HIGH-SPEED 3.3V 64/32K x 8 SYNCHRONOUS DUAL-PORT STATIC RAM

Features:

- True Dual-Ported memory cells which allow simultaneous access of the same memory location
- High-speed clock to data access
 - Commercial: 7.5ns (max.)
 - Industrial: 12ns (max.)
- Low-power operation
 IDT70V9089/79L
 - Active: 429mW (typ.) Standby: 1.32mW (typ.)
- Flow-Through or Pipelined output mode on either port via the FT/PIPE pin
- Dual chip enables allow for depth expansion without additional logic

- Counter enable and reset features
- * Full synchronous operation on both ports
 - 4ns setup to clock and 1ns hold on all control, data, and address inputs
 - Data input, address, and control registers
 - Fast 7.5ns clock to data out in the Pipelined output mode
 - Self-timed write allows fast cycle time
- 12ns cycle time, 83MHz operation in the Pipelined output mode
- LVTTL- compatible, single 3.3V (±0.3V) power supply
- Available in a 100 pin Thin Quad Flatpack (TQFP) package
- Green parts available, see ordering information

Functional Block Diagram

B/WR OER CEOR CE1R 0 0/1 FT/PIPEL 0 0 **FT/PIPE**B 0/1 I/Ool - I/O7L < I/O0R - I/O7R I/O I/O Control Control A15B⁽¹⁾ A15L⁽¹⁾ Counter/ Counter/ MEMORY A0R Aol Address Address <u>CLK</u>R **CLK**L ARRAY Reg. Reg. ADSR ADSL CNTENR **CNTENL CNTRST**R **CNTRST**L 3750 drw 01

NOTE:

1. A15x is a NC for IDT70V9079.

SEPTEMBER 2019

70V9089/79L High Speed 3.3V 64/32K x 8 Synchronous Dual-Port Static RAM

Industrial and Commercial Temperature Ranges

Description:

The IDT70V9089/79 is a high-speed 64/32K x 8 bit synchronous Dual-Port RAM. The memory array utilizes Dual-Port memory cells to allow simultaneous access of any address from both ports. Registers on control, data, and address inputs provide minimal setup and hold times. The timing latitude provided by this approach allows systems to be designed with very short cycle times. With an input data register, the IDT70V9089/79 has been optimized for applications having unidirectional or bidirectional data flow in bursts. An automatic power down feature, controlled by $\overline{CE}o$ and CE1, permits the on-chip circuitry of each port to enter a very low standby power mode. Fabricated using CMOS high-performance technology, these devices typically operate on only 429mW of power.

IPEF ഗി NC NC A7R A3R A9R A10R A11R A12R A13R A13R A13R NC VC NC NC NC NC £ <u>OE</u>r FT/PII МN СĒ1 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 NC ⊐ NC 76 ⊐ NC 49 177 I NC A6R 💳 78 48 A5R - 79 47 ⊐ I/O7R ⊐ I/O6R A4R = 80 46 A3R 🗆 45 ⊐ I/O5R 181 A2R ⊏ 82 44 ⊐ I/O4R A1R 🖂 43 ⊐ I/O3R 83 AOR 42 ⊐ Vdd **1**84 CNTENR = 85 41 ⊐ I/O2R CLKR = 86 □ I/O1R 40 70V9089/79 ADSR 87 39 I/OOR PNG100⁽⁵⁾ Vss 🖂 88 38 ⊐ Vss 🗆 Vdd 37 100-PIN TQFP TOP VIEW I/Ool 36 ⊐ I/OIL 35 A0L = 92 ⊐ Vss 34 ⊐ I/O2L A1L = 93 33 A2L - 94 ⊐ I/O3L 32 A3L 💳 95 ⊐ I/O4L 31 A4L = 96 ⊐ I/O5L 30 97 A5L 🗆 ⊐ I/O6L 29 A6L 198 28 I/O7L 27 NC 26 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 ⊐ GND 2 FT/PIPEL 3750 drw 02

PinConfigurations^(2,3,4)

- 1. A15x is a NC for IDT70V9079.
- 2. All Vcc pins must be connected to power supply.
- 3. All GND pins must be connected to ground.
- 4. Package body is approximately 14mm x 14mm x 1.4mm.
- 5. This package code is used to reference the package diagram.

