

RP173x Series

11 V Input 150 mA LDO

No. EA-256-230417

OUTLINE

The RP173x is a voltage regulator featuring 150 mA output and low supply current of Typ. 2.0 μ A. It consists of a voltage reference unit, an error amplifier, a resistor-net for voltage setting, a current limit circuit, a chip enable circuit and a Reverse Current Protection Circuit. RP173x is suitable for the power source such as the equipment being in the standby-mode. The A version with CE input pin has reduced CE pull-up resistance to make its supply current ultra low.

The RP173x has Max.11 V Input voltage and is applicable to the portable communication equipment that requires the 2-cell Li-ion battery. Also it is applicable to the non-portable communication equipments. As the RP173x includes Reverse Current Protection Circuit, there is little leakage current, if it is used as back-up circuit.

Packages are available in SOT-23-5, SC-88A, and 1-mm square DFN(PL)1010-4 packages. High density mounting of the ICs on boards is possible.

FEATURES

Output Current	Typ. 150 mA
Supply Current	Tvp. 2.0 μA

- Dropout Voltage Typ. 0.13 V (I_{OUT} = 30 mA, V_{OUT} = 3.0 V)

- Packages DFN(PL)1010-4, SC-88A, SOT-23-5

- Built-in Reverse Current Protection Circuit
- Built-in Peak Current Limit Circuit
- Output capacitors 0.1 μF or more

APPLICATIONS

- Power source for portable communication equipments.
- Power source for battery-powered equipments.
- Power source for electrical appliances such as cameras, VSRs and camcorders.
- Power source for digital home appliances.

SELECTION GUIDE

The output voltage, the auto-discharge function⁽¹⁾, and the package for the ICs are user-selectable options.

Selection Guide

Product Name	Package	Quantity per Reel	Pb Free	Halogen Free
RP173Kxx1*-TR	DFN(PL)1010-4	10,000 pcs	Yes	Yes
RP173Qxx2*-TR-FE	SC-88A	3,000 pcs	Yes	Yes
RP173Nxx1*-TR-FE	SOT-23-5	3,000 pcs	Yes	Yes

xx: The output voltage can be designated in the range of 1.2 V (12) to 5.5 V (55) in 0.1 V step.

* : The auto discharge function at off state are options as follows.

- (A) "L" active, without auto discharge function at off state (Pull-up resistance is not built-in)
- (B) "H" active, without auto discharge function at off state
- (D) "H" active, with auto discharge function at off state

⁽¹⁾ Auto-discharge function quickly lowers the output voltage to 0 V, when the chip enable signal is switched from the active mode to the standby mode, by releasing the electrical charge accumulated in the external capacitor.

No. EA-256-230417

BLOCK DIAGRAMS

RP173x No. EA-256-230417

PIN DESCRIPTIONS

Pin Configuration

RP173Q (SC-88A) Pin Configuration

RP173N (SOT-23-5) Pin Configuration

RP173K Pin Descriptions

Pin No.	Symbol	Description
1	Vout	Output Pin
2	GND	Ground Pin
3	CE /CE	Chip Enable Pin
4	V _{DD}	Input Pin

RP173Q Pin Descriptions

Pin No.	Symbol	Description		
1	CE /CE	Chip Enable Pin		
2 ⁽²⁾	NC	No Connection		
3	GND	Ground Pin		
4	Vout	Output Pin		
5	V _{DD}	Input Pin		

RP173N Pin Descriptions

Pin No.	Symbol	Description
1	V _{DD}	Input Pin
2	GND	Ground Pin
3	CE /CE	Chip Enable Pin
4	NC	No Connection
5	Vout	Output Pin

⁽¹⁾ The tab on the bottom of the package enhances thermal performance and is electrically connected to GND (substrate level). It is recommended that the tab be connected to the ground plane on the board, or otherwise be left floating.
⁽²⁾ Pin No. 2 is connected to the bottom of the IC. It is recommended that the pin be connected to the ground plane on the board, or otherwise be left floating so that there is no contact with other potentials.

