TX		PUARTL1	UART ₀ Transmit ⁶	3.3VDC
5		NC			No Connect	3.3VDC
6	N1	D14		PDATAH14	Data Bus . Data ₁₄	3.3VDC
7	M2	D13		PDATAH13	Data Bus . Data ₁₃	3.3VDC
8	M1	D15		PDATAH15	Data Bus . Data ₁₅	3.3VDC
9	P2	D11		PDATAH11	Data Bus . Data ₁₁	3.3VDC
10	N2	D12		PDATAH12	Data Bus . Data ₁₂	3.3VDC
11	L3	D10		PDATAH10	Data Bus . Data ₁₀	3.3VDC
12	M3	D9		PDATAH9	Data Bus . Data 9	3.3VDC
13	N3	D8		PDATAH8	Data Bus . Data 8	3.3VDC
14		GND			Ground	-
15	P5	D0		PDATAL0	Data Bus . Data ₀	3.3VDC
16	N5	D1		PDATAL1	Data Bus . Data ₁	3.3VDC
17	P4	D4		PDATAL4	Data Bus . Data 4	3.3VDC
18	M5	D2		PDATAL2	Data Bus . Data ₂	3.3VDC
19	N4	D5		PDATAL5	Data Bus . Data 5	3.3VDC
20	M4	D6		PDATAL6	Data Bus . Data ₆	3.3VDC
21	D8	UART1_RX		PUARTL4	UART 1 Receive ⁶	3.3VDC
22	D9	UART1_TX		PUARTL5	UART ₁ Transmit ⁶	3.3VDC
23	L5	D3		PDATAL3	Data Bus . Data ₃	3.3VDC
24	Р3	D7		PDATAL7	Data Bus . Data ₇	3.3VDC
25	C5	SPI_CLK	I2C_SCL	PQSPI2	SPI Clock ⁸ or I ² C Serial Clock ⁷	3.3VDC

- 1. Active low signals, such as RESET, are indicated with an overbar
- 2. The TIP signal is the logical AND of *CS1, *CS2 and *CS3. TIP can be used to control an external data bus buffer for the data bus signals. An example circuit design can be found on the Module Development Board schematic. An external data bus buffer is recommended for any designs that use data bus signals D16 D31.
- 3. The CLKOUT signal is 1/2 the system frequency of 147.456 MHz.
- 4. This is the LSB (Least-significant bit). This bit is unused for 16-bit ports
- 5. This is the MSB (Most-significant bit)
- 6. Each UART can be clocked from an internal or external source. For external clocks, each UARTn,can be clocked by the corresponding DTn_IN input pin.
- 7. If using I²C, pull-up resistors must be added to SDA/SCL.
- 8. The Mod5270 provides QSPI chip selects QSPI_CS0, QSPI_CS1 & QSPI_CS3.
- 9. 32-bit mode only

	J2 Connector (continued)							
Pin	CPU Pin	Function 1	Function 2	Function 3	General Purpose I/O	Description	Max Voltage	
26	G14	T3OUT	UART2_RTS	SPI_CS3	PTIMER6	Timer Output $_{3}$ or UART $_{2}$ Request To Send $^{1.6}$ or SPI Chip Select 3	3.3VDC	
27	B5	SPI_DIN	I2C_SDA		PQSPI1	SPI Data In or I ² C Serial Data ⁷	3.3VDC	
28	A5	SPI_DOUT			PQSPI0	SPI Data Out	3.3VDC	
29	F3	UARTO_CTS			PUARTL3	UART ₀ Clear To Send ^{1,6}	3.3VDC	
30	A6	SPI_CS0			PQSPI3	SPI Chip Select ₀ ⁸	3.3VDC	
31	E4	TOIN	DREQ0		PTIMER1	Timer Input o or DMA Request o ¹	3.3VDC	
32	C8	UART1_RTS	U2_RTS		PUARTL6	UART ₁ ,6 or UART ₂ Request to Send ^{1,6}	3.3VDC	
33	B8	UART1_CTS	U2_CTS		PUARTL7	UART 11,6 or UART 2 Clear to Send1,6	3.3VDC	
34	M6	T1OUT	DACK1		PTIMER2	Timer Output 1 or DMA Acknowledge 1	3.3VDC	
35	M9	T2IN	DREQ2	T2OUT	PTIMER5	Timer Input 2 or DMA Request 21 or Timer Output 2	3.3VDC	
36	F4	TOOUT	DACK0		PTIMER0	Timer Output ₀ or DMA Acknowledge ₀	3.3VDC	
37	L6	T1IN	DREQ1	T1OUT	PTIMER3	Timer Input ₁ or DMA Request ₁ or Timer Output ₁	3.3VDC	
38	G3	UARTO_RTS			PUARTL2	UART ₀ Request To Send¹,6	3.3VDC	
39	J12	I2C_SDA			PFECI2C1	I ² C Serial Data ⁷	3.3VDC	
40	В7	SPI_CS1	SD_CKE		PQSPI4	SPI Chip Select 18 or SDRAM Clock Enable	3.3VDC	
41	A7	UART2_RX			PUARTH0	UART 2 Receive ⁶	3.3VDC	
42	J11	I2C_SCL			PFECI2C0	I ² C Serial Clock	3.3VDC	
43	L8	ĪRQ1			PIRQ1	External Interrupt 1 ¹	3.3VDC	
44	A8	UART2_TX			PUARTH1	UART ₂ Transmit ⁶	3.3VDC	
45	N8	ĪRQ3			PIRQ3	External Interrupt 3 ¹	3.3VDC	
46		GND				Ground	-	
47	L7	ĪRQ5			PIRQ5	External Interrupt 51	3.3VDC	
48	N7	ĪRQ7			PIRQ7	External Interrupt ₇ ¹	3.3VDC	
49		GND				Ground	-	
50		VCC3V				Input power 3.3 VDC	3.3VDC	

- 1. Active low signals, such as RESET, are indicated with an overbar
- 2. The TIP signal is the logical AND of *CS1, *CS2 and *CS3. TIP can be used to control an external data bus buffer for the data bus signals. An example circuit design can be found on the Module Development Board schematic. An external data bus buffer is recommended for any designs that use data bus signals D16 D31.
- 3. The CLKOUT signal is 1/2 the system frequency of 147.456 MHz.
- 4. This is the LSB (Least-significant bit). This bit is unused for 16-bit ports
- 5. This is the MSB (Most-significant bit)
- 6. Each UART can be clocked from an internal or external source. For external clocks, each UARTn,can be clocked by the corresponding DTn_IN input pin.
- 7. If using I²C, pull-up resistors must be added to SDA/SCL.
- 8. The Mod5270 provides QSPI chip selects QSPI_CS0, QSPI_CS1 & QSPI_CS3.
- 9. 32-bit mode only