70V9089/79L High Speed 3.3V 64/32K x 8 Synchronous Dual-Port Static RAM

Pin Names

Left Port	Right Port	Names
CE0L, CE1L	CEOR, CE1R	Chip Enables
R/WL	R/WR	Read/Write Enable
ŌĒL	ŌĒR	Output Enable
Aol - A15L ⁽¹⁾	A0R - A15R ⁽¹⁾	Address
1/Ool - 1/07l	I/O0R - I/O7R	Data Input/Output
CLKL	CLKR	Clock
ADSL	ĀDSR	Address Strobe
		Counter Enable
CNTRSTL	CNTRST R	Counter Reset
FT/PIPEL	FT/PIPER	Flow-Through/Pipeline
	Vdd	Power (3.3V)
	Vss	Ground (0V)

3750 tbl 01

Truth Table I—Read/Write and Enable Control^(1,2,3)

ŌĒ	CLK	C E₀	CE1	R∕₩	I/O0-7	Mode
Х	Ŷ	Н	Х	Х	High-Z	Deselected - Power Down
Х	Ŷ	Х	L	Х	High-Z	Deselected - Power Down
Х	Ŷ	L	Н	L	DATAIN	Write
L	Ŷ	L	Н	Н	DATAOUT	Read
Н	Х	L	Η	Х	High-Z	Outputs Disabled
						3750 tbl 02

NOTES:

1. "H" = VIH, "L" = VIL, "X" = Don't Care.

2. \overline{ADS} , \overline{CNTEN} , $\overline{CNTRST} = X$.

3. OE is an asynchronous input signal.

nath	TUDIC			550	ount			
External Address	Previous Internal Address	Internal Address Used	CLK	ADS		CNTRST	I/O ⁽³⁾	MODE
An	Х	An	Ŷ	L ⁽⁴⁾	Х	Н	Dvo (n)	External Address Used
Х	An	An + 1	Ŷ	Н	L ⁽⁵⁾	Н	D⊮o(n+1)	Counter Enabled—Internal Address generation
Х	An + 1	An + 1	Ŷ	Н	Н	Н	D⊮o(n+1)	External Address Blocked—Counter disabled (An + 1 reused)
Х	Х	Ao	Ŷ	Х	Х	L ⁽⁴⁾	Dvo(0)	Counter Reset to Address 0
								3750 tbl 03

Truth Table II—Address Counter Control^(1,2,3)

NOTES:

1. $\underline{"H"} = V_{IH, \underline{"L"}} = V_{IL, \mathbb{"X"}} = Don't Care.$

2. \overline{CE}_0 and \overline{OE} = VIL; CE1 and R/ \overline{W} = VIH.

3. Outputs configured in Flow-Through Output mode: if outputs are in Pipelined mode the data out will be delayed by one cycle.

4. ADS and CNTRST are independent of all other signals including \overline{CE}_0 and CE1.

5. The address counter advances if CNTEN = VIL on the rising edge of CLK, regardless of all other signals including CE₀ and CE1.

3

Industrial and Commercial Temperature Ranges

- 1. <u>A15x is a NC for IDT70V9079</u>.
- 2. \overline{LB} and \overline{UB} are single buffered regardless of state of \overline{FT} /PIPE.
- 3. CEo and CE1 are single buffered when FT/PIPE = VIL, CEo and CE1 are double buffered when FT/PIPE = VIH,
- i.e. the signals take two cycles to deselect.

70V9089/79L High Speed 3.3V 64/32K x 8 Synchronous Dual-Port Static RAM

Recommended Operating Temperature and Supply Voltage⁽¹⁾

Grade	Ambient de Temperature		Vdd
Commercial	0°C to +70°C	0V	3.3V <u>+</u> 0.3V
Industrial	-40°C to +85°C	0V	3.3V <u>+</u> 0.3V

NOTES:

1. This is the parameter TA. This is the "instant on" case temperature.

Industrial and Commercial Temperature Ranges

Recommended DC Operating Conditions

Symbol	Parameter	Min.	Тур.	Мах.	Unit
Vdd	Supply Voltage	3.0	3.3	3.6	۷
Vss	Ground	0	0	0	۷
Vih	Input High Voltage	2.2		$V_{DD} + 0.3V^{(1)}$	۷
Vi∟	Input Low Voltage	-0.3 ⁽²⁾		0.8	٧

NOTES:

3750 tbl 04

1. VTERM must not exceed VDD +0.3V.

2. VIL \geq -1.5V for pulse width less than 10ns.

Absolute Maximum Ratings⁽¹⁾

Symbol	Rating	Commercial & Industrial	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +4.6	V
Tbias	Temperature Under Bias	-55 to +125	٥C
Tstg	Storage Temperature	-65 to +150	٥C
ЛІЛ	Junction Temperature	+150	٥C
Ιουτ	DC Output Current	50	mA
			3750 tbl 06

NOTES:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

- 2. VTERM must not exceed VDb +0.3V for more than 25% of the cycle time or 10ns maximum, and is limited to \leq 20mA for the period of VTERM \geq VDb + 0.3V.
- 3. Ambient Temperature Under Bias. Chip Deselected.

Capacitance (TA = +25°C, f = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions ⁽²⁾	Max.	Unit
Cin	Input Capacitance	VIN = 3dV	9	рF
Cout ⁽³⁾	Output Capacitance	Vout = 3dV	10	pF
				3750 tbl 07

NOTES:

1. These parameters are determined by device characterization, but are not production tested.

2. 3dV references the interpolated capacitance when the input and output switch from 0V to 3V or from 3V to 0V.