No. EA-256-230417

ABSOLUTE MAXIMUM RATINGS

Absolute Maximum Ratings

Symbol		ltem		Rating	Unit
Vin	Input Voltage	Input Voltage			V
VCE	Input Voltage (CE	Input Voltage (CE pin)			V
Vout	Output Voltage	Output Voltage			V
Іоит	Output Current			165	mA
		DFN(PL)1010-4	JEDEC STD. 51-7 Test Land Pattern	800	
PD	Power Dissipation ⁽¹⁾	SC-88A	Standard Test Land Pattern	380	mW
		SOT-23-5 JEDEC STD. 51-7 Test Land Pattern		660	
Tj	Junction Temperature Range			-40 to 125	°C
Tstg	Storage Temperate	ure Range	-55 to 125	°C	

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause permanent damage and may degrade the lifetime and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings is not assured.

RECOMMENDED OPERATING CONDITIONS

Recommended Operating Conditions

Symbol	ltem	Rating	Unit
V _{IN}	Input Voltage	2.5 to 11.0 ⁽²⁾	V
Та	Operating Temperature Range	-40 to 85	°C

RECOMMENDED OPERATING CONDITIONS

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

⁽¹⁾ Refer to POWER DISSIPATION for detailed information.

 $^{^{(2)}}$ V_{SET} + 6.5 V \leq 11.0 V

No. EA-256-230417

ELECTRICAL CHARACTERISTICS

Unless otherwise noted, V_{IN} = Set V_{OUT} + 1.0 V, I_{OUT} = 1 mA, C_{IN} = C_{OUT} = 0.1 μ F. The specifications surrounded by are guaranteed by design engineering at -40°C \leq Ta \leq 85°C.

Symbol	Item	Conditio	ons	Min.	Тур.	Max.	Unit
		$T_{2} = 25^{\circ}O$	V _{OUT} > 1.5 V	x0.99		x1.01	V
N/		Ta = 25°C V _{OUT} ≤ 1.5 V		-15		15	mV
Vout	Output Voltage		V _{OUT} > 1.5 V	x0.982		x1.018	V
		-40°C ≤ Ta ≤ 85°C	V _{OUT} ≤ 1.5 V	-28		27	mV
I _{OUT}	Output Current			150			mA
$\Delta V_{OUT}/\Delta I_{OUT}$	Load Regulation	0.1 mA ≤ I _{OUT} ≤ 150	mA	-30	-3	35	mV
VDIF	Dropout Voltage	Ι _{ουτ} = 150 mA		SP	ECIFIC	ne PRODUC ELECTRIC CTERISTIC	AL
lss	Supply Current	louт = 0 mA			2.0	3.7	μA
Istandby	Standby Current	V _{IN} = V _{IN} (Max.) V _{CE} = V _{IN}		0.2	0.6	μA	
$\Delta V_{OUT}/\Delta V_{IN}$	Load Regulation	$\begin{array}{l} \text{Set } V_{\text{OUT}} + 0.5 \ \text{V} \leq \text{V} \\ \text{When } V_{\text{OUT}} \leq 2.0 \ \text{V}, \\ 2.5 \ \text{V} \leq \text{V}_{\text{IN}} \leq \text{V}_{\text{IN}} \left(\text{Matrix} \right) \end{array}$		0.02	0.20	%/V	
RR	Ripple Rejection	f = 1 kHz, Ripple 0.2 Vp–p, I _{OU} *When V _{OUT} < 2.0 V		30		dB	
Vin	Input Voltage	1.2 ≤ V _{OUT} < 4.5 4.5 ≤ V _{OUT} ≤ 5.5		2.5 2.5		V _{SET} + 6.5	V
lsc	Short Current Limit Circuit	V _{OUT} = 0 V			45		mA
V _{CEH}	CE Input Voltage "H"			1.7			V
VCEL	CE Input Voltage "L"					0.8	V
I _{REV}	Reverse Current	$0 \le V_{IN} \le 11.0 \text{ V}, \text{ V}_{OU}$	_{JT} ≥ 1.5 V		0	0.16	μA
Vrev_det ⁽¹⁾	Reverse Current Protection Mode Detection Offset, V _{REV} = V _{DD} - V _{OUT}	0 ≤ V _{IN} ≤ 11.0 V, V _O		55	100	mV	
$V_{\text{REV}_{\text{REL}}^{(1)}}$	Reverse Current Protection Mode Release Offset	0 ≤ V _{IN} ≤ 11.0 V, V _O u	ד ≥ 1.5 V		70	120	mV

All of units are tested and specified under the pulse load conditions such that Tj ≈ Ta = 25°C except for Ripple Rejection.

⁽¹⁾ The operation coverage of the Reverse Current Protection Circuit is $V_{OUT} \ge 1.5$ V. However, under the condition of $V_{IN} = V_{OUT} = 0$ V, always the Reverse Current Protection Circuit is operating.

No. EA-256-230417

Unless otherwise noted, VIN = Set VOUT	+ 1.0 V, Ιουτ = 1 mA, C _{IN} = C _{OUT} = 0.1 μF.
The specifications surrounded by	are guaranteed by design engineering at −40°C ≤ Ta ≤ 85°C.

Symbol	Item	Conditio	Min.	Тур.	Max.	Unit	
		T. 05%0	V _{OUT} > 1.5 V	x0.99		x1.01	V
.,		Ta = 25°C	V _{OUT} ≤ 1.5 V	-15		15	mV
V _{OUT}	Output Voltage		V _{OUT} > 1.5 V	x0.982		x1.018	V
		-40°C ≤ Ta ≤ 85°C	V _{OUT} ≤ 1.5 V	-28		27	mV
lout	Output Current			150			mA
ΔV out/ ΔI out	Load Regulation	0.1 mA ≤ I _{OUT} ≤ 150	mA	-30	-3	35	mV
Vdif	Dropout Voltage	Ιουτ = 150 mA		SP	ECIFIC	ne PRODUC ELECTRIC CTERISTICS	AL
lss	Supply Current	I _{ОUT} = 0 mA			2.0	3.7	μA
Istandby	Standby Current	V _{IN} = V _{IN} (Max.) V _{CE} = 0 V			0.2	0.6	μA
$\Delta V_{OUT}/\Delta V_{IN}$	Load Regulation	$\begin{array}{l} \text{Set } V_{\text{OUT}} + 0.5 \ \text{V} \leq \text{V} \\ \text{When } V_{\text{OUT}} \leq 2.0 \ \text{V}, \\ 2.5 \ \text{V} \leq \text{V}_{\text{IN}} \leq \text{V}_{\text{IN}} \ \text{(Mathematical States)} \end{array}$		0.02	0.20	%/V	
RR	Ripple Rejection	f = 1kHz, Ripple 0.2 Vp-p, lou ⁻ *When V _{OUT} < 2.0 V		30		dB	
Vin	Input Voltage	1.2 ≤ V _{OUT} < 4.5		2.5		V _{SET} + 6.5	V
VIN	Input Voltage	$4.5 \le V_{OUT} \le 5.5$		2.5		11	v
lsc	Short Current Limit Circuit	V _{OUT} = 0 V			45		mA
IPD	CE Pull-down Current				0.30	0.90	μA
VCEH	CE Input Voltage "H"			1.7			V
VCEL	CE Input Voltage "L"					0.8	V
IREV	Reverse Current	$0 \le V_{IN} \le 11.0 \text{ V}, \text{ V}_{OI}$	JT ≥ 1.5 V		0	0.16	μA
$V_{\text{REV}_\text{DET}^{(1)}}$	Reverse Current Protection Mode Detection Offset, V _{REV} = V _{DD} - V _{OUT}	$0 \le V_{IN} \le 11.0 \text{ V}, \text{ V}_{OUT} \ge 1.5 \text{ V}$			55	100	mV
$V_{\text{REV}_{\text{REL}}^{(1)}}$	Reverse Current Protection Mode Release Offset	$0 \leq V_{IN} \leq 11.0 \text{ V}, \text{ Vol}$		70	120	mV	
RLOW	Auto-discharge Nch Tr. ON Resistance (RP173xxxxD only)	V _{IN} = 7.0 V, V _{CE} = 0	V		380		Ω

All of units are tested and specified under the pulse load conditions such that Tj \approx Ta = 25°C except for Ripple Rejection.