3. COUT also references CI/O.

3750 tbl 05

70V9089/79L High Speed 3.3V 64/32K x 8 Synchronous Dual-Port Static RAM

Industrial and Commercial Temperature Ranges

DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range (VDD = 3.3V ± 0.3V)

			70V9089/79S		70V90		
Symbol	Parameter	Test Conditions	Min.	Max.	Min.	Мах.	Unit
LI	Input Leakage Current ⁽¹⁾	VDD = $3.3V$, VIN = 0V to VDD	-	10	-	5	μA
llo	Output Leakage Current	$\overline{CE}_0 = VIH \text{ or } CE_1 = VIL, VOUT = 0V \text{ to } VDD$		10		5	μA
Vol	Output Low Voltage	Iol = +4mA	_	0.4	-	0.4	V
Vон	Output High Voltage	IOH = -4mA	2.4	_	2.4	_	V

NOTE:

1. At $VDD \leq 2.0V$ input leakages are undefined.

3750 tbl 08

70V9089/79X6 70V9089/79X7 70V9089/79X9 Com'l Only Com'l Only Com'l Only Тур.⁽⁴⁾ Typ.⁽⁴⁾ **Test Condition** Typ.⁽⁴⁾ Unit Symbol Parameter Version Max. Max. Max. \overline{CE}_{L} and $\overline{CE}_{R} = V_{IL}$ COM'L S 395 200 335 180 260 Icc Dynamic Operating 220 mΑ 350 290 Current Outputs Disabled L 220 200 180 225 (Both Ports Active) f = İmax⁽¹⁾ IND S _____ ____ _____ S **I**SB1 Standby Current \overline{CE}_L and $\overline{CE}_R = V_{IH}$ COM'L 70 145 60 115 50 75 mΑ (Both Ports - TTL $f = fMAX^{(1)}$ L 70 130 60 100 50 65 Level Inputs) S IND L Standby Current $\overline{CE}^{"A"} = VIL and$ ISB2 COM'L S 150 280 130 240 110 170 mΑ $\overline{CE}^{"B"} = VIH^{(3)}$ (One Port - TTL 130 150 250 210 110 150 Level Inputs) Active Port Outputs Disabled, IND S $f=fMAX^{(1)}$ L Both Ports $\overline{\text{CE}}_{\text{R}}$ and S Full Standby Current COM'L 5 5 5 **I**SB3 1.0 1.0 1.0 mΑ (Both Ports $\overline{CE}L \ge VDD - 0.2V$ 3 3 3 Т 0.4 0.4 0.4 $VIN \ge VDD - 0.2V$ or **ČMOS** Level Inputs) $VIN \le 0.2V, f = 0^{(2)}$ IND S _____ ____ ____ _____ L ISB4 Full Standby Current COM'L S 140 270 120 230 100 160 mΑ <u>CE</u>"A" <u><</u> 0.2V and \overline{CE} "B" \geq VDD - 0.2V⁽⁵⁾ (One Port -120 200 100 140 240 140 1 **CMOS** Level Inputs) $VIN \ge VDD - 0.2V \text{ or}$ IND S $V_{IN} < 0.2V$, Active Port Outputs Disabled, f = fMAX⁽¹⁾ L

DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range⁽⁶⁾ (VDD = $3.3V \pm 0.3V$)

3750 tbl 09a

NOTES:

1. At f = fmax, address and control lines (except Output Enable) are cycling at the maximum frequency clock cycle of 1/tcyc, using "AC TEST CONDITIONS" at input levels of GND to 3V.

2. f = 0 means no address, clock, or control lines change. Applies only to input at CMOS level standby.

3. Port "A" may be either left or right port. Port "B" is the opposite from port "A".

- 4. \underline{V}_{DD} = 3.3V, TA = $\underline{25}^{\circ}C$ for Typ, and are not production tested. Icc Dc(f=0) = 90mA (Typ).
- 5. $\overline{CE}x = VIL$ means $\overline{CE}ox = VIL$ and CE1x = VIH
 - $\overline{CE}x = VIH$ means $\overline{CE}ox = VIH$ or CE1x = VIL
 - $\overline{\text{CE}}x \leq 0.2V$ means $\overline{\text{CE}}\textsc{ox} \leq 0.2V$ and $\text{CE}\textsc{ix} \geq V\textsc{dd}$ 0.2V

 $\overline{\text{CE}}\text{x} \geq \text{V}\text{d}\text{d}$ - 0.2V means $\overline{\text{CE}}\text{o}\text{x} \geq \text{V}\text{d}\text{d}$ - 0.2V or $\text{CE}\text{i}\text{x} \leq 0.2\text{V}$

- "X" represents "L" for left port or "R" for right port.
- 6. 'X' in part number indicates power rating (S or L).