⁽¹⁾ The operation coverage of the Reverse Current Protection Circuit is $V_{OUT} \ge 1.5$ V. However, under the condition of $V_{IN} = V_{OUT} = 0$ V, always the Reverse Current Protection Circuit is operating.

<u>RP173x</u>

No. EA-256-230417

PRODUCT-SPECIFIC ELECTRICAL CHARACTERISTICS

RP173x Product-specific Electrical Characteristics

			Vc	рит			v	
Product Name		Ta = 25°C		-40	°C ≤ Ta ≤ 8	5°C	v	DIF
	Min.	Тур.	Max.	Min.	Тур.	Max.	Тур.	Max
RP173x12xx	1.185	1.200	1.215	1.172	1.200	1.227	1.680	2.590
RP173x12xx5	1.235	1.250	1.265	1.222	1.250	1.277	1.680	2.590
RP173x13xx	1.285	1.300	1.315	1.272	1.300	1.327	1.630	2.490
RP173x14xx	1.385	1.400	1.415	1.372	1.400	1.427	1.630	2.490
RP173x15xx	1.485	1.500	1.515	1.472	1.500	1.527	1.480	2.230
RP173x16xx	1.584	1.600	1.616	1.571	1.600	1.629	1.480	2.230
RP173x17xx	1.683	1.700	1.717	1.669	1.700	1.731	1.480	2.23
RP173x17xx5	1.733	1.750	1.768	1.719	1.750	1.782	1.480	2.230
RP173x18xx	1.782	1.800	1.818	1.768	1.800	1.832	1.160	2.19
RP173x18xx5	1.832	1.850	1.869	1.817	1.850	1.883	1.160	2.19
RP173x19xx	1.881	1.900	1.919	1.866	1.900	1.934	1.160	2.190
RP173x20xx	1.980	2.000	2.020	1.964	2.000	2.036	1.160	2.190
RP173x21xx	2.079	2.000	2.020	2.062	2.000	2.030	1.160	2.19
RP173x22xx	2.079	2.100	2.121	2.160	2.100	2.130	1.160	2.19
RP173x23xx	2.176	2.200	2.323	2.100	2.200	2.240	0.900	1.47
RP173x24xx	2.376	2.300	2.323	2.259	2.300	2.443	0.900	1.47
			2.424			2.445		
RP173x25xx	2.475	2.500	2.525	2.455 2.553	2.500	2.545	0.900	1.47
RP173x26xx	2.574	2.600 2.700	2.620	2.555	2.600 2.700	2.047	0.900	1.47
RP173x27xx	2.673 2.772		2.828	2.651		2.749		1.47
RP173x28xx RP173x28xx5		2.800			2.800	2.850	0.900	1.47
	2.822	2.850	2.879	2.799	2.850		0.900	1.47
RP173x29xx	2.871	2.900	2.929	2.848	2.900	2.952	0.900	1.47
RP173x30xx	2.970	3.000	3.030	2.946	3.000 3.100	3.054	0.610	1.05
RP173x31xx	3.069	3.100	3.131	3.044		3.156	0.610	1.05
RP173x32xx	3.168	3.200	3.232	3.142	3.200	3.258	0.610	1.05
RP173x33xx	3.267	3.300	3.333	3.241	3.300	3.359	0.610	1.05
RP173x34xx	3.366	3.400	3.434	3.339	3.400	3.461	0.610	1.05
RP173x35xx	3.465	3.500	3.535	3.437	3.500	3.563	0.610	1.05
RP173x36xx	3.564	3.600	3.636	3.535	3.600	3.665	0.610	1.050
RP173x37xx	3.663	3.700	3.737	3.633	3.700	3.767	0.610	1.05
RP173x38xx	3.762	3.800	3.838	3.732	3.800	3.868	0.610	1.050
RP173x39xx	3.861	3.900	3.939	3.830	3.900	3.970	0.610	1.05
RP173x40xx	3.960	4.000	4.040	3.928	4.000	4.072	0.390	0.76
RP173x41xx	4.059	4.100	4.141	4.026	4.100	4.174	0.390	0.76
RP173x42xx	4.158	4.200	4.242	4.124	4.200	4.276	0.390	0.76
RP173x43xx	4.257	4.300	4.343	4.223	4.300	4.377	0.390	0.76
RP173x44xx	4.356	4.400	4.444	4.321	4.400	4.479	0.390	0.76
RP173x45xx	4.455	4.500	4.545	4.419	4.500	4.581	0.390	0.76
RP173x46xx	4.554	4.600	4.646	4.517	4.600	4.683	0.390	0.76
RP173x47xx	4.653	4.700	4.747	4.615	4.700	4.785	0.390	0.76
RP173x48xx	4.752	4.800	4.848	4.714	4.800	4.886	0.390	0.76
RP173x49xx	4.851	4.900	4.949	4.812	4.900	4.988	0.390	0.76
RP173x50xx	4.950	5.000	5.050	4.910	5.000	5.090	0.390	0.76
RP173x51xx	5.049	5.100	5.151	5.008	5.100	5.192	0.390	0.76
RP173x52xx	5.148	5.200	5.252	5.106	5.200	5.294	0.390	0.76
RP173x53xx	5.247	5.300	5.353	5.205	5.300	5.395	0.390	0.76
RP173x54xx	5.346	5.400	5.454	5.303	5.400	5.497	0.390	0.76
RP173x55xx	5.445	5.500	5.555	5.401	5.500	5.599	0.390	0.760

THEORY OF OPERATION

REVERSE CURRENT PROTECTION CIRCUIT

The RP173 Series include a Reverse Current Protection Circuit, which stops the reverse current from Vout pin to VDD pin or to GND pin when VOUT becomes higher than VIN.

Usually, the LDO using Pch output transistor contains a parasitic diode between V_{DD} pin and V_{OUT} pin. Therefore, if V_{OUT} is higher than V_{IN} , the parasitic diode becomes forward direction. As a result, the current flows from V_{OUT} pin to V_{DD} pin.

The ICs of this series switches the mode to the reverse current protection mode before V_{IN} becomes lower than V_{OUT} by connecting the parasitic diode of Pch output transistor to the backward direction, and connecting the gate to V_{OUT} pin. As a result, the Pch output transistor is turned off and the all the current pathways from V_{OUT} pin to GND pin are shut down to maintain the reverse current lower than $[I_{REV}]$ of the Electrical Characteristics.

Switching to either the normal mode or to the reverse current protection mode is determined by the magnitude of V_{IN} voltage and V_{OUT} voltage. For the stable operation, offset and hysteresis are set as the threshold. The detection/ release thresholds of both normal and reverse current protection modes are specified by $[V_{REV_{DET}}]$ and $[V_{REV_{REL}}]$ of the Electrical Characteristics. Therefore, the minimum dropout voltage under the small load current condition is restricted by the value of $[V_{REV_{REL}}]$.

Fig.1 and Fig.2 show the diagrams of each mode, and Fig.3 shows the load characteristics of each mode. When giving the V_{OUT} pin a constant-voltage and decreasing the V_{IN} voltage, the dropout voltage will become lower than the [V_{REV_DET}]. As a result, the reverse current protection starts to function to stop the load current. By increasing the dropout voltage higher than the [V_{REV_REL}], the protection mode will be released to let the load current to flow. If the dropout voltage to be used is lower than [V_{REV_REL}], the detection and the release may be repeated.

The operation coverage of the Reverse Current Protection Circuit is $V_{0UT} \ge 1.5V$. However, under the condition of $V_{IN}=0V$, always the reverse current protection mode is operating.

Fig. 2 Reverse Current Protection Mode

No. EA-256-230417

Fig. 3 Reverse Current Protection Mode Detection/ Release & Reverse Current/ Output Current Characteristics

No. EA-256-230417

APPLICATION INFORMATION

TYPICAL APPLICATIONS

Recommended External Components

Symbol	Description
С2 (Соит)	0.1 μF, GRM155B31C104KA87D, MURATA

NOTES ON SELECTING EXTERNAL COMPONENTS

Phase Compensation

In these ICs, phase compensation is made for securing stable operation even if the load current is varied. For this purpose, use a 0.1μ F or more capacitor C2.