70V9089/79L High Speed 3.3V 64/32K x 8 Synchronous Dual-Port Static RAM

Industrial and Commercial Temperature Ranges

DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range⁽⁶⁾ ($VDD = 3.3V \pm 0.3V$)(Cont'd)

					70V9089 Com'l		70V9089 Com'l		
Symbol	Parameter	Test Condition	Versio	on	Тур. ⁽⁴⁾	Max.	Тур. ⁽⁴⁾	Max.	Unit
Icc	Dynamic Operating Current (Both Ports Active)	\overline{CE}_{L} and $\overline{CE}_{R} = V_{IL}$ Outputs Disabled $f = f_{MAX}^{(1)}$	COM'L	S L	150 150	240 215	130 130	220 185	mA
	(Buill Polits Active)	,	IND	S L	 150	 215			
ISB1	Standby Current (Both Ports - TTL Level Inputs)	\overline{CE}_{L} and $\overline{CE}_{R} = V_{IH}$ f = fMAX ⁽¹⁾	COM'L	S L	40 40	65 60	30 30	55 35	mA
			IND	S L	40	60			
ISB2	(One Port - TTL $\overrightarrow{CE}^{"B"} = VIH^{(3)}$	COM'L	S L	100 100	160 140	90 90	150 130	mA	
	Lever inputs)	Active Port Outputs Disabled,	IND	S L	 100	 150			
ISB3	Full Standby Current (Both Ports - CMOS Level Inputs)	Both Ports $\overline{CE}R$ and $\overline{CE}L \ge VDD - 0.2V$ VIN > VDD - 0.2V or	COM'L	S L	1.0 0.4	5 3	1.0 0.4	5 3	mA
	CIVIOS Level Inputs)	$V_{IN} \ge V_{DD} - 0.2V$ of $V_{IN} \le 0.2V$, $f = 0^{(2)}$	IND	S L	0.4	3			
SB4	$\begin{array}{llllllllllllllllllllllllllllllllllll$	COM'L	S L	90 90	150 130	80 80	140 120	mA	
		IND	S L	90	 140				

- 1. At f = fMAX, address and control lines (except Output Enable) are cycling at the maximum frequency clock cycle of 1/tcyc, using "AC TEST CONDITIONS" at input levels of GND to 3V.
- 2. f = 0 means no address, clock, or control lines change. Applies only to input at CMOS level standby.
- 3. Port "A" may be either left or right port. Port "B" is the opposite from port "A".
- 4. VDD = 3.3V, TA = 25°C for Typ, and are not production tested. Icc cc(f=0) = 90mA (Typ).
- 5. $\overline{CE}x = VIL$ means $\overline{CE}ox = VIL$ and CE1x = VIH
- $\overline{CE}x = VIH$ means $\overline{CE}ox = VIH$ or CE1x = VIL
 - $\overline{CE}x \le 0.2V$ means $\overline{CE}ox \le 0.2V$ and $CE_{1X} \ge V_{DD} 0.2V$
- $\overline{\text{CE}} x \geq V \text{DD}$ 0.2V means $\overline{\text{CE}} \text{ox} \geq V \text{DD}$ 0.2V or CE1x $\leq 0.2V$
- "X" represents "L" for left port or "R" for right port.
- 6. 'X' in part number indicates power rating (S or L).

70V9089/79L High Speed 3.3V 64/32K x 8 Synchronous Dual-Port Static RAM

Industrial and Commercial Temperature Ranges

AC Test Conditions

Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	3ns Max.
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
Output Load	Figures 1,2 and 3

3750 tbl 10

Figure 1. AC Output Test load.

Figure 2. Output Test Load (For tcklz, tckHz, tolz, and toHz). *Including scope and jig.

Figure 3. Typical Output Derating (Lumped Capacitive Load).

7

70V9089/79L High Speed 3.3V 64/32K x 8 Synchronous Dual-Port Static RAM

Industrial and Commercial Temperature Ranges

AC Electrical Characteristics Over the Operating Temperature Range (Read and Write Cycle Timing)^(3,4) (VDD = $3.3V \pm 0.3$, TA = 0°C to +70°C)