In case of using a tantalum capacitor, the output may be unstable due to inappropriate ESR. Therefore, the full range of operating conditions for the capacitor in the application should be considered.

PCB Layout

Make V_{DD} and GND lines sufficient. If their impedance is high, noise pickup or unstable operation may result. Connect a capacitor C1 with a capacitance value as much as 0.1μ F or more between V_{DD} and GND pin, and as close as possible to the pins.

Set external components, especially the output capacitor C2, as close as possible to the ICs, and make wiring as short as possible.

RP173x No. EA-256-230417

TECHNICAL NOTES

POWER ACTIVATION

If the ICs are started up with V_{IN} and V_{CE} under the no-load condition, the both pin voltages have to be started up with faster than 2.0V/s. If the IC is started up with slower than 2.0V/s under the no-load condition, start up the IC only with V_{CE} .

ESR vs. Output Current

When using these ICs, consider the following points: The relations between I_{OUT} (Output Current) and ESR of an output capacitor are shown below. The conditions when the white noise level is under 40 μ V (Avg.) are marked as the hatched area in the graph.

Measurement Conditions

Frequency Band: 10 Hz to 2 MHz		
Temperature	: −40°C to 85°C	
C1, C2	: 0.1 μF	

RP173x No. EA-256-230417

TYPICAL CHARACTERISTICS

Note: Typical Characteristics are intended to be used as reference data; they are not guaranteed. 1) Output Voltage vs. Output Current (C1 = Ceramic 0.1 μ F, C2 = Ceramic 0.1 μ F, Ta = 25°C)

3) Supply Current vs. Input Voltage (C1 = Ceramic 0.1 μF, C2 = Ceramic 0.1 μF, Ta = 25°C) RP173x12xx RP173x18xx

Nisshinbo Micro Devices Inc.

No. EA-256-230417

4) Output Voltage vs. Temperature (C1 = Ceramic 0.1 μ F, C2 = Ceramic 0.1 μ F, I_{OUT} = 1 mA) RP173x12xx RP173x18xx

RP173x No. EA-256-230417

6) Dropout Voltage vs. Set Output Voltage (C1 = Ceramic 0.1 μ F, C2 = Ceramic 0.1 μ F, Ta = 25°C) RP173x

7) Minimum Operating Voltage (C1 = Ceramic 0.1 μ F, C2 = Ceramic 0.1 μ F, Ta = -40 to 85°C)

No. EA-256-230417

8) Ripple Rejection vs. Input Bias Voltage (C1 = none, C2 = Ceramic 0.1 μF, Ripple = 0.2 Vp-p, Ta = 25°C)
 RP173x28xx
 RP173x28xx

9) Ripple Rejection vs. Temperature (C1 = none, C2 = Ceramic 0.1 μF, Ripple = 0.2 Vp-p, Ta = 25°C) RP173x12xx RP173x18xx

No. EA-256-230417

VIN=6.5V

100

1000

10) Input Transient Response (C1 = none, C2 = Ceramic 0.1 μF, tr = tf = 5.0 μs, Ta = 25°C) **RP173x12xx RP173x18xx**

11) Load Transient Response (C1 = Ceramic 0.1 μ F, C2 = Ceramic 0.1 μ F, tr = tf = 0.5 μ s, Ta = 25°C)

Nisshinbo Micro Devices Inc.

RP173x

No. EA-256-230417

Output Voltage Vour (V)

3.4

3.2 3.0

2.8

2.6

2.4

Output Voltage Vour (V)

Output Voltage Vour (V)

3.6

3.3 3.0

2.7

2.4

2.1

1.8 1.5

1.2

0.9

0.6

0.3

RP173x30xx RP173x55xx VIN=4.0V VIN=6.5V 20 20 10 10 Output Current IouT (mA) Output Current IouT (mA) Output Voltage Vour (V) 0 0 Output Current Output Current 1mA⇔10mA 1mA⇔10mA 5.9 5.7 5.5 5.3 Output Voltage Output Voltage 5.1 4.9 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Time t (ms) Time t (ms) **RP173x12xx RP173x18xx** VIN=4.0V VIN=4.0V 150 150 Output Current lour (mA) Output Voltage Vour (V) Output Current **Output Current** 50mA⇔100mA 0 2.4 50mA⇔100mA 2.1 1.8 1.5 Output Voltage Output Voltage 1.2 0.9 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Time t (ms) Time t (ms) RP173x30xx RP173x55xx VIN=4.0V VIN=6.5V 150 150 100 100 Output Current Iour (mA) Output Current lour (mA) Output Voltage Vour (V) 50 50 **Output Current Output Current** 0 50mA⇔100mA 50mA⇔100mA 0 5.8 5.5 5.2 Output Voltage Output Voltage 4.9 4.6 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Time t (ms) Time t (ms)

RP173x

No. EA-256-230417

No. EA-256-230417

12) Turn on Speed (C1 = Ceramic 0.1 μ F, C2 = Ceramic 0.1 μ F, Ta = 25°C)

13) Turn off Speed with CE pin (C1 = Ceramic 0.1 μ F, C2 = Ceramic 0.1 μ F, Ta = 25°C)

No. EA-256-230417

RP173x55xx

POWER DISSIPATION

DFN(PL)1010-4

Ver. B

The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51-7.

Measurement Conditions

ltem	Measurement Conditions	
Environment	Mounting on Board (Wind Velocity = 0 m/s)	
Board Material	Glass Cloth Epoxy Plastic (Four-Layer Board)	
Board Dimensions	76.2 mm × 114.3 mm × 0.8 mm	
Copper Ratio	Outer Layer (First Layer): Less than 95% of 50 mm SquareCopper RatioInner Layers (Second and Third Layers): Approx. 100% of 50 mm SquareOuter Layer (Fourth Layer): Approx. 100% of 50 mm Square	
Through-holes	φ 0.2 mm × 11 pcs	

Measurement Result

(Ta = 25°C, Tjmax = 125°C)

Item	Measurement Result
Power Dissipation	800 mW
Thermal Resistance (θja)	θja = 125°C/W
Thermal Characterization Parameter (ψjt)	ψjt = 58°C/W

θja: Junction-to-Ambient Thermal Resistance

wjt: Junction-to-Top Thermal Characterization Parameter

Power Dissipation vs. Ambient Temperature

Measurement Board Pattern

PACKAGE DIMENSIONS

DFN(PL)1010-4

Ver. A

DFN(PL)1010-4 Package Dimensions (Unit: mm)

^{*} The tab on the bottom of the package shown by blue circle is a substrate potential (GND). It is recommended that this tab be connected to the ground plane on the board but it is possible to leave the tab floating.

POWER DISSIPATION

SC-88A

Ver. B

The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following conditions are used in this measurement.

Measurement Conditions

Item	Standard Test Land Pattern
Environment	Mounting on Board (Wind Velocity = 0 m/s)
Board Material	Glass Cloth Epoxy Plastic (Double-Sided Board)
Board Dimensions	40 mm × 40 mm × 1.6 mm
Copper Ratio	Top Side: Approx. 50%
	Bottom Side: Approx. 50%
Through-holes	φ 0.5 mm × 44 pcs

Measurement Result

(Ta = 25°C, Tjmax = 125°C)

Item	Standard Test Land Pattern
Power Dissipation	380 mW
Thermal Resistance (θja)	θja = 263°C/W
Thermal Characterization Parameter (ψjt)	ψjt = 75°C/W

 $\boldsymbol{\theta} ja:$ Junction-to-Ambient Thermal Resistance

ψjt: Junction-to-Top Thermal Characterization Parameter

Power Dissipation vs. Ambient Temperature

Measurement Board Pattern

i

PACKAGE DIMENSIONS

SC-88A

Ver. A

UNIT: mm

i

SC-88A Package Dimensions

POWER DISSIPATION

SOT-23-5

Ver. A

The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51-7.