	and Write Cycle Timing) ^{(3,4}	70V90	89/79X6 I Only	70V908 Com'	39/79X7 I Only	70V908 Com'		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
tcyc1	Clock Cycle Time (Flow-Through) ⁽²⁾	19	_	22		25	_	ns
tcyc2	Clock Cycle Time (Pipelined) ⁽²⁾	10	_	12		15	_	ns
tсн1	Clock High Time (Flow-Through) ⁽²⁾	6.5	_	7.5		12	_	ns
tcl1	Clock Low Time (Flow-Through) ⁽²⁾	6.5	_	7.5		12	_	ns
tсн2	Clock High Time (Pipelined) ⁽²⁾	4	_	5		6	_	ns
tcl2	Clock Low Time (Pipelined)(2)	4	_	5	_	6	_	ns
tr	Clock Rise Time		3		3		3	ns
tF	Clock Fall Time		3		3		3	ns
tsa	Address Setup Time	3.5	_	4		4	_	ns
tha	Address Hold Time	0	_	0	_	1	_	ns
tsc	Chip Enable Setup Time	3.5	_	4		4	_	ns
tнc	Chip Enable Hold Time	0	_	0		1	_	ns
tsw	R/W Setup Time	3.5	_	4		4	_	ns
thw	R/W Hold Time	0	_	0		1	_	ns
tsd	Input Data Setup Time	3.5		4		4		ns
thd	Input Data Hold Time	0	_	0		1		ns
tsad	ADS Setup Time	3.5	_	4		4	_	ns
thad	ADS Hold Time	0	_	0		1		ns
tscn	CNTEN Setup Time	3.5	_	4		4	_	ns
tнсм	CNTEN Hold Time	0	_	0		1	_	ns
tsrst	CNTRST Setup Time	3.5	_	4		4	_	ns
thrst	CNTRST Hold Time	0		0		1	_	ns
toe	Output Enable to Data Valid		6.5		7.5		9	ns
tolz	Output Enable to Output Low-Z ⁽¹⁾	2		2		2	_	ns
toнz	Output Enable to Output High-Z ⁽¹⁾	1	7	1	7	1	7	ns
tcd1	Clock to Data Valid (Flow-Through) ⁽²⁾		15		18		20	ns
tCD2	Clock to Data Valid (Pipelined) ⁽²⁾		6.5		7.5		9	ns
tDC	Data Output Hold After Clock High	2	_	2		2	_	ns
tскнz	Clock High to Output High-Z ⁽¹⁾	2	9	2	9	2	9	ns
tcklz	Clock High to Output Low-Z ⁽¹⁾	2		2		2	_	ns
Port-to-Port D	Delay	ł						
tcwdd	Write Port Clock High to Read Data Delay	_	24		28		35	ns
tccs	Clock-to-Clock Setup Time		9		10		15	ns

NOTES:

4. 'X' in part number indicates power rating (S or L).

^{1.} Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2). This parameter is guaranteed by device characterization, but is not production tested.

^{2.} The Pipelined output parameters (tcvc2, tcb2) apply to either or both left and right ports when $\overline{FT}/PIPE = VIH$. Flow-through parameters (tcvc1, tcb1) apply when $\overline{FT}/PIPE = VIH$ for that port.

^{3.} All input signals are synchronous with respect to the clock except for the asynchronous Output Enable (OE) and FT/PIPE. FT/PIPE should be treated as a DC signal, i.e. steady state during operation.

70V9089/79L High Speed 3.3V 64/32K x 8 Synchronous Dual-Port Static RAM

AC Electrical Characteristics Over the Operating Temperature Range (Read and Write Cycle Timing)^(3,4) (VDD = $3.3V \pm 0.3$)

		70V908 Com'	9/79X12 I & Ind	70V908 Com	3979X15 I Only	
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
tcyc1	Clock Cycle Time (Flow-Through) ⁽²⁾	30		35		ns
tcyc2	Clock Cycle Time (Pipelined) ⁽²⁾	20		25		ns
tch1	Clock High Time (Flow-Through) ⁽²⁾	12		12		ns
tcl1	Clock Low Time (Flow-Through) ⁽²⁾	12		12		ns
tcн2	Clock High Time (Pipelined) ⁽²⁾	8		10		ns
tcl2	Clock Low Time (Pipelined) ⁽²⁾	8		10		ns
tR	Clock Rise Time	—	3		3	ns
tf	Clock Fall Time		3		3	ns
tsa	Address Setup Time	4		4		ns
tha	Address Hold Time	1		1		ns
tsc	Chip Enable Setup Time	4		4		ns
tнc	Chip Enable Hold Time	1		1		ns
tsw	R/W Setup Time	4		4		ns
tнw	R/W Hold Time	1		1		ns
tsd	Input Data Setup Time	4		4		ns
tнd	Input Data Hold Time	1		1		ns
tsad	ADS Setup Time	4		4		ns
thad	ADS Hold Time	1		1		ns
tscn	CNTEN Setup Time	4		4		ns
then	CNTEN Hold Time	1		1		ns
t SRST	CNTRST Setup Time	4		4		ns
thrst	CNTRST Hold Time	1		1		ns
toe	Output Enable to Data Valid		12		15	ns
tolz	Output Enable to Output Low-Z ⁽¹⁾	2		2		ns
toнz	Output Enable to Output High-Z ⁽¹⁾	1	7	1	7	ns
tCD1	Clock to Data Valid (Flow-Through) ⁽²⁾	_	25		30	ns
tCD2	Clock to Data Valid (Pipelined) ⁽²⁾		12		15	ns
tDC	Data Output Hold After Clock High	2		2		ns
tскнz	Clock High to Output High-Z ⁽¹⁾	2	9	2	9	ns
tcklz	Clock High to Output Low-Z ⁽¹⁾	2		2		ns
Port-to-Port	Delay	•	-	-	-	-
tcwdd	Write Port Clock High to Read Data Delay		40		50	ns
tccs	Clock-to-Clock Setup Time		15		20	ns

3750 tbl 11b

NOTES:

 Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2). This parameter is guaranteed by device characterization, but is not production tested.

2. The Pipelined output parameters (tcvc1, tcb1) apply to either or both left and right ports when FT/PIPE = VIH. Flow-through parameters (tcvc1, tcb1) apply when FT/PIPE = VIL for that port.

3. All input signals are synchronous with respect to the clock except for the asynchronous Output Enable (OE) and FT/PIPE. FT/PIPE should be treated as a DC signal, i.e. steady state during operation.

4. 'X' in part number indicates power rating (S or L).

70V9089/79L High Speed 3.3V 64/32K x 8 Synchronous Dual-Port Static RAM

Industrial and Commercial Temperature Ranges

Timing Waveform of Read Cycle for Flow-Through Output $(FT/PIPE"x" = VIL)^{(3,6)}$

Timing Waveform of Read Cycle for Pipelined Output (FT/PIPE"x" = VIH)^(3,6)

- Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2). 1.
- 2. OE is asynchronously controlled; all other inputs are synchronous to the rising clock edge.
- 3. $\overline{ADS} = VIL$ and $\overline{CNTRST} = VIH$.
- 4. The output is disabled (High-impedance state) by $\overline{CE}_0 = V_{IH}$ or $CE_1 = V_{IL}$ following the next rising edge of clock. Refer to Truth Table 1.
- 5. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers are for
- reference use only. 6. "x" denotes Left or Right port. The diagram is with respect to that port.

70V9089/79L High Speed 3.3V 64/32K x 8 Synchronous Dual-Port Static RAM

Industrial and Commercial Temperature Ranges

Timing Waveform of a Bank Select Pipelined Read^(1,2)

- 1. B1 Represents Bank #1; B2 Represents Bank #2. Each Bank consists of one IDT70V9089/79 for this waveform,
- and are setup for depth expansion in this example. ADDRESS(B1) = ADDRESS(B2) in this situation.
- 2. \overline{OE} and \overline{ADS} = VIL; CE1(B1), CE1(B2), R/W and \overline{CNTRST} = VIH.
- 3. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2).
- 4. \overline{CE}_0 and $\overline{ADS} = VIL$; CE1 and $\overline{CNTRST} = VIH$.
- 5. \overline{OE} = VIL for the Right Port, which is being read from. \overline{OE} = VIH for the Left Port, which is being written to.
- 6. If tccs ≤ maximum specified, then data from right port READ is not valid until the maximum specified for tcwbb.
- If tccs > maximum specified, then data from right port READ is not valid until tccs + tcp1. tcwbb does not apply in this case.

70V9089/79L High Speed 3.3V 64/32K x 8 Synchronous Dual-Port Static RAM

Timing Waveform Port-to-Port Flow-Through Read^(1,2,3,5)

- 1. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2).
- 2. \overline{CE}_0 and $\overline{ADS} = VIL$; CE1 and $\overline{CNTRST} = VIH$.
- 3. $\overline{OE} = V_{IL}$ for the Port "B", which is being read from. $\overline{OE} = V_{IH}$ for the Port "A", which is being written to.
- 4. If tccs ≤ maximum specified, then data from right port READ is not valid until the maximum specified for tcwbb. If tccs > maximum specified, then data from right port READ is not valid until tccs + tcb1. tcwbb does not apply in this case.
- 5. All timing is the same for both left and right ports. Port "A" may be either left or right port. Port "B" is the opposite of Port "A".

70V9089/79L High Speed 3.3V 64/32K x 8 Synchronous Dual-Port Static RAM

Industrial and Commercial Temperature Ranges

Timing Waveform of Pipelined Read-to-Write-to-Read (**OE** Controlled)(3)

- 1. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2).
- 2. Output state (High, Low, or High-impedance) is determined by the previous cycle control signals.
- 3. \overline{CE}_0 and $\overline{ADS} = VIL$; CE1 and $\overline{CNTRST} = VIH$.
- Addresses do not have to be accessed sequentially since ADS = ViL constantly loads the address on the rising edge of the CLK; numbers are for reference use only.
- 5. "NOP" is "No Operation." Data in memory at the selected address may be corrupted and should be rewritten to guarantee data integrity.