Measurement Conditions

ltem	Measurement Conditions	
Environment	Mounting on Board (Wind Velocity = 0 m/s)	
Board Material	Glass Cloth Epoxy Plastic (Four-Layer Board)	
Board Dimensions	76.2 mm × 114.3 mm × 0.8 mm	
Copper Ratio	Outer Layer (First Layer): Less than 95% of 50 mm Square Inner Layers (Second and Third Layers): Approx. 100% of 50 mm Square Outer Layer (Fourth Layer): Approx. 100% of 50 mm Square	
Through-holes	φ 0.3 mm × 7 pcs	

Measurement Result

(Ta = 25°C, Tjmax = 125°C)

Item	Measurement Result
Power Dissipation	660 mW
Thermal Resistance (θja)	θja = 150°C/W
Thermal Characterization Parameter (ψjt)	ψjt = 51°C/W

θja: Junction-to-Ambient Thermal Resistance

wjt: Junction-to-Top Thermal Characterization Parameter

PACKAGE DIMENSIONS

SOT-23-5

Ver. A

i

- 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to our sales representatives for the latest information thereon.
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without the prior written consent of us.
- 3. This product and any technical information relating thereto are subject to complementary export controls (so-called KNOW controls) under the Foreign Exchange and Foreign Trade Law, and related politics ministerial ordinance of the law. (Note that the complementary export controls are inapplicable to any application-specific products, except rockets and pilotless aircraft, that are insusceptible to design or program changes.) Accordingly, when exporting or carrying abroad this product, follow the Foreign Exchange and Foreign Trade Control Law and its related regulations with respect to the complementary export controls.
- 4. The technical information described in this document shows typical characteristics and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under our or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death should first contact us.
 - Aerospace Equipment
 - Equipment Used in the Deep Sea
 - Power Generator Control Equipment (nuclear, steam, hydraulic, etc.)
 - Life Maintenance Medical Equipment
 - Fire Alarms / Intruder Detectors
 - Vehicle Control Equipment (automotive, airplane, railroad, ship, etc.)
 - Various Safety Devices
 - Traffic control system
 - Combustion equipment

In case your company desires to use this product for any applications other than general electronic equipment mentioned above, make sure to contact our company in advance. Note that the important requirements mentioned in this section are not applicable to cases where operation requirements such as application conditions are confirmed by our company in writing after consultation with your company.

- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. The products have been designed and tested to function within controlled environmental conditions. Do not use products under conditions that deviate from methods or applications specified in this datasheet. Failure to employ the products in the proper applications can lead to deterioration, destruction or failure of the products. We shall not be responsible for any bodily injury, fires or accident, property damage or any consequential damages resulting from misuse or misapplication of the products.
- 8. Quality Warranty
 - 8-1. Quality Warranty Period

In the case of a product purchased through an authorized distributor or directly from us, the warranty period for this product shall be one (1) year after delivery to your company. For defective products that occurred during this period, we will take the quality warranty measures described in section 8-2. However, if there is an agreement on the warranty period in the basic transaction agreement, quality assurance agreement, delivery specifications, etc., it shall be followed.

8-2. Quality Warranty Remedies

When it has been proved defective due to manufacturing factors as a result of defect analysis by us, we will either deliver a substitute for the defective product or refund the purchase price of the defective product.

- Note that such delivery or refund is sole and exclusive remedies to your company for the defective product.
- 8-3. Remedies after Quality Warranty Period

With respect to any defect of this product found after the quality warranty period, the defect will be analyzed by us. On the basis of the defect analysis results, the scope and amounts of damage shall be determined by mutual agreement of both parties. Then we will deal with upper limit in Section 8-2. This provision is not intended to limit any legal rights of your company.

- 9. Anti-radiation design is not implemented in the products described in this document.
- 10. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
- 11. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
- 12. Warning for handling Gallium and Arsenic (GaAs) products (Applying to GaAs MMIC, Photo Reflector). These products use Gallium (Ga) and Arsenic (As) which are specified as poisonous chemicals by law. For the prevention of a hazard, do not burn, destroy, or process chemically to make them as gas or power. When the product is disposed of, please follow the related regulation and do not mix this with general industrial waste or household waste.
- 13. Please contact our sales representatives should you have any questions or comments concerning the products or the technical information.

Nisshinbo Micro Devices Inc.

Official website https://www.nisshinbo-microdevices.co.jp/en/ Purchase information https://www.nisshinbo-microdevices.co.jp/en/buy/