70V9089/79L High Speed 3.3V 64/32K x 8 Synchronous Dual-Port Static RAM

Industrial and Commercial Temperature Ranges

Timing Waveform of Flow-Through Read-to-Write-to-Read $(\overline{OE} = V|L)^{(3)}$

Timing Waveform of Flow-Through Read-to-Write-to-Read (**OE** Controlled)⁽³⁾

- 1. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2).
- 2. Output state (High, Low, or High-impedance) is determined by the previous cycle control signals.
- 3. \overline{CE}_0 and $\overline{ADS} = VIL$; CE1 and $\overline{CNTRST} = VIH$.
- 4. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers are for reference use only.
- 5. "NOP" is "No Operation." Data in memory at the selected address may be corrupted and should be rewritten to guarantee data integrity.

70V9089/79L High Speed 3.3V 64/32K x 8 Synchronous Dual-Port Static RAM

Industrial and Commercial Temperature Ranges

Timing Waveform of Pipelined Read with Address Counter Advance⁽¹⁾

Timing Waveform of Flow-Through Counter Read with ${\rm Address\,Counter\,Advance}^{(1)}$

NOTES:

1. \overline{CE}_0 and $\overline{OE} = V_{IL}$; CE1, R/ \overline{W} , and $\overline{CNTRST} = V_{IH}$.

2. If there is no address change via ADS = VIL (loading a new address) or CNTEN = VIL (advancing the address), i.e. ADS = VIH and CNTEN = VIH, then the data output remains constant for subsequent clocks.

70V9089/79L High Speed 3.3V 64/32K x 8 Synchronous Dual-Port Static RAM

Industrial and Commercial Temperature Ranges

Timing Waveform of Write with Address Counter Advance (Flow-Through or Pipelined Outputs)⁽¹⁾

- 2. $\overline{CE}_0 = VIL; CE_1 = VIH.$
- 3. The "Internal Address" is equal to the "External Address" when ADS = VIL and equals the counter output when ADS = VIH.
- 4. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers are for reference use only.
- 5. Output state (High, Low, or High-impedance) is determined by the previous cycle control signals.
- 6. No dead cycle exists during counter reset. A READ or WRITE cycle may be coincidental with the counter reset. ADDR0 will be accessed. Extra cycles are shown here simply for clarification
- CNTEN = VIL advances Internal Address from 'An' to 'An +1'. The transition shown indicates the time required for the counter to advance. 7. The 'An +1' address is written to during this cycle.

70V9089/79L High Speed 3.3V 64/32K x 8 Synchronous Dual-Port Static RAM

Industrial and Commercial Temperature Ranges

Functional Description

The IDT70V9089/79 provides a true synchronous Dual-Port Static RAM interface. Registered inputs provide minimal set-up and hold times on address, data, and all critical control inputs. All internal registers are clocked on the rising edge of the clock signal, however, the self-timed internal write pulse is independent of the LOW to HIGH transition of the clock signal.

An asynchronous output enable is provided to ease asynchronous bus interfacing. Counter enable inputs are also provided to stall the operation of the counter registers for fast interleaved memory applications.

A HIGH on \overline{CE} or a LOW on CE1 for one clock cycle will power down the internal circuitry to reduce static power consumption. Multiple chip enables allow easier banking of multiple IDT70V9089/79's for depth expansion configurations. When the Pipelined output mode is enabled, two cycles are required with \overline{CE} 0 LOW and CE1 HIGH to reactivate the outputs.

Depth and Width Expansion

The IDT70V9089/79 features dual chip enables (refer to Truth Table I) in order to facilitate rapid and simple depth expansion with no requirements for external logic. Figure 4 illustrates how to control the various chip enables in order to expand two devices in depth.

The IDT70V9089/79 can also be used in applications requiring expanded width, as indicated in Figure 4. Since the banks are allocated at the discretion of the user, the external controller can be set up to drive the input signals for the various devices as required to allow for 16-bit or wider applications.

Figure 4. Depth and Width Expansion with IDT70V9089/79

NOTE:

1. A16 is for IDT70V9089. A15 is for IDT70V9079.

IDT Clock Solution for IDT70V9089/79 Dual-Port

	Dual-Port I/O Specitications		Clock Specifications				IDT	IDT
IDT Dual-Port Part Number	Voltage	I/O	Input Capacitance	Input Duty Cycle Requirement	Maximum Frequency	Jitter Tolerance	PLL Clock Device	Non-PLL Clock Device
70V9089/79	3.3	LVTTL	9pF	40%	100	150ps	2305 2308 2309	49FCT3805 49FCT3805D/E 74FCT3807 74FCT3807D/E

3750 tbl 14

70V908	9/79L							
		64/32K :	x 8 Synchro	onous I	Dual-Port Static	RAM		Industrial and Commercial Temperature Ranges
Orde	ring I	nforr	nation					
XXXXX	A	99	A	A	A	Α		
Device Type	Power	Speed	Package		Process/ Temperature Range		Blank 8	Tray Tape & Reel
							Blank I	Commercial (0°C to +70°C) Industrial (-40°C to +85°C)
							G	Green
							PF	100-pin TQFP (PNG100)
							7	Commercial Only Speed in nanoseconds
							- L	Low Power
NOTES							70V9089 70V9079	

NOTES:

LEAD FINISH (SnPb) parts are Obsolete. Product Discontinuation Notice - PDN# SP-17-02 Note that information regarding recently obsoleted parts are included in this datasheet for customer convenience.

Ordering Information for Flow-through Devices

Old Flow-through Part	New Combined Part
70V908S/L25	70V9089L12
	3750 tbl 12
Old Flow-through Part	New Combined Part
70V907S/L25	70V9079L7

Orderable Part Information

Speed (ns)	Orderable Part ID	Pkg. Code	Pkg. Type	Temp. Grade
7	70V9079L7PFG8	PNG100	TQFP	С
	70V9079L7PFG	PNG100	TQFP	С

Spee (ns)	Orderable Part ID	Pkg. Code	Pkg. Type	Temp. Grade
12	70V9089L12PFGI	PNG100	TQFP	Ι
	70V9089L12PFGI8	PNG100	TQFP	I

Datasheet Document History

01/18/99:

Initiated datasheet document history Converted to new format Cosmetic and typographical corrections Added additional notes to pin configurations Added Depth and Width Expansion section.

Page 14

18

12/01/05:

01/19/09:

07/26/10:

07/15/14:

02/20/18:

09/25/19:

Page 1

Page 18

Page 18

Page 8

Page 1

Page 2 Page 5

Page 6

Pages 8 & 9

Page 18

Page 18

Page 2

Page 18

Page 2 & 18

Page 1 & 18

Pages 10-14

70V9089/79L High Speed 3		chronous Dual-Port Static RAM	Industrial and Commercial Temperature Ranges
Datashe	et Docume	ent History (con't.)	
06/11/99:	Page 3	Deleted note 6 for Table II	
11/12/99:	5	Replaced IDT logo	
03/31/00:			v-through 70V908 family offerings into one data sheet
		Changed ±200mV in waveform notes to 0mV	
		Added corresponding part chart with ordering	information
01/10/01:	Page 3	Changed information in Truth Table II	
	Page 4	Increased storage temperature parameters	
		Clarified TA parameter	
	Page 5	DC Electrical parameters-changed wording f	rom "open" to "disabled"
		Removed Preliminary Status	
01/15/04:		Consolidated multiple devices into one datash	
		Changed naming conventions from Vcc to Vd	D and from GND to Vss
		Removed I-temp footnote from tables	
	Page 2	Added date revision to pin configuration	
	Page 4	Added Junction Temperature to Absolute Maxi	mum Ratings Table
		Added Ambient Temperature footnote	
	Page 5	Added I-temp numbers for 9ns speed to the DC	
		Added 6ns & 7ns speeds DC power numbers	
	Page 7	Added I-temp for 9ns speed to AC Electrical Ch	
	5 44	Added 6ns & 7ns speeds AC timing numbers to	
	Page 16	Added 6ns & 7ns speeds grade and 9ns I-tem	p to ordering information
		Added IDT Clock Solution Table	
05111101	Pages 1 & 17	Replaced [®] IDT logo with ™ new logo	
05/11/04:	Pages 1 & 19	Added 7ns speed grade to ordering informatio	
	Page 5	Added 7ns speed DC power numbers to the D	
	Page 8	Added 7ns speed AC timing numbers to the AC	Electrical Characteristics Lable

Added green parts availability to features

1.32mW (typ) in the Features Corrected some text typos

Tape & Reel to Ordering Information

Last time buy expires June 15, 2018

Added Orderable Part Information table

Product Discontinuation Notice - PDN# SP-17-02

speed grade offerings

Added green indicator to ordering information

Removed "IDT" from orderable part number

In order to correct the header notes of the AC Elect Chars Table and align them with the Industrial temp range

In order to correct the footnotes of timing diagrams, CNTEN has been removed to reconcile the footnotes with

Replaced Industrial 9ns with 12ns. Replaced Low Power Operation Standby from 600mW (typ) to

Removed the 9ns Industrial temp power values for the S & L offering in the DC Elec Chars table

Updated the column headings of the AC Elec Chars table to indicate the Commercial and Industrial

Deleted obsolete Commercial speed grades 6/9/12/15ns in Features and Ordering Information

Added the 12ns Industrial temp power value for the L offering in the DC Elec Chars table

values located in the table, the commercial TA header note has been removed

the CNTEN logic definition found in Truth Table II - Address Counter Control

Updated all the Commercial and Industrial speed grade offerings and added

The label PN100-1 changed to PN100 to match the standard package code Corrected Old Flow-through Part number in table 13 to 70V907S/L25 & S/L30

Rotated PNG100 TQFP pin configuration to accurately reflect pin 1 orientation

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use o any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners. **Contact Information**

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: <u>www.renesas.com/contact/</